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The purpose of this study was to develop and validate a technique for unsealed 
source radiotherapy planning that combines the segmentation and registration 
tasks of single-photon emission tomography (SPECT) and computed tomography 
(CT) datasets. The segmentation task is automated by an atlas registration ap-
proach that takes advantage of a hybrid scheme using a diffeomorphic demons 
algorithm to warp a standard template to the patient’s CT. To overcome the lack 
of common anatomical features between the CT and SPECT datasets, registration 
is achieved through a narrow band approach that matches liver contours in the CT 
with the gradients of the SPECT dataset. Deposited dose is then computed from 
the SPECT dataset using a convolution operation with tracer-specific deposition 
kernels. Automatic segmentation showed good agreement with manual contouring, 
measured using the dice similarity coefficient and ranging from 0.72 to 0.87 for the 
liver, 0.47 to 0.93 for the kidneys, and 0.74 to 0.83 for the spinal cord. The narrow 
band registration achieved variations of less 0.5 mm translation and 1° rotation, as 
measured with convergence analysis. With the proposed combined segmentation–
registration technique, the uncertainty of soft-tissue target localization is greatly 
reduced, ensuring accurate therapy planning. 
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I.	 Introduction

The trend of more personalized therapy is driving clinical use of molecular imaging for assess-
ment of therapeutic targets and identification of resistance factors to match therapy to tumor 
biology. Imaging can capture heterogeneity of target expression and measure the effect of 
radionuclide therapy on the target (i.e., receptor antagonism or change in target expression). 
However, personalized absorbed dose estimates of targeted radiotherapy are inaccurate at this 
time, but are essential to establish fundamental dose-response relationships for efficacy and 
toxicity. Development of patient-specific dosimetry for administered radionuclides, combined 
with molecular imaging, is important for better understanding of tumor response and normal-
tissue toxicity for individual patients.

Integration of functional single-photon emission computed tomography (SPECT) imaging 
data into radiation dose calculations has drawn the interest of many researchers because of its 
compelling advantages in quantifying absorbed dose delivered to tumors and normal tissue for 
targeted radiotherapy.(1-4) One of the most common applications is to treat hepatic malignancies 
by radioembolization with microspheres containing yttrium-90 (90Y) delivered via the hepatic 
artery.(5-8) In this approach, patient-specific data from computed tomography (CT) or magnetic 
resonance imaging (MRI) provides an anatomical model with resolutions on the order of 1 mm. 
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Similarly, SPECT provides three-dimensional (3D) representations of activity distributions 
within patients, with typical resolutions of approximately 5–10 mm as a surrogate of dose dis-
tribution, to assess delivered dose and lung toxicity(9-11) that significantly improves accuracy 
over standard approaches such as the MIRD formalism,(12) or to guide the radiotherapy plan-
ning to spare critical tissue.(13,14) Despite the  extensive amount of work already done, many 
obstacles remain. Monte Carlo and dose convolution methods for calculating the absorbed dose 
have improved;(15) however, image registration and anatomical segmentation methods require 
significant user interaction,(2,3) which limit the clinical usefulness of the system.

Segmentation is the most time-consuming step of the planning process. Methods based on 
thresholding or region growing are widely used, but are impractical when applied to soft-tissue 
organs of similar intensities as only voxel intensities in the input images are used as guidance. 
When added to the segmentation process, prior knowledge of the shape and size of the organs 
to be segmented has increased accuracy,(16-18) with atlas-based–segmentation algorithms repre-
senting the most advanced approach to guide the segmentation process. The method relies on 
the existence of a mapping between a reference image volume (called atlas) in which structures 
of interest have been carefully segmented, and the image to be segmented (called subject). A 
point-to-point mapping between the two is obtained by a deformable image registration and 
is used to warp structures from the atlas onto the subject dataset. With this approach, the seg-
mentation problem is reduced to a registration problem that tries to capture and compensate 
for interpatient anatomical variability.

Because the deformable registration can interpolate in regions of low contrast from neigh-
boring anatomical features, the method effectively contours structures that do not have a 
clear border.(18) This practical method was recently adapted in radiotherapy for CT datasets 
of the brain(19) or head and neck region using automated methods such as B-Spline,(16,17) 
demons,(18,20,21) or using a multimodality metric.(22) The method was recently extended for 
atlas segmentation of breast cases(23) but, to the best of our knowledge, this approach was not 
extended to segmentation of abdominal or thoracic datasets,  because differences in patient size, 
organ location, or shape are significant and cannot be easily captured by current approaches.

Due to the low tissue contrast in the CT dataset and significantly different information in the 
SPECT dataset, automatic registration methods are unreliable and manual matching is still the 
norm. Direct application of multimodal matching methods on our SPECT-CT datasets often 
failed, as the liver was the only structure visible in the SPECT image. Additionally, standard 
multimodality registration approaches assume a structure is represented by voxels of constant 
intensity, and large variations of the voxel intensities are observed in the liver for the SPECT 
images. Manual matching based on external markers(24) neglect internal liver motion. Semi-
automated or automated registration setups have been reported that to some extent employ user 
guidance to match the two datasets. A semi-automated method was introduced by Sarfaraz et 
al.(10) that matches liver segmentations obtained from SPECT and CT datasets. Although the 
CT is segmented manually, the SPECT mask is obtained with an iterative threshold search 
that aims to match the volume of the CT segmentation. Tang et al.(25) reported a voxel-based 
approach using the Mattes formulation as metric function, and investigated the influence of 
number of bins and samples on optimizer convergence behavior. We reproduced their setup, 
but found the configuration produced inconsistent results on some datasets.

Our goal was to improve the registration and segmentation processes for treatment plan-
ning incorporating SPECT datasets by developing algorithms customized to the specifics of 
SPECT-CT imaging datasets. The approach combines information from the segmentation and 
registration procedures into a common robust approach that simplifies the task. Tedious manual 
segmentation is replaced with structure identification through atlas registration that relies on 
an improved demons algorithm in which iterations are updated in a diffeomorphic space to ac-
count for large interpatient variations. A rigid registration method based on a hybrid approach 
combining advantages of the contour and voxel-based approaches is introduced to accurately 
register anatomical and functional imaging data of the abdominal anatomy. In particular, we 
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present our experience with selection of model parameters, optimization algorithm, and valida-
tion of the combined registration and segmentation technique.

 
II.	 Materials and Methods

A schema of the overall implementation of unsealed source treatment planning is presented in 
Fig. 1. It details the input and technical modules used to simplify the planning procedures in 
our approach. An atlas dataset is matched to the patient’s CT dataset using deformable regis-
tration to produce a segmentation of critical organs (see Section II. B below). A narrow band 
of the liver segmentation was further used to guide registration, as described in Section II. C. 
Dose and plan evaluation measures were calculated by convolving the SPECT distribution with 
specific dose deposition kernels (Section II. D). All algorithms presented in the following were 
developed using the Insight Toolkit (ITK)(26) library that implements a set of standard imaging 
filters as aids for developing customized algorithms.

A.	D atasets
Five patients received dual SPECT and CT scans following the routine clinical procedure. 
SPECT images were acquired on an ADAC SPECT system on a 360° orbit in step-and-shot 
mode, with a low energy-high resolution (LEHR) collimator collimation for Tc-99m, in using 
a 360º circular orbit in step-and-shoot mode, with an angular step of 7.05º and with an energy 
window of 126 to 155 keV (140 keV photopeak ± 10%). The SPECT images were reconstructed 

Fig. 1.  Flowchart of the proposed treatment planning procedure. Rectangles are data, ellipses are procedures, and arrows 
indicate data flow. Inputs are patient-specific CT and SPECT data and are marked with blue circles. Nonpatient-specific 
data input include the atlas CT, its segmentation, and the radionuclide-specific deposition kernels. Output for each pro-
cedure is shown in the right lower corner. 
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using filtered backprojection with a Butterworth convolution kernel, and corrected for attenu-
ation. Reconstructed SPECT volumes consisted of slices of 128 × 128 size with cubic voxels 
of 3.2 to 4.6 mm size. The CT datasets were acquired on a LightSpeed RT 16 scanner (GE 
Healthcare, Waukesha, WI), in slices of 512 × 512 voxels of pixel spacing 0.68 mm (35 cm 
FOV) with a slice thickness of 2.5 mm. The CT parameters used for imaging an exposure of 
140 KVp and 210 mAs, and voxel sizes were 0.71, 0.71, and 2.50 mm.

B.	 Atlas segmentation
The atlas segmentation approach (Fig. 2) starts with a template CT of a representative or aver-
age patient in which the clinical structures have been delineated by an expert, also called atlas. 
The template is then matched to the new patient image (called subject dataset) through deform-
able registration that deduces a one-to-one correspondence between the two CT datasets. The 
expert segmentation is then warped with the deformation field resulting from the registration 
to produce an automated segmentation of the subject dataset.

Accuracy depends critically on the deformable registration algorithm’s ability to find the map-
pings that accurately match the anatomy between the atlas and subject. The atlas segmentation 
procedure has been proposed previously in the context of segmenting brain MRI datasets,(27,28) 
where structures are clearly delineated. When attempting to extend the method to abdominal 
anatomy, much larger variability between subjects is a problem, compared to head and neck 
datasets. An algorithm’s ability to cope with large differences customized for CT datasets and 
with running speeds of a few minutes were our primary criteria in selecting a deformable reg-
istration model for the abdominal atlas segmentation procedure.

We selected a deformable registration algorithm that extends the popular demons formulation. 
The demons algorithm warps the input images according to local characteristics with forces 
inspired from the optical flow equations. The method was improved by Vercauteren et al.,(29) 

Fig. 2.  Concept of atlas based segmentation. The template CT dataset with the structures carefully segmented is shown 
in (a). The aim is to adapt the template dataset to the patient’s CT (b) through deformable registration to reproduce organ 
boundaries. The warped template is shown in (c) and should ideally match (b) in major organs location and shape, with 
the unusual HU warping outside critical organs normal for interpatient registrations. The atlas segmentation as warped 
with the deformable registration result to segment the patient’s CT is shown in (d).
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who used statistics on diffeomorphisms that rely on the computationally heavy solution of a 
partial differential equation. The selected implementation is an efficient nonparametric diffeo-
morphic image registration algorithm that uses an exponential update of the deformation field 
where significant accuracy improvement over the classical demons formulation is obtained, 
based on the algorithm’s ability to cope with large deformations between patients.

As settings for the deformable algorithm, we used a step size of 2, a sigma value for the 
deformation field of 1, and 0.2 for the update field. For preprocessing, both the template and 
the patient datasets were smoothed using an edge-preserving gradient anisotropic diffusion 
filter implementing the classical Perona-Malik approach.(30) A histogram filter was used before 
the registration to compensate for differences in HU calibration should the images come from 
different scanners. To speed up the registration and decrease the chance of it being trapped in a 
local minima, we used a multiresolution approach where images were registered first at a coarse 
level and then the result was used to initialize a full resolution registration. Our setup involved 
a 3-stage multiresolution approach with 50, 40, and 30 iterations for each resolution.

Once the deformation field between the atlas and subject images was found, it was used to 
warp the segmentations. Binary images of each structure segmentation were warped with the 
deformation field, resulting in automated segmentation of the subject images. 

C.	N arrow band registration
Rigid registration is a well-established procedure that corrects for differences in scanner coor-
dinate systems, patient posture, or anatomical changes between two image sets, by matching 
common features present in both datasets. For most applications in radiotherapy, such common 
features are easily identifiable in the form of anatomical features visible in both images. For 
matching functional SPECT to anatomical CT datasets, there is little (if any) common infor-
mation in the image datasets. The nonuniform tracer deposition mainly within the liver is the 
only information visible in the SPECT dataset. In contrast, the CT dataset contains complete 
anatomical information, with organs represented by voxels of uniform intensities. This is obvi-
ously a multimodality registration, with assumption made in the standard mutual information 
(MI) metric not satisfied by the nonuniform intensities in the SPECT dataset. The liver shape 
is the only piece of information that is common in both datasets.

To automate the registration process based on specifics of the CT and SPECT datasets, we 
propose a registration method based on the narrow band approach.(31,32) The key piece is usage 
of a narrow band to connect a liver segmentation in the CT dataset to the corresponding gradients 
of voxel activity in the SPECT images. The aim is to disregard interior liver voxels that are too 
nonuniform in intensities to allow reliable use of classical MI setups. The narrow band — a 
signed distance around an object of interest such as the liver — is used as optimization criteria 
to constrain the registration to relevant features without relying on the user’s segmentation 
accuracy. As compared to pure intensity-based registration metrics, the narrow band approach 
ignores irrelevant regions such as background and noise, as the metric is computed only on 
the pixels within the signed distance. However, the method is not as sensitive to segmenta-
tion as pure edge feature-based methods, because the signed distance represents a transition 
zone around the edges that compensates for inaccuracies in the initial segmentation. A narrow 
band representation of liver segmentation is presented in Section III. B and the approach is 
described in detail by Tang et al.(25) For the SPECT-CT registration, the module was designed 
to fit the liver segmentation with the steepest gradient in the SPECT dataset. As settings for 
this task, we used a narrow band width of 10 mm and a regular step gradient optimizer with a 
maximum step of 2.

In one sense, this approach extends to the work of Sarfaraz et al.(33) in matching borders 
rather than intensities during registration. In the proposed method, the registration itself: a) is 
completely automated, as it does not require mask of the liver in both datasets; b) increases ac-
curacy, as it matches a segmentation to the gradients directly, without the use of user-delineated 
masks in both images; c) increases speed, as the normal cross-correlation (NCC) metric permits 
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use of fast gradient-based algorithms rather than the time–consuming simulated annealing opti-
mization algorithm; and d) does not critically depend on the CT-based segmentation accuracy, 
as narrow band itself defines an error margin around the initial segmentation.

D.	D ose calculation
Dose deposited per organ is implemented as a convolution operation of the SPECT activity 
concentration map with yttrium-90 deposition kernels calculated using the EGS4 Monte Carlo 
simulations with an uncertainty below 1% to yield a three-dimensional distribution of absorbed 
dose.(10) The resulting dose distribution is then combined with the anatomical information to 
compute dose volume statistics for target and critical organs.

E.	 Validation
Atlas-based procedure accuracy was measured by comparing the automated results with the 
manual delineations using the Dice similarity coefficient (DSC) index,(34) which is widely used 
in the evaluation of comparison studies. The coefficient is defined as the ration of the overlap of 
two structures over their union. The DSC conformality index is ideally 1 when the delineations 
to be compared overlap exactly, and is 0 when the delineations are completely mismatched. A 
value greater than 0.7 has been reported to indicate good segmentation performance.(35)

To measure registration accuracy, the true alignment is unknown and therefore we relied 
on a convergence analysis method to estimate accuracy. This method is based on repeating the 
optimization from different initial values. For a correctly configured registration algorithm, 
the final solution should be independent of the starting position. We restarted the registration 
20 times from random initial displacements and inspected the transform parameters found in 
each registration attempt. The range of the final transform parameters is the measure of regis-
tration accuracy.

 
III.	Res ults 

A.	 Atlas segmentation
A sample result of the deformable registration procedure is presented in Fig. 2. The upper row 
shows an axial slice through the atlas (a) and patient (b) datasets before registration. Natural 
anatomical differences between the two individuals are evident when comparing images. In 
(c) we show the result of deforming the atlas to the patient dataset, where the deformation field 
warped the atlas to match the patient dataset. The deformation field was further used to warp 
the segmentation between the two datasets as shown in (d). Little manual editing is necessary 
to correct regions where the atlas approach did not perform well, as show in the comparison 
between manual and atlas segmentation in Fig. 3(a). The Dice coefficient between the two seg-
mentations for all structures for the five patients included in this study are graphed in Fig. 3(b), 
showing that with the exception of one kidney, all atlas segmentations were overlapped with 
the manual segmentation at a value of 0.7 or above.

Results of the atlas-based segmentation may be suboptimal due to different acquisition pa-
rameters or significantly different anatomy, as the selected deformable registration algorithm 
is single-modality, assuming an organ is represented by the same intensity in both the template 
and patient datasets. We noticed that the selected deformable algorithm had problems, especially 
matching kidneys that have different shapes, are relatively small, and are surrounded by tissue 
of similar HU units. The liver is a large organ that significantly influences the cost function 
and, therefore, is preferentially matched with few distortions observed in our experiments. 
The spinal cord was easily matched as the surrounding high contrast provided by the bone 
protected it from artifacts and provided a clear mark easily matched by the registration. A 3D 
surface rendering of the suboptimal atlas segmentation result is presented in Fig. 4, where the 
automated segmentation of cord, kidneys, and liver is shown as a gray surface, and the manual 
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as a color-coded surface. The color on the surface represents the distance between the surface 
obtained by the two methods and ranges from 0 to 5 mm, with the gray surface representing 
the manual segmentation of the same organ.

B.	N arrow band registration 
The main focus of our registration procedure is to match the gradient of the SPECT intensities 
to the liver segmentation obtained from the CT dataset by using a narrow band that compensates 
for segmentation inaccuracies and noise in the SPECT dataset. An example of a typical narrow 
band of liver segmentation is given in Fig. 5. The narrow band represented in (b) is an image 

Fig. 3.  Sample result of atlas-based segmentation (a) of the liver (blue), spinal cord (cyan), and kidneys (yellow and 
magenta). Manual segmentation of the same organs is shown in white for comparison. Dice coefficients (b) between atlas 
and manual delineations for all patients for critical organs. The ideal value is 1, denoting a perfect segmentation. A value 
greater than 0.7 denotes a good match.

Fig. 4.  Three-dimensional surface rendering of atlas-based (gray) and manual (color-coded) segmentations. The color on 
the surface represents the distances between the two segmentations, from 0 mm (blue) to 5 mm (red).
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in which voxel intensities represent distance from the initial segmentation presented in (a) as a 
black line. In the narrow band visualization, voxels are from blue to red according to the distance 
from the initial segmentation. The narrow band is then used to match to the SPECT image using 
a simple voxel-based metric. Such a registration result is presented in the blended color fusion 
of (c), where the liver segmentation is a red contour and the SPECT intensity is displayed using 
a hot body lookup table. Indeed, the match is such that the SPECT gradient conforms to the 
liver segmentation. However, a manual match wouldn’t be possible because a SPECT gradient 
is hard to detect by eye alone and is sensitive to window level settings. Registration resulting 
from our approach for this case is presented in Fig. 5(c). The registration matched the borders 
of the SPECT activity that appears as a red-to-yellow overlay in the CT dataset.

Registration accuracy for our narrow band approach was assessed using convergence analysis 
and is presented in Fig. 6. The registration was repeated 20 times from random initial positions 
varying a few centimeters on the x-, y-, and z-axes. The final solution was almost independent 
of the initial position, with the final solution varying less than 1 mm, as seen in Fig. 6(b), where 
after-registration translation values are consistent. For comparison, the same analysis based on 
a classical approach using the Mattes formulation(22) of the MI, coupled with the regular step 
optimizing the parameters of an affine transform, is presented in the left panel of Fig. 6, with 
a large variation in the final solutions. This is probably due to the global maxima being hidden 
by the levels of noise in metric function in the MI configuration for the levels of inhomogeneity 
in the SPECT-CT images.

One of the patients had dual SPECT-CT markers that allowed comparison of the manual 
and automated registration methods. The registration based on manually matching the thoracic 
marker is presented in the left panel of Fig. 7. Although the three thoracic markers were care-
fully matched, internal liver SPECT distribution does not match to the CT dataset because 
some activity is reported in the heart and there is no activity for the CT-delineated liver lesions 
(contoured in red). This was attributed to liver motion during respiration. The right panel shows 
the result of the narrow band registration, which has a better match as the activity is contained 
in within the liver.

Fig. 5.  Example of a narrow band registration approach. The liver segmentation (a) is used to build a signed distance 
narrow band (b) that provides the link of the SPECT gradient with the liver segmentation used in registration. This allows 
usage of a simple NCC metric in the registration, since its minimum is achieved when the SPECT gradient matches the 
zero of the narrow band. A typical result is shown in (c), where registration clearly matched SPECT gradients with the 
liver contour. Overall the method yields reproducible results within 1 mm (shown in Fig. 6).
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Fig. 6.  Convergence analysis for mutual information (a) and narrow band (b) registration method. Registration was started 
20 times from random initial displacements. The graphs show initial and final displacements on the x-, y-, and z-axis. For 
the mutual information setup, results were inconsistent. The level set-based registration always converged to the same 
solution, achieving submillimeter accuracy.

Fig. 7.  Comparison of registration methods using manual dual SPECT-CT markers (a) and the narrow band approach 
(b). The largest error was observed in the manual match due to internal motion. The mutual information and narrow band 
registrations agree for this case.
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C.	D ose calculation
A display showing the dose distribution as a semitransparent overlay superimposed on the CT 
scan of a patient treated with radioactive microspheres is presented in Fig. 8. Dose evaluation 
tools show the distribution (a) and a dose volume histogram (b) of the calculated dose. Target 
(tumor and liver) dose ranges from 20 to 140 Gy. The maximum dose to the other critical 
structures is less than 20 Gy.

 
IV.	D ISCUSSION

Our goal was to design an integrated image-guided dosimetry planning system for predict-
ing therapeutic response using targeted radiotherapy delivery to provide clinical decision 
support software for unsealed source therapy. In particular, we improved the registration and 
segmentation tasks by customizing general purpose registration algorithms to specifics of the 
CT and SPECT images for the special case of liver-directed Y-90 microspheres SIRT based on 
Tc-99m MAA as a surrogate. First, choosing to use the atlas algorithms based on deformable 
registration, we segmented data more efficiently than in a manual approach, since the contours 
from a template can be warped to match the patient’s anatomy (Fig. 2). As shown by our re-
sults (Figs. 2, 4, 5), the template segmentation can be successfully transferred to the patient 
dataset through deformable registration. The Dice coefficient comparison (Fig. 3(b)) confirms 
that the proposed automated method is close to the manual segmentation, but is significantly 
faster and requires less user interaction. The registration is based on a narrow band formalism 
(Fig. 5) to deal with the nonuniform intensity distribution in the SPECT images. For all cases, 
the convergence analysis (Fig. 6) measured an accuracy of 1 mm for the proposed registration 
method, and confirmed algorithm robustness. Dose-volume analysis of structures is presented 
to the clinician for predicting the response to targeted radiotherapy using Y-90 microspheres 
(Fig. 8). The plan could also be modified for the  dose-painting technique, to deliver a higher 
dose to the metabolically active portion of the tumor and a lower dose to the other abnormali-
ties visualized within the liver where the signal is higher than the background but less than in 
the confirmed tumoral regions.

Validation of atlas-based segmentation was achieved through comparison with manual 
delineation. The procedure achieved good accuracy as measured by the Dice coefficient, with 
some postprocessing needed clinically to locally correct output. The most common artifact 
was incomplete kidney segmentation, which can be corrected using either manual editing or 
an automated local refitting function. The SPECT-CT narrow band registration was validated 

Fig. 8.  Dose evaluation tools show an axial display (a) and a dose volume histogram (b) of the dose distribution. 



33    Schreibmann and Fox: Planning for source therapy	 33

Journal of Applied Clinical Medical Physics, Vol. 13, No. 4, 2012

through convergence analysis, with measured accuracy less than 1 mm — a significant improve-
ment over classical MI-based approaches. The dose calculation model implemented through 
the image convolution algorithm does not constitute a novelty and, therefore, accuracy was 
not explicitly assessed.

To register the SPECT with CT images, theoretically, all we need to do is to use an optimi-
zation algorithm to minimize a MI metric. Such setups have been applied before to problems 
of CT-MRI registration and are in clinical practice. For SPECT and CT datasets, due to their 
fundamentally different nature, the MI metric is noisy and the system finds different solutions 
if initialized differently. This is attributed to the wide variety of possible pixel intensities within 
an organ in the SPECT dataset. Reported narrow band formalism was devised to improve the 
convergence calculation by replacing complex MI calculations with simpler considerations 
of the voxel-based metric. The approach improved accuracy over classical MI approaches, 
and is significantly faster and easier to use than manual(24) or surface-matching approaches.
(33) Although data for SPECT-CT registration is presented, the approach is also applicable to 
MRI-SPECT registrations.

Hybrid SPECT-CT scanners are commercially available for clinical applications with the 
advantage that by acquiring both sets of images on the same scanner, the hybrid setup provides 
better anatomic localization of lesions than standard nuclear medicine images, but involve sig-
nificantly higher costs and hardware complexity. Although this development alleviates the need 
for a rigid image procedure to correct for differences in scanner coordinates, as both datasets are 
acquired on the same device, the significantly larger acquisition time leads to the SPECT tracer 
being smeared by the respiratory motion(36,37) resulting in an averaging of detected signal. The 
much faster CT acquisition images the anatomy at a narrow respiratory phase. This discrepancy 
cannot be taken into account by hardware-only solutions. The proposed automated rigid regis-
tration can be employed to further improve accuracy by compensating for respiratory motion 
through a rigid shift. The proposed registration procedure also provides a low-cost alternative 
to the expensive and complex hardware approach required in hybrid CT-SPECT scanners.

In this work, Tc-99m MAA is employed as an imaging surrogate for calculation of dose 
distribution within the organs to be spared as it provides higher resolution and is currently 
more quantitatively accurate, compared to Y-90 imaging. The method provides merely an 
estimate of the delivered dose, as Tc-99m MAA is known to breakdown biologically follow-
ing administration, with both free Tc-99m and Tc-99mO4 migrating to other organs, whereas 
Y-90 microspheres  do not. This makes MAA a suboptimal surrogate for treatment planning, 
overestimating the dose delivered to critical organs. In addition, the Y-90 microsphere delivery 
is often altered with respect to that for the MAA based on overall treatment planning for this 
procedure, and thus the two biodistributions may not match.

We considered the special case of Y-90 microspheres that is the simplest of all unsealed 
radionuclide therapies to model. For this permanent implant treatment methodology, a single 
time point SPECT can potentially accurately model the biodistribution that is confined to two 
large organs, liver and lung, with essentially instantaneous uptake and clearance by physical 
decay only. However, most applications of internally administered therapeutic radionuclides 
are systemic, with biodistribution into a number of organs, and biologic uptakes and clearances 
that require multiple time point scanning to accurately model the biodistribution into multiple 
organs. As continuation of this work, we plan to extend the proposed methodology to multiple 
time point SPECT to improve tracer deposition modeling for treatment planning.

 
V.	C onclusions

We improved the segmentation, registration, and dose calculation steps for unsealed source 
therapy treatment planning of liver-directed Y-90 microspheres SIRT based on Tc-99m MAA 
as a surrogate by using customized image registration setups. Our study indicates that this atlas 
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segmentation approach produces results that need little, if any, manual refining, significantly re-
ducing delineation time. Validation in patient studies of the customized image matching approach 
has indicated that the registration is reliable and thus provides a valuable tool for integrating 
SPECT information into radiation therapy treatment planning. This might have a significant 
practical implication with the prevalence of unsealed source therapy in clinical practice
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