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Abstract

Actin cytoskeleton is essential for root hair formation. However, the underlying molecular

mechanisms of actin dynamics in root hair formation in response to abiotic stress are largely

undiscovered. Here, genetic analysis showed that actin-depolymerizing protein ADF7 and

actin-bundling protein VILLIN1 (VLN1) were positively and negatively involved in root hair

formation of Arabidopsis respectively. Moreover, RT-qPCR, GUS staining, western blotting,

and genetic analysis revealed that ADF7 played an important role in inhibiting the expres-

sion and function of VLN1 during root hair formation. Filament actin (F-actin) dynamics

observation and actin pharmacological experiments indicated that ADF7-inhibited-VLN1

pathway led to the decline of F-actin bundling and thick bundle formation, as well as the

increase of F-actin depolymerization and turnover to promote root hair formation. Further-

more, the F-actin dynamics mediated by ADF7-inhibited-VLN1 pathway was associated

with the reactive oxygen species (ROS) accumulation in root hair formation. Finally, ADF7-

inhibited-VLN1 pathway was critical for osmotic stress-induced root hair formation. Our

work demonstrates that ADF7 inhibits VLN1 to regulate F-actin dynamics in root hair forma-

tion in response to osmotic stress, providing the novel evidence on the F-actin dynamics

and their molecular mechanisms in root hair formation and in abiotic stress.

Author summary

Root hairs are required for plants to absorb nutrients and water. The dynamics of cyto-

skeleton such as actin filaments (F-actin) are necessary for the formation of root hairs,

which is regulated by different kinds of cytoskeleton-binding proteins. At the same time,

the dynamics of cytoskeleton are also involved in plant abiotic stress tolerance. However,

there are few studies on the underlying molecular mechanisms of F-actin dynamics in

root hair formation in response to abiotic stress. Actin depolymerization factor 7 (ADF7)
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and actin bunding protein Villin 1 (VLN1) are important actin-binding proteins in Arabi-

dopsis. Here, we describe a pathway that ADF7 inhibits VLN1 to regulate F-actin dynam-

ics in root hair formation in response to osmotic stress, providing a new evidence for the

studies on the molecular mechanisms of F-actin dynamics in root hair formation and in

plant abiotic stress tolerance.

Introduction

Root hair is used as an ideal model to study plant cell elongation and differentiation. Root

hairs occupy 77% of the root surface area as the critical water and nutrient absorption site dur-

ing plant growth, development, and stress management [1]. Under normal conditions, hair

cells (H cells), rather than non-hair cells (N cells), in the root epidermal cells rapidly differenti-

ate into root hairs [2–4]. Underwater and nutrient deficiency conditions, plants grow exces-

sively numerous root hairs in response to environmental stresses [5–8].

The Arabidopsis actin single mutant act2 and act7 seedlings show fewer root hairs, and dou-

ble mutant act2 act7 seedlings display full defects in root hair formation, indicating that actin

cytoskeleton is required for root hair formation [3,9–11]). Before root hair formation, F-actin

dynamics show that numerous longitudinal filament actin (F-actin) (parallel growth axes) sur-

rounds the nuclei near the end walls in root epidermal cells of the root hair emission region in

the wild type (WT) [12,13]. In the root epidermal cells of act2 act7, the thicker and more trans-

versely oriented F-actin bundles or rod-like structures instead of the finer and more longitudi-

nal F-actin in that of WT seedlings [10]. This indicates that the changes of F-actin architecture

including the F-actin orientation and thickness in root epidermal cells are closely related to

root hair formation.

A few actin-binding proteins (ABPs) are identified in root hair initiation. Profilin plays a

primary role in accelerating F-actin assembly; additionally, it promotes actin bundles/cables

and inhibits actin nucleation [14–19]. Arabidopsis profilin1 mutant, prf1-1, seedlings develop

higher density and longer root hairs [15], suggesting that PRF1 is involved in root hair forma-

tion and elongation. CROOKED/ARPC5 is molecularly identified as a subunit of the ARP2/3

complex that possesses the function of nucleating actin assembly [20,21]. Crooked seedlings

grow more than one root hair from the same hair cell, suggesting that ARPC5 negatively regu-

lates root hair formation [21]. AtFH8 participates in several cytoskeletal functions such as

nucleating, capping, binding, severing F-actin, and binding to profilin [22,23]. Overexpression

of AtFH8 leads to producing more than one root hair on one hair-forming site, indicating that

FH8 is involved in bulges formation rather than root hair formation [23]. Because the actin

arrays and dynamics mediated by PRF1 and ARPC5 in root hair formation are not reported,

how PRF1 and ARPC5 regulate actin dynamics to affect root hair formation remained

unknown. Therefore, the molecular mechanisms of actin dynamics mediated by ABPs in root

hair formation are largely unknown.

Actin depolymerization factors (ADFs) are responsible for de-polymerizing and severing

single F-actin [24–27]. Arabidopsis ADF7 is one of 11 ADF family proteins and possesses the

mild activities of single F-actin depolymerizing and severing, compared with the other ADFs

[24,28]. Previous findings showed that ADF7 is required for pollen tip growth by severing

actin-mediated turnover of F-actin [28]. Additionally, ADF7 highly expresses in the micro-

spore stage using ADF7-GFP expression analysis [25]. Villins (VLNs) prominently possess F-

actin bundling abilities [29–31]. Arabidopsis genome encodes 5 VLN isoforms (VLN1-5)

[29,32]. VLN1 displays a simple actin bundling capacity in a calcium ion (Ca2+) and Ca M in
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an independent manner [32]. VLN1 is highly expressed in various plant tissues including

leaves, hypocotyls, roots, and root hairs [29,33]. VLN1 and VLN3 play a partially overlapping

role in the turnover of actin bundle formation in vitro [34]. VLN1 interacts with ADFs to affect

F-actin dynamics in vitro [32]. Additionally, VLN1 negatively regulates root hair elongation

mediated by transcription factor GL2 in osmotic stress [33].

ROS accumulation plays an important role in root hair formation and elongation [35–38].

In plants, NADPH oxidase catalyzes ROS production. NADPH oxidase-mediated ROS pro-

duction is the best-characterized mechanism during root hair development [35–37]. NADPH

oxidase is encoded by ROOT HAIR DEFECTIVE 2 (RHD2/RBOHC) gene [35,36]. rhd2
mutants display defects in root hair formation and elongation, correlated with reduced ROS

levels in roots and root hairs [35–37]. FER, FERONIA receptor-like kinase, is required for root

hair development by regulating NADPH oxidase-dependent ROS production in root and root

hairs [37]. Actin dynamics are involved in the regulation of ROS level in vivo [26,39]. Both

moderate actin polymerization and moderate actin depolymerization increase NADPH oxi-

dase activity in microglia [40]. F-actin depolymerization elevates ROS levels in roots by regu-

lating RHD2 expression in salt stress in Arabidopsis [39]. Actin disrupting drug Lat B resulted

in a significant increase in immunogenic peptide flg22-induced ROS production [26]. There-

fore, we suppose that the integration of the actin dynamics and ROS signaling might play a key

role during root hair development. Here, we found that ADF7 inhibited the expression and

the function of VLN1, resulting in elevating F-actin depolymerization, fine F-actin amount, F-

actin turnover, and ROS accumulation in root epidermal cells and new emerged root hair

cells, which plays an important role in osmotic stress-induced root hair formation, providing

the first evidence on the molecular mechanisms of F-actin depolymerization and F-actin bun-

dling in root hair formation and in osmotic stress.

Results

Actin-depolymerizing protein ADF7 is positively involved in root hair

formation

To explore the role of ADF7 in root hair formation, we first identified T-DNA insert mutants

adf7-2 and constructed complementation lines (ADF7-comps) by transforming ADF7 pro-

moter (pADF7)::ADF7 in adf7-2 plants and overexpressing lines (ADF7 OEs) by transforming

35S::ADF7 in Col-0 plants (S1 Fig)). Reverse transcription-PCR (RT-PCR) and RT-quantita-

tive PCR (RT-qPCR) analyses showed no detectable expression in adf7-2, indicating that adf7-
2 is a knock-out line, and Col-like expression in ADF7 comp #2 and #7, ~2.3-fold higher

expression in ADF7 OE #13, and~3.1-fold higher in ADF7 OE #14 (S1B–S1E Fig).

Then, we calculated root hair numbers in Col-0, adf7-2, ADF7 comp #2, ADF7 comp #7,

ADF7 OE #13, and ADF7 OE #14, as described previously [4]. Our results showed that Col-0

seedlings grew ~40 root hairs, similar to the previous report [4]. adf7-2 displayed~28 root

hairs, respectively. The defects in root hair number in adf7 was rescued in ADF7 comp #2 and

#7 (Fig 1A and 1B), confirming that ADF7’s loss-of-function caused the root hair number phe-

notype in adf7. In contrast, both ADF7 OE #13 and #14 seedlings had ~60 root hairs (Fig 1A

and 1B).

Next, we calculated the percentage of root hairs from H and N cells in ADF7 genotype seed-

lings using the previous method [41]. Col-0 seedlings grew ~99% hairs from H cells and ~1%

hair from N cells. Compared with Col-0, adf7-2 showed decreased root hair numbers from H

cells and no significant change from N cells, while ADF7 OE #13 and #14 seedlings showed no

change in root hair number from H and the increased number from N cells (Fig 1C). These

results indicated that ADF7 is positively involved in the differentiation of H and N cells in root

PLOS GENETICS ADF7 and VLN1 in root hair formation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010338 September 12, 2022 3 / 26

https://doi.org/10.1371/journal.pgen.1010338


hair initiation. To explore root hair formation position from H cells, we calculated the root

hair number along a line of H cells in a fixed zone between 2.5 and 3.5 mm from the primary

root tips in Col-0 and ADF7 genotype seedlings according to the previous method [42]. The

results mean that the density of H cells in the root epidermal cells from various genotype seed-

lings. Our results showed that Col-0 seedlings grew ~6 root hairs per mm along with H cells

(Figs 1C and S2 similar to the previous report [42]. Compared with Col-0, adf7 mutants

showed a decreased root hair number along with H cells, whereas ADF7 OE seedlings dis-

played an increased number (Figs 1C and S2). The results showed that ADF7 is involved in

increasing the density of H cells in the root epidermal cells. The results illustrate that ADF7

plays a positive role in root hair formation.

Fig 1. Actin depolymerization protein ADF7 is positively involved in root hair formation and actin bunding protein VLN1 is negatively involved

in root hair formation. (A) Images of root hairs from wild type (Col-0), adf7-2, ADF7 comp #2, ADF7 comp #7, ADF7 OE #13, and ADF7 OE #14. Scale

bar, 200 μm. OE, overexpression. (B) Histogram depicting root hair number in (A). (C) Quantification of the percentage of root hairs from H and N

cells and root hair formation position in H cells in (A). Values given are means ± SD. (D) Images of root hairs from Col-0, vln1-1, vln1-2, VLN1 comp

#9, VLN1 comp #14, VLN1 OE #7, and VLN1 OE #8. Scale bar, 200 μm. (E) Histogram depicting root hair number in (D). (F) Quantification of the

percentage of root hairs from H and N cells and root hair formation position in H cells in (D). Values given are means ± SD. Significant difference (P<
0.05) indicated by different letters among genotypes is determined for each condition by one-way ANOVA followed by Tukey’s test in (B), (C), (E), and

(F).

https://doi.org/10.1371/journal.pgen.1010338.g001
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Actin-bundling protein VLN1 is negatively involved in root hair formation

To explore whether VLN1 is involved in root hair formation, vln1-1, vln1-2, VLN1 comp #9

and #14 and VLN1 OE #7 and #8 were used ([33], S3 Fig) to calculated three parameters

including root hair number in roots, the percentage of root hairs from H and N cells, and root

hair number along H cells, using the same methods mentioned above. The results showed that

vln1 mutants (~ 60 root hairs) grew more root hair numbers than Col-0 (~ 40 root hairs) (Fig

1D and 1E), associated with vln1 displayed a higher percentage of root hairs from N cells and

more root hairs along H cells (Figs 1F and S2). These root hair phenotypes of vln1 mutants

were restored in VLN1 comp #9 and #14 (Fig 1D–1F). VLN1 OE #7 and #8 seedlings displayed

~ 30 root hairs, associated with a lower percentage of root hairs from H cells and fewer root

hairs along H cells (Figs 1 and S2). These results indicate that VLN1 is negatively involved in

root hair initiation.

ADF7 inhibits the expression and function of VLN1 during root hair

formation

Next, we investigate whether ADF7 and VLN1 interact during root hair formation. RT-qPCR

analysis showed that VLN1 expression in roots was significantly increased in adf7 mutants, but

inhibited in ADF7 OE seedlings (Fig 2A). While ADF7 expression in roots wasn’t significantly

changed in vln1 mutants and VLN1 OEs (Fig 2B). Additionally, we generated the GUS staining

genotype seedlings by introducing the VLN1 promoter (pVLN1)::GUS into adf7-2 and ADF7
OE #13, respectively, and introducing the ADF7 promoter (pADF7)::GUS into vln1-2 and VLN
OE #8 by crossing, respectively. We also introduced a pVLN1::VLN1::GFP and a pADF7::

ADF7::GFP into vln1-2 and adf7-2, respectively, which results in fully rescuing the root hair

phenotypes of vln1-2 and adf7-2, respectively (S4 and S5 Figs), indicating that the GFP fusion

protein may be used in protein expression analysis. Analysis of GUS staining also showed that

VLN1 doesn’t affect ADF7 expression in roots and ADF7 negatively regulates VLN1 expres-

sion in roots (Fig 2C–2H). Further, western blotting supported that ADF7 affects VLN1

expression in roots (Fig 2C–2H). Further, we generated ADF7 and VLN1 double gene geno-

type seedlings, including adf7 vln1 #1 and #2, and adf7 VLN1 OE #1 and #2 from crossing

adf7-2, vln1-2, and VLN1 OE #8 respectively (S6 Fig). Compared with Col-0, adf7 vln1 seed-

lings displayed more root hair number, similar to single vln1 mutants (Fig 2I and 2J). In adf7
VLN1 OE seedlings had contrasting results, similar to VLN1 OE seedlings (Fig 2I and 2J). The

results confirm that ADF7 is upstream of VLN1 in root hair formation, and ADF7 inhibits the

expression and function of VLN1 in root hair formation.

ADF7 inhibits VLN1-mediated thick bundle formation

To explore F-actin arrays and dynamics mediated by ADF7 and VLN1 during root hair forma-

tion, we observed F-actin arrays and dynamics of ADF7 and VLN1 genotype seedlings (Figs

3A and 4). Because root hairs grow out of the root epidermal cells of the elongation/differenti-

ation region, the observed regions were first chosen in the elongation/differentiation and tran-

sition regions from the primary root tips of 6-d-old seedlings, according to the

abovementioned method [43]. F-actin is visualized by expressing an ideal actin filamentous-

specific fluorescent probe, fABD2::GFP [44,45]. To quantify the actin organization, the skew-

ness parameter indicates the extent of thick bundles and the percentage of occupancy to esti-

mate the density of actin bundles (amount of F-actin) [45]. Additionally, we used a violin plot

to analyze the average and contribution of the GFP fluorescence intensity of the actin cables to

estimate F-actin thickness further (Fig 3A and 3B). High fluorescence intensity peaks represent
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Fig 2. ADF7 inhibits the expression of function VLN1 in root hair formation. (A) RT-qPCR quantification of VLN1
expression level in Col-0, adf7-2, ADF7 comp #2, ADF7 comp #7, ADF7 OE #13, and ADF7 OE #14. (B) RT-qPCR

quantification of ADF7 expression level in Col-0, vln1-1, vln1-2, VLN1 comp #9, VLN1 comp #14, VLN1 OE #7, and

VLN1 OE #8. (C) GUS analysis of VLN1 expression in root tips from Col-0, adf7-2, and ADF7 OE seedlings. (D) GUS
analysis of ADF7 expression in root tips from Col-0, vln1, and VLN1 OE seedlings. (E) Western blotting of VLN1

expression level in Col-0, adf7-2, and ADF7 OE seedlings. Rubisco as a loading control. (F) Quantification of the

relative grayscale value in (E). (G) Western blotting of ADF7 expression level in Col-0, vln1, and VLN1 OE seedlings.

Rubisco as a loading control. (H) Quantification of the relative grayscale value in (G). (I) Images of root hairs from

ADF7 and VLN1 double gene genotypes. Scale bar, 200 μm. (J) Histogram depicting root hair number in (I).

Significant difference (P< 0.05) indicated by different letters among different genotypes is determined for each

condition by one-way ANOVA followed by Tukey’s test. Values are means ± SD of three independent biological

replicates. ��� P< 0.001, Student’s t-test compared to Col-0, in (A) and (B), and compared to VLN1::GFP and ADF7::

GFP in (F) and (H).

https://doi.org/10.1371/journal.pgen.1010338.g002
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brightly labeled actin bundles (generally from thick actin bundles), whereas low peaks repre-

sent weakly labeled actin filament bundles (generally from fine actin bundles) [46].

Col-0 exhibited preferentially parallel growth axes longitudinal and oblique F-actin in the

elongation/differentiation region but lost the preferential F-actin arrays, displaying longitudi-

nal, oblique, and lateral short F-actin bundles in the transition region where cells showed

square and close to square (Fig 3A and 3B). Compared with Col-0, the different observed

genotypes showed similar F-actin orientation but significant differences in thickness and den-

sity of F-actin. adf7 and VLN1 OE showed increased thick bundles and declined amount of F-

actin, consistent with higher fluorescence intensity, higher skewness parameter, and the lower

percentage of occupancy (Fig 3A and 3B). In contrast, vln1 and ADF7 OE seedlings displayed

the decreased thick bundles and the increased F-actin density, compared with Col-0 (Fig 3A

and 3B). Additionally, vln1 and ADF7 OE seedlings had numerous actin filaments longer than

15 μM (Figs 3A and 4D), suggesting that VLN1 loss-of-function or ~3-fold increased ADF7
expression in vivo lead to mild actin depolymerization, rather than severe disruption of F-

actin. Moreover, adf7 vln1 showed a similar F-actin architecture to vln1, and adf7 VLN1 OE

and VLN1 OE seedlings were similar (Fig 3A and 3B).

Additionally, we observed F-actin architecture in root epidermal cells of the root hair

region from the primary root tips of 4-d-old seedlings, outgrowing bugles from the primary

root tips of 4-d-old seedlings in cross or longitudinal sections, and new emerged root hair cells

from the primary root tips of 4-d-old seedlings (Fig 3C–3J). Col-0 exhibited preferentially lon-

gitudinal F-actin in the root hair region. adf7, vln1, and adf7 vln1 seedlings also showed a visi-

ble longitudinal F-actin but a significant difference in the thickness and density of F-actin with

Col-0 (Fig 3C and 3D). Compared with Col-0, adf7 showed thicker bundles and less F-actin,

whereas vln1 and adf7 vln1 displayed contrasting results (Fig 3C and 3D). In root epidermal

cells with outgrowing root hairs, Col-0 exhibited preferentially longitudinal F-actin assembly

nearly ahead of the root hair formation site (shown with yellow arrows) in the cross-section

(Fig 3E and 3F). In the longitudinal section of Col-0 outgrowing root hairs, several longitudi-

nal F-actin bundles of root epidermal cells extended to the outgrowing bugles, and short and

fine F-actin diffused visible fluorescence (short and fine F-actin) in the bugles (Fig 3E and 3F).

F-actin dynamics in the new emerged root hair cells in Col-0 display a change from confused

orientation to several longitudinal F-actin bundles (parallel root hair growth axes) during the

root hair cell elongation. adf7, vln1, and adf7 vln1 seedlings showed a difference in the

Fig 3. ADF7 inhibits VLN1-mediated thick bundle formation in the root epidermal cells from different regions

and outgrowing root hairs. (A) Confocal microscopy images of root epidermal cells visualized by the expression of

fABD2::GFP in the elongation/differentiation and transition regions from Col-0, adf7-2, ADF7 OE #14, vln1-2, VLN1
OE #8, adf7 vln1 #1, and adf7 VLN1 OE #1 seedlings. Enlarged views from the red boxes are in the bottom row. Scale

bar, 20 μm. (B) Violin plot showing the average and contribution of fluorescence intensity of actin cables in (A). The

red line represents the average fluorescence intensity in different genotypes. Histogram depicting skewness and

percentage of occupancy of F-actin in (A). (C) Confocal microscopy images of root epidermal cells in the root hair

region from the primary root tips of 4-d-old seedlings in (A). Enlarged views from the red boxes are in the bottom row.

Scale bar, 25 μm. (D) The parameter fluorescence intensity of actin cables, skewness, and percentage of occupancy of

F-actin in (C). (E) Confocal microscopy images of outgrowing root hair cells from the primary root tips of 4-d-old

seedlings in Col-0, adf7-2, vln1-2, and adf7 vln1 #1 in cross-section. Enlarged views from the red boxes are in the

bottom row. Scale bar, 20 μm. (F) The parameter fluorescence intensity of actin cables, skewness, and percentage of

occupancy of F-actin in (E). (G) Confocal microscopy images of outgrowing root hair cells from the primary root tips

of 4-d-old seedlings in Col-0, adf7-2, vln1-2, and adf7 vln1 #1 in the longitudinal section. Scale bar, 10 μm. (H) The

parameter fluorescence intensity of actin cables, skewness, and percentage of occupancy of F-actin in (G). (I) Time-

lapse images of newly emerged root hairs of Col-0, adf7-2, vln1-2, and adf7 vln1 #1 for 0, 5, and 10 min. Scale bar,

10 μm. (J) The parameter fluorescence intensity of actin cables, skewness, and percentage of occupancy of F-actin in

(I). At least 60 root epidermal cells from at least 20 individual seedlings are calculated in every genotype. Significant

difference (P< 0.05) indicated by different letters among genotypes is determined for each condition by one-way

ANOVA, followed by Tukey’s test in (B), (D), (F), (H), and (J).

https://doi.org/10.1371/journal.pgen.1010338.g003
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thickness and density of F-actin with Col-0 was in the outgrowing bugles and the new emerged

root hair cells (Fig 3G–3J). These results illustrate that ADF7 inhibits VLN1-mediated thick

bundle formations, leading to the changes in the thickness and density of F-actin, in root epi-

dermal cells, outgrowing bugles and new emerged root hair cells.

ADF7 inhibits VLN1-mediated thick bundling activity in epidermal cells of

root apices

F-actin arrays are correlated with the organization of single actin filament dynamics [47]. Pre-

vious findings have shown that ADF7 possesses actin severing and depolymerizing capacities

in vitro and in pollen cells, and VLN1 displays a simple mechanism of bundling capacity in
vitro and in root hairs [28,32–34]. Therefore, we put our efforts toward characterizing the

actin organization capacities of ADF7 and VLN1 in root apices. The observed regions were the

elongation zone of root apices (Fig 4). The results showed that ADF7 loss-of-function led to a

decline in F-actin severing frequency and depolymerization rate and an increase in bundling

frequency, as well as the decreased F-actin turnover based on the increased maximum filament

length and maximum filament lifetime, and the decreased severing frequency and depolymeri-

zation rate (Fig 4 and S1–S6 Videos). VLN1 mutation showed contrasting results (Fig 4 and S7

Video). Moreover, adf7 vln1 double mutants displayed similar F-actin dynamics to vln1 (Fig 4

and S8 Video). These results illustrate that ADF7 is responsible for organizing single F-actin

depolymerizing and severing, and VLN1 functions in single F-actin bundling. The results also

Fig 4. The F-actin dynamics regulated by ADF7-inhibited-VLN1 on single filament level in epidermal cells of root apices. (A) Depolymerizing

processes in Col-0 and adf7-2 seedlings. Scale bar, 10 μm. (B) Severing processes in Col-0 and adf7-2 seedlings. Scale bar, 10 μm. (C) Bundling

processes in Col-0, adf7-2, vln1-2, and adf7 vln1#1 seedlings. Scale bar, 10 μm. (D) The parameters of actin dynamics regulated by ADF7 and VLN1

on single actin filament level in epidermal cells of root spices under normal conditions and Lat A treatments. To analyze the bundling frequency, a

30×30 μm2 region was selected, At least 60 root cells from at least 20 individual seedlings are calculated in every genotype. Significant difference (P<
0.05) indicated by different letters among genotypes is determined for each condition by one-way ANOVA followed by Tukey’s test.

https://doi.org/10.1371/journal.pgen.1010338.g004
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indicate that ADF7 inhibits VLN1-mediated single F-actin bundling, which leads to a signifi-

cant increase of F-actin turnover, in root apices.

ADF7-inhibited-VLN1 pathway activates root hair formation by regulating

F-actin dynamics in root tips

Considering ADF7 and VLN1 can bind to actin in vitro [28,32], and the direct roles of ADF7

and VLN1 in controlling actin dynamics [28,32,48,49], therefore, we proposed that ADF7 and

VLN1 might be via directly controlling F-actin dynamics to affect root hair formation. Then,

we conducted actin pharmacological experiments. We firstly calculated root hair number in

Col-0, adf7-2, ADF7 OE #14, vln1-2, VLN1 OE #8, adf7 vln1 #1, and adf7 VLN1 OE #1 seed-

lings from 3-d-old seedlings treated with the presence or absence of actin disrupting drug

latrunculin-A (Lat A) for 3 h then removed in no drug media for 3-d growth. In Col-0 seed-

lings, the low concentrations of Lat A (0.2 and 0.4 μM) stimulated significant root hair forma-

tion (Fig 5A and 5B and S7). Moreover, Lat A treatments rescued the defects in root hair

formation in adf7, VLN1 OE, and adf7 VLN1 OE seedlings (Figs 5A and 5B and S7), illustrat-

ing that actin depolymerization activates ADF7-inhibited-VLN1-regulated root hair forma-

tion. No significant difference between 0.2 and 0.4 μM Lat A treatments was found (Figs 5A

and 5B and S7).

Next, we observed the actin dynamics in Col-0, adf7, vln1, and adf7 vln1 seedlings under

Lat A treatments in root epidermal cells in root tips (Fig 5C). 0.2 μM Lat A treatments led to

the decline of fluorescence intensity and skewness parameter and the increase of occupancy

percentage, suggesting that actin disrupting drug with low concentrate increased actin depo-

lymerization and inhibited actin thick bundles in Col-0, adf7, vln1, and adf7 vln1 seedlings

(Fig 5C–5F). Furthermore, the mild actin depolymerization treatments increased F-actin turn-

over in roots from Col-0, adf7, vln1, and adf7 vln1 seedlings (Figs 5C–5F and 4D). These

results indicate that actin disrupting drug increased F-actin depolymerization, fine F-actin and

F-actin turnover in roots, consequently promoting root hair formation in all the seedlings

including Col-0, ADF7, and VLN1 genotype seedlings, highlighting that ADF7-inhibited-

VLN1 pathway organizes F-actin dynamics including the increase of F-actin depolymerization,

fine F-actin amount and F-actin turnover in root tips to promote root hair formation.

ADF7-inhibited-VLN1 pathway is associated with the reactive oxygen

species (ROS) accumulation in root tips

ROS accumulation promotes root hair development [35,37]. F-actin depolymerization is

involved in increasing ROS levels in vivo [39]. We explored whether the role of ADF7 and

VLN1 in root hair formation is associated with ROS accumulation. Then, we first calculated

ROS production of 6 d-old roots in Col-0 and ADF7 and VLN1 genotype seedlings. Compared

with Col-0, ROS level decreased in adf7, VLN1 OE, adf7 VLN1 OE seedlings, whereas it

increased in ADF7 OE, vln1, and adf7 vln1 seedlings (Fig 6A and 6B), indicating that ADF7-in-

hibited-VLN1 promoted ROS level in root tips. Next, we conducted actin pharmacological

experiments by calculating ROS production in different genotypes under Lat A and Cytochala-

sin D (CD) treatments. The results showed that 0.2 μM Lat A and 3 μM CD treatments led to

the increased ROS levels in Col-0, adf7, vln1, and adf7 vln1 roots, further indicating that

ADF7-inhibited-VLN1 pathway is associated with ROS accumulation in root tips (Fig

6A and 6B).

Additionally, we examined the number of root hairs in different genotypes under ROS-

inhibited drug diphenyleneiodonium (DPI) treatments [50]. DPI treatments led to a signifi-

cant decrease in root hair number and the decreased level of root hair number depended on
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Fig 5. The F-actin depolymerization regulated by ADF7-inhibited-VLN1 promotes root hair formation. (A) Images of root hairs

from Col-0, adf7-2, ADF7 OE #14, vln1-2, VLN1 OE #8, and adf7 vln1 #1 under CK and Lat A treatments (0.2 μM). Scale bar, 200 μm.

(B) Histogram depicting root hair number in (A). (C) Confocal microscopy images of epidermal cells visualized by the expression of

fABD2::GFP in root apices from Col-0, adf7-2, vln1-2, and adf7 vln1 #1 seedlings under Lat A treatments (0.2 μM). Enlarged views from

the red boxes are in the bottom row. Scale bar, 25 μm. (D) Violin plot showing the average and contribution of fluorescence intensity of

actin cables in (C). The red line represents the average fluorescence intensity in different genotypes. (E) Histogram depicting skewness

of F-actin in (C). (F) Histogram depicting the percentage of occupancy of F-actin in (C). Significant difference (P< 0.05) indicated by

different letters among genotypes is determined for each condition by one-way ANOVA followed by Tukey’s test in (B), (D), (E), and

(F).

https://doi.org/10.1371/journal.pgen.1010338.g005
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the increased DPI concentrations in Col-0, and a negative control 0.75% DMSO didn’t affect

the root hair formation (Fig 6C and 6D). Further, adf7, ADF7 OE, vln1, VLN1 OE, adf7 vln1,

and adf7 VLN1 OE seedlings showed the similar number of root hairs with Col-0 under DPI

treatments (Fig 6C and 6D), confirming that the function of ADF7-inhibited-VLN1 pathway

on root hair formation requires ROS level elevation. RHD2 is correlated with the increased

ROS levels in roots and root hairs [35–37]. Then, the RHD2 expression was calculated in Col-

0, adf7, ADF7 OE, vln1, VLN1 OE, adf7 vln1, and adf7 VLN1 OE seedlings. The results showed

that the inhibited RHD2 expression in adf7, VLN1 OE, and adf7 VLN1 OE seedlings and the

increased it in ADF7 OE, vln1, and adf7 vln1 seedlings, compared with Col-0 (Fig 6E), indicat-

ing that the role of ADF7-inhibited-VLN1 pathway in ROS level elevation might be via affect-

ing RHD2 expression.

The ADF7-inhibited-VLN1 pathway is essential for root hair formation in

plant osmotic stress tolerance

Microarray data revealed that osmotic stress leads to the changes of ADF7 and VLN1 expres-

sion in roots [51]. We, therefore, considered whether ADF7-inhibited-VLN1-regulated root

hair formation functions in plant osmotic stress tolerance. Consistent with the microarray

data, RT-qPCR analysis showed that ADF7 and VLN1 expression in roots was increased and

decreased by mannitol treatments, respectively (Fig 7A). This was further verified by Gus

staining and western blot analysis (Fig 7B and 7C). Moreover, Col-0 showed the increased root

hair numbers under 200 mM, 250 mM, and 300 mM mannitol treatments (Fig 7D), confirm-

ing that osmotic stress-induced root hair formation. Osmotic stress-induced root hair forma-

tion was dependent on increasing mannitol concentration, consistent with the osmotic-

mediated ADF7 and VLN1 expression mode dependent on increasing mannitol concentration

in roots (Fig 7A and 7D).

Compared with Col-0, ADF7 OE, vln1, and adf7 vln1 seedlings grew more root hair num-

bers under mannitol treatments (Fig 7D). In contrast, adf7, VLN OE, and adf7 VLN OE seed-

lings displayed defects in osmotic stress-induced root hair formation (Fig 7D). Additionally,

compared with Col-0, vln1, ADF7 OE, and adf7 vln1 seedlings showed better growth state with

bigger leaf area, higher dry weight, and higher water content under normal condition and

osmotic stress, while adf7, VLN1 OE, and adf7 VLN1 OE seedlings displayed contrasting

results (Fig 7E–7H). These results highlighted that the root hair formation mediated by

ADF7-inhibited-VLN1 contributes to water uptake and osmotic stress tolerance.

Furthermore, we observed the F-actin dynamics in epidermal cells of roots from Col-0,

adf7, vln1, and adf7 vln1 under 200 mM mannitol treatments for a different time. Under man-

nitol treatments for 3 h, 6 h, and 9 h, F-actin depolymerization was clearly observed (Fig 8A),

consistent with the decline of fluorescence intensity and skewness parameter and the increase

of the percentage of occupancy (Fig 8A–8D). Among these treatments, the F-actin depolymeri-

zation was the relative most significant in 6 h; Further, ADF7 deletion blocked the osmotic-

induced F-actin depolymerization, on the contrary, VLN1 single-gene deletion and ADF7 and

VLN1 double gene deletion promoted it (Fig 8A–8D). These results demonstrated that

osmotic-induced F-actin depolymerization was regulated by the pathway of ADF7-inhibited-

VLN1. Furthermore, we observed the ROS accumulation in the above same conditions. Col-0

displayed the increase of ROS in 3 h, 6 h, and 9 h treatments, osmotic-induced ROS accumula-

tion was blocked in adf7 and promoted in vln1 and adf7 vln1, which was associated with F-

actin dynamics (Fig 8E and 8F).

Combined with the above results, we concluded that osmotic stress induces ADF7 expres-

sion, and then the increased ADF7 promotes F-actin depolymerization and inhibits VLN1
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Fig 6. The F-actin depolymerization co-regulated by ADF7-inhibited-VLN1 elevates ROS accumulation during root

hair formation. (A) Images of ROS levels in roots of Col-0, adf7-2, vln1-2, and adf7 vln1 #1 seedlings under Lat A

treatments (0.2 μM) and CD (3 μM). Seedlings were treated with H2DCF–DA (see Methods), scale bar, 100 μm. (B)

Histogram depicting relative fluorescence intensities of ROS accumulation in (A) At least 30 seedlings were examined for

each material in different treatments. (C) Images of root hairs from Col-0, adf7-2, vln1-2, ADF7 OE #13, vln1-2, VLN1 OE
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expression and the function of VLN1-mediated F-actin bundled. The cooperation of ADF7

and VLN1 leads to the increase of F-actin depolymerization, finer F-actin and F-actin turn-

over, which associated with the increased ROS level and root hair formation in osmotic stress,

then enhancing plant osmotic stress tolerance (Fig 8G).

Discussion

The actin cytoskeleton is required for root hair formation [3,9–11]. Different kinds of ABPs

are involved in regulating F-actin arrays and dynamics in root hair formation [20,21]. To this

day, a few Arabidopsis ABPs, such as CROOKED/ARPC5 and AtPRF1, are identified to func-

tion in root hair formation using genetic analysis in plants [15,20,21,52]. Therefore, the molec-

ular mechanisms of actin cytoskeleton in root hair formation are largely unknown. Here, our

results revealed novel evidence on the role and interaction of two ABPs in root hair formation.

Actin depolymerization factor ADF7 and actin bundling protein VLN1 co-regulated F-actin

dynamics to participate in root hair formation, which correlated with ROS accumulation in

response to osmotic stress (Fig 8G).

ADF7 inhibits VLN1 to regulate root hair formation by controlling F-actin

dynamics

Previous findings showed that ADF7 plays an important role in flower development [28,53].

Our previous finding illustrates that VLN1 negatively regulates root hair growth [33]. Here, we

further studied the physiological roles of ADF7 and VLN1 during root hair formation. We

found that adf7 mutants showed fewer root hairs and ADF7 overexpression seedlings dis-

played more root hairs (Fig 1A–1C). More and fewer root hairs in vln1 mutants and VLN1 OE

seedlings were observed, respectively (Fig 1D–1F). To this day, the location of any ADFs is not

reported in root cells by GFP signals. Although we introduced a pADF7::ADF7::GFP construct

into adf7-2, the clear structure from GFP signals was also not observed in root cells. Fortu-

nately, the location of VLN1 by GFP signals shows several bright filaments in roots [29], as

well as that GUS staining analysis also indicates that VLN1 and ADF7 express in root tips (Fig

2C; [29,33]), supporting the function of VLN1 and ADF7 on root hair formation. Further anal-

ysis established a close relationship of ADF7 and VLN1 in root hair formation through the

gene or protein expression mode, the genotype phenotypes, and F-actin dynamics (Fig 2).

These results indicate that ADF7 inhibits VLN1 to regulate F-actin dynamics in root hair for-

mation, revealing the novel physiological roles of ADF7 and VLN1 in root hair formation.

ADF7 and VLN1 can bind to G-actin in vitro and collocate with F-actin in vivo, demon-

strating that ADF7 and VLN1 are actin binding proteins [24,28,29,32]. Further, it is identified

that ADF7 mediates depolymerizing/severing single F-actin and VLN1 only expresses bun-

dling F-actin activity [28,32]. Additionally, it is found that VLN1 and ADF1 may compete with

F-actin in vitro, suggesting that VLN1 and ADFs might interact in regulating actin dynamics

[28]. Our results demonstrate that ADF7 inhibits the VLN1-mediated F-actin bundling pro-

cess in the epidermal cells of roots, outgrowing bugles and the new emerged root cells. To this

day, all previous reports show that the deletion ADFs result in the significant increase of thick

bundles in planta, such as adf7 pollen tubes, adf4 hypocotyl epidermal cells, ADF2-RNAi

#7, adf7 vln1 #1, and adf7 VLN1 OE #1 under 50 μM and 75 μM DPI treatments. A negative control was supplemented

with 0.75% DMSO. Scale bar, 200 μm. (D) Histogram depicting root hair number in (C). (E) RT-qPCR quantification of

RHD2 expression level in Col-0, adf7-2, vln1-2, and adf7 vln1 #1. Values are means ± SD of three independent biological

replicates. ��� P< 0.001, Student’s t-test compared to Col-0. Significant difference (P< 0.05) indicated by different letters

among genotypes is determined for each condition by one-way ANOVA, followed by Tukey’s test in (B) and (D).

https://doi.org/10.1371/journal.pgen.1010338.g006
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Fig 7. The pathway of ADF7-inhbited-VLN1 is crucial for root hair formation in plant osmotic stress tolerance. (A) Relative

expression level of ADF7 and VLN1 in roots from 6-d-old Col-0 seedlings with 200, 250, and 300 mM mannitol treatments. Values are

means ± SD of three independent biological replicates. ��� P< 0.001, Student’s t-test compared with Col-0. (B) GUS activity of 4-d-old

seedlings carrying the pADF7::GUS or pVLN1::GUS reporter gene with 0, 250, and 300 mM mannitol treatments. Scale bar, 50 μm. (C)

Western blotting using proteins extracted from different genotypes carrying the pADF7::ADF7-GFP gene or pVLN1::VLN1-GFP gene

with 0, 250, and 300 mM mannitol treatments. Rubisco was used as a loading control. Histograms depict quantification of the relative

grayscale value. Values are means ± SD of three independent biological replicates. �� P< 0.01, ��� P< 0.001, Student’s t-test compared

to Col-0 with 0 mM mannitol treatment. (D) Histogram depicting root hair number from ADF7 and VLN1 genotypes under 0, 200,

250, and 300 mM mannitol treatments. (E) Images of growth state from ADF7 and VLN1 genotype seedlings under 0, 250, and 300

mM mannitol treatments. Scale bar, 1 cm. (F) to (H) Phenotypic characteristics of leaf area (F), dry weight (G), water content (H)

from 16-d-old genotype seedlings under 0, 250, and 300 mM mannitol treatments. Significant differences (P< 0.05; indicated by

different letters) among genotypes are determined for each condition by one-way ANOVA followed by Tukey’s test in (D), (F), (G),

and (H).

https://doi.org/10.1371/journal.pgen.1010338.g007
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seedlings [28,54–56], which may be due to the fact that the very fast single F-actin depolymer-

izing and severing can cause the short F-actin and rapid disappearance of long F-actin, which

doesn’t contribute to bundle two single F-actin. Therefore, it seems that there might be the

same regulation mechanism that ADFs inhibit F-actin bundling process in various cells.

Our analysis of RT-qPCR, GUS staining, and western blotting illustrate that ADF7 inhibits

VLN1 gene or protein expression in root tips (Fig 2A–2F). Many previous reports support the

function of ADFs in regulating gene expression; for example, AtADF4 modifies RPS5 expres-

sion [49]; OsADFs regulate the expression of some defense-related genes [57]; and AtADF9

affects FLC expression [48]. It has been hypothesized that some ABPs might regulate actin to

enter the nucleus in plants to regulate gene expression in plants, similar to the mechanisms in

humans [58–61]. Here, our results demonstrated that ADF7 inhibited the VLN1 expression in

roots. The reason might be that ADF7 promotes F-actin depolymerization, which might acti-

vate the role of actin in regulating gene expression, leading to decreased VLN1 expression. In

addition, VLN1 competes with ADFs to bind actin in vitro [32]. The increase of ADF7 expres-

sion leads to enhance the amount of bound actin filaments, so less free actin filaments might

require less VLN1 to bind in vivo. Therefore, plants might produce a signal of inhibition VLN1

according to their requirement.

Fig 8. The pathway of ADF7-inhibited-VLN1 is involved in osmotic-induced F-actin depolymerization and ROS accumulation. (A) Confocal

microscopy images of epidermal cells visualized by the expression of fABD2::GFP in root apices from Col-0 seedlings under mannitol treatments (200

mM) for 0, 3, 6, and 9 h. Scale bar, 20 μm. (B) Violin plot showing the average and contribution of fluorescence intensity of actin cables in different

genotypes seedlings under 200 mM mannitol treatments for different times. The red line represents the average fluorescence intensity in different

genotypes. (C) Histogram depicting skewness of F-actin in (B). (D) Histogram depicting the percentage of occupancy of F-actin in (B). (E) ROS

production in the roots of Col-0 seedlings under mannitol treatments (200 mM) for 0, 3, 6, and 9 h. Scale bar, 100 μm. (F) Histogram depicting

relative fluorescence intensities of the ROS levels in (E). (G) Working model of ADF7 and VLN1 in root hair formation and in response to osmotic

stress in Arabidopsis. Arrows represent positive regulation, and bar ends mean inhibitory action. Osmotic stress induces ADF7 expression, which

leading to the inclined F-actin depolymerization and the inhibited VLN1 expression that decreases F-actin bundle. The cooperation of ADF7 and

VLN1 results in the increased F-actin depolymerization, finer F-actin and F-actin turnover, which associated with the increase ROS level and root hair

formation in osmotic stress, then enhancing plant osmotic stress tolerance. At least 30 seedlings were examined for each genotype in different

treatments. Significant difference (P< 0.05) indicated by different letters among genotypes is determined for each condition by one-way ANOVA,

followed by Tukey’s test in (B), (C), (D), and (F).

https://doi.org/10.1371/journal.pgen.1010338.g008
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VLN1 and VLN3 play a partially overlapping role in the turnover of actin bundle formation

in vitro [34]. We also found that the expression of VLN3 in adf7-2 and ADF7 comp #2, ADF7
comp #7, ADF7 OE #13, and ADF7 OE #14 was similar, suggesting that ADF7 might not affect

other VLN family factors, such as VLN3 (S8 Fig). In addition, we found that ADF7 didn’t sig-

nificantly regulate VLN1 expression in leaves by the analysis of RT-qPCR and GUS staining

(S9 Fig). The reason might be that no detectable expression of ADF7 in leaves leads to no or

weak function of ADF7 in leaves [24].

Consistent with the previous results, our observation of F-actin dynamics in Col-0 root epi-

dermal cells in the root hair emission region showed that numerous longitudinal F-actin (par-

allel growth axes) surrounded the nuclei near the end walls (S10 Fig, [12]). Our results further

revealed that the assembled longitudinal F-actin existed ahead of the root hair growth site in

Col-0, which might provide the original actin with root hairs for outgrowing. The double

mutant act2 act7 displays defects in root hair formation [10]. In swollen root epidermal cells of

act2 act7, the fewer, thick, and transversely oriented F-actin bundles or rod-like structures

instead of the more, fine, and longitudinal F-actin in that of WT seedlings [10]. This indicates

that the orientation, thickness, and density of F-actin in root epidermal cells are closely related

to root hair formation [3,9–11].

We observed the F-actin dynamics in root epidermal cells in the transition, elongation/differ-

entiation, and root hair regions, as well as the outgrowing bugles and new emerged root hairs in

cross or longitudinal sections in the ADF7 and VLN1 genotype seedlings. Our results found that

ADF7 and VLN1 significantly affected the thickness and density of F-actin (Fig 3). ADF7 loss-of-

function led to the thicker bundles and less amount of F-actin, associated with the declined depo-

lymerizing rate, severing frequency, and F-actin turnover (Fig 4). While VLN1 loss-of-function

display finer bundles and more amount of F-actin, associated with the declined single F-actin-

bundling frequency and the increased depolymerizing rate, severing frequency, and F-actin turn-

over (Fig 4). These F-actin arrays and dynamics are consistent with the biochemistry properties of

ADF7 and VLN1 and further support the notion of the thickness and density of F-actin are closely

related to the root hair formation [3,9–11,28,32]. Further, genetic analysis and pharmacological

experiments found that the finer and more F-actin and increased F-actin turnover regulated by

ADF7-inhibited-VLN1 pathway in root hair formation (Fig 5). Some previous findings suggested

the connection between F-actin arrays and root hair formation. For example, PRF1 contributes to

F-actin assembly, and prf1 shows more root hairs, suggesting that the disassembled F-actin actives

root hair formation [15]. The phenotypes of act2 act7 demonstrate that the thicker and fewer F-

actin in the root epidermal cells of the root hair emission region is close to the root hair formation

inhibition [10]. Our results demonstrate that ADF7-inhibited-VLN1 directly regulates F-actin

arrays and dynamics by promoting mild depolymerization, inhibiting thick bundles, and forming

more fine bundles to active root hair formation.

ADF7-inhibited-VLN1-regulated F-actin dynamics are involved in ROS

accumulation and plant osmotic stress response

ROS signaling pathway plays an important role in root hair formation and in response to abi-

otic stress [35–37,62]. Our results showed that increased ROS level was found in the seedlings

with more root hairs and mild F-actin depolymerization, including ADF7 OE, vln1, and adf7
vln1 (Fig 6A and 6B); by contrast, the decreased ROS level was found in the seedlings with

fewer root hairs and F-actin stabilization, including adf7, VLN1 OE, and adf7 VLN1 OE seed-

lings (Fig 6A and 6B); Lat A application with low concentrations activated ROS accumulation

and root hair formation (Fig 6A and 6B); DPI treatments inhibited ADF7-inhibited-VLN1-re-

gulated root hair formation (Fig 6C and 6D); ADF7-inhibited-VLN1 decreased the RHD2
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expression (Fig 6E). These results demonstrate that the mild F-actin depolymerization pre-

cedes ROS accumulation during root hair formation, whose behavior is also observed by sev-

eral pieces of previous evidence that mild F-actin depolymerization elevate ROS level in vivo
[26,39,40]. RHD2 positively regulates root hair formation by elevating ROS accumulation [35–

37]. It has been reported that F-actin depolymerization increases RHD2 expression to elevates

ROS levels in salt stress in Arabidopsis [39]. Therefore, our results suggest that ADF7-inhib-

ited-VLN1 regulates mild F-actin depolymerization and F-actin turnover, which associated

with the increasing RHD2 expression and ROS level in root hair formation.

It is well accepted that water deficiency-induced root hair development plays a beneficial

attribute for maximizing water absorption to enhance plant stress tolerance [7,8]. Gene expres-

sion analysis reveals that numerous genes are involved in root hair development under water

deficiency [7]; Water deficiency is caused by a series of environmental factors, such as osmotic

stress and drought stress [7,63]. However, the molecular mechanisms of root hair formation in

osmotic stress were largely unknown, and only several proteins, such as MaRHD3, OsWOX11,

EVP1, OsGH3-2, involved in drought-induced root hair initiation are identified using genetic

analysis [57,64–66]. However, the role of actin cytoskeleton in root hair initiation responses to

osmotic stress was largely unknown. It is well acceptable that the increased ROS accumulation

responds to abiotic stress, such as osmotic stress, salt stress, or drought [62]. Our results indi-

cate that F-actin depolymerization regulated by ADF7-inhibited-VLN1 is involved in promot-

ing ROS accumulation in root hair formation in osmotic stress, which plays an important role

in plant tolerance osmotic stress, providing novel evidence on the molecular mechanisms of

actin dynamics in response to abiotic stress.

Actin cytoskeleton is required for cell growth, cell difference and cell signal transduction

[61,67]. Actin dynamics are complex and well-organized subtle changes from the interaction

of various single F-actin dynamics. Investigating the molecular interaction of various single F-

actin dynamics in responses to environmental stimuli is the scientific challenge. Here, we pro-

vide the novel single F-actin dynamics and their molecular mechanisms in plant physiological

activities, that ADF7 inhibits VLN1-organised thick bundles to increase F-actin depolymeriza-

tion, fine F-actin and F-actin turnover, associated with root hair formation and plant osmotic

stress tolerance.

Methods

Plant growth and treatment conditions

All the seedlings were the Columbia ecotype in this study. The mutants used in this study were

listed as follows: adf7-2 (Salk_024537), vln1-1 (Salk_020027), and vln1-2 (Salk_133579). Arabi-
dopsis seeds were sterilized and plated on 1/2MS medium with 0.8% (w/v) agar (pH 5.8). The

Arabidopsis plants were grown in a growth chamber at 22˚C under a 16 h light and 8 h dark-

ness photoperiod. For ET pharmacological treatment, 3-d-old seedlings were transferred to 1/

2 MS medium with EHT or 1-methylcyclopropene (1-MCP) added and then vertically grew

for 2 d. For leaf area, dry weight, water content, 3-d-old seedlings were removed to 0 mM, 250

mM, and 300 mM mannitol media to grow for 13 d, then the 16-d old seedlings were tested at

least 60 plants with three technical and biological replicates. Leaf area was the average of all

leaves per plant. Dry weight of the seedlings was measured after a 16 h at 80˚C oven treatment.

Water content was calculated as follows: (fresh weight-dry weight)/plant.

Plasmid construction and plant transformation

For the pADF7::GUS, the ADF7 promoter fragment was inserted into binary vector pCAM-
BIA1300-221 using unique PstI and SmaI restriction sites. ADF7 promoter and ADF7 CDS
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fragment were cloned to generate the pADF7::ADF7::GFP construct in the pSuper1300. Prim-

ers are listed in S1 Table. Plasmids were transformed into Agrobacterium tumefaciens GV3101

and introduced into Arabidopsis Col-0 using the floral dip method. Three generations of trans-

genic plants were selected on 1/2 MS medium containing 30 μg/mL hygromycin until homo-

zygous material was obtained.

Root hair number analysis

Root hair number was calculated including root hairs and bulges on the visible side in a distant

between 2 and 4 mm from the primary root tips, as the previous method [4]. To measure the

percentage of root hairs from H or N cells, we, respectively, calculated the proportion of root

hairs from five adjacent H or N cell files in the fixed zone between 2.5 and 3.5 mm from the

primary root tips from 20 roots for each genotype (total of 100 cells per genotype), as the previ-

ous method [41]. To measure root hair formation portion in H cells per mm, we calculated the

number of root hairs from a line of H cells in the fixed zone between 2.5 and 3.5 mm from the

primary root tips from 20 roots for each genotype (total of 100 cells per genotype), as the previ-

ous method [42]. For actin pharmacological experiments, the 3-d-old seedlings were treated

with the presence or absence of actin disrupting drug Lat A with 0.2 and 0.4 μM for 3 h and

washed out the drugs. Then, the seedlings were removed to normal 1/2 MS media to grow for

3 d for calculating root hair numbers from at least 50 roots per genotype. Image J was used to

measure root hair numbers in the same focal plane.

ROS level analysis

ROS was observed in the root tips of 3-d-old seedlings by H2DCF–DA (20,70-dichlorodihydro-

fluorescein diacetate) as the previous method [37]. The images between 0 and 1mm from root

tips were collected by laser scanning confocal microscope (Nikon) using a ×10 objective with

the 488-nm laser. Within experiments, gain, pinhole, laser power, and detector offset were set

to the same parameters. Experiments were repeated at least three times. ROS intensity of root

was measured in >30 individual seedlings per genotype respectively used Image J.

RNA isolation and gene expression analysis

RNA extraction buffer was from the Easy Pure Plant RNA kit (TRANS). Quantitative PCR

with reverse transcription (RT-qPCR) was performed using Bio-rad CFX96. Primers used are

listed in (S1 Table). The histochemical GUS staining assay was performed using 4-day-old

pVLN1::GUS, pADF7::GUS transgenic seedlings and hybrid materials in a 37˚C incubator for

3 h. After decolorization with ethanol and acetic acid solutions, the images were taken by

Upright microscope (Nikon model eclipse Ni-U) with Nikon DS-Ri2 Microscopic imaging

system through 20 times objective lens.

Western blotting assays

Protein was extracted from 10-day-old seedlings which carrying the VLN1::GFP gene and

ADF7::GFP gene. The protein was analyzed by SDS-PAGE. An anti-GFP antibody (Thermo

Fisher) contained a dilution of 1:30,000 in TBST (50 mM Tris, 150 mM NaCl, and 0.05% (v/v)

Tween 20, pH 7.5) was used as a probe, a dilution of 1:10,000 in a rabbit anti-mouse IgG H&L

(HRP) secondary antibody (Abcam). The bands were detected by Hypersensitive ECL Chemi-

luminescence Kit. Rubisco bands were used as loading controls.
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Quantitative analysis of F-actin arrays

Actin filament architecture was quantitatively analyzed using three parameters including aver-

age and contribution of GFP fluorescence intensity of actin cables, percentage of signal occu-

pancy (density), and skewness [45,46]. The F-actin in every root cell from a fixed zone in the

transition zone and the elongation/differentiation zone [43]. GFP was excited by a 488-nm

laser. A fixed laser power and gain setting were used for different genotypes. For statistical

analysis, we measured fluorescence intensity, skewness, and density values in at least 60 images

of root cells from at least 20 individual seedlings in every genotype.

Time-lapse imaging of signal F-actin dynamics

The time-lapse imaging of actin filament dynamics in living cells was performed using the gen-

eral method [45]. Briefly, surface-sterilized seeds were sown on a coverslip on one-half

strength MS medium and the coverslip was tilted in a Petri dish, then the Petri dish was placed

horizontally for 4 d. micrographs of actin filaments were collected every 3 s by laser scanning

confocal microscope (Nikon) using a 100 × oil immersion objective. Slice thickness was

0.5 μm. The parameter settings of gain, laser power, and detector offset were the same in all

experiments. As in the previous reports, the filamentous structures with smaller intensity val-

ues form a population and are assumed to be single filaments [28,46,55]. The parameters were

counted by Image J. We only count filaments surviving for at least 10 s and longer than 2 μm.

The maximum filament length was defined as the longest length of the tracked filament during

its growth. Maximum filament lifetime was determined by the time of the tracked filament

from its appearance to disappearance. Severing frequency indicates the number of breaks per

unit length per unit time (break/μm/s). The severing frequency was counted from the filament

at maximum length to its disappearance. Depolymerization rate was counted as changes of

length in unit time (4length/4time). The bundling frequency was defined as the bundling

events per unit area unit time (events/μm2/s). In root cell, a 30×30 -μm2 region was selected,

At least 60 root cells from at least 20 individual seedlings are calculated in every genotype.

Statistical analysis

Violin plots depicted the average value and the distribution of fluorescence intensity of actin

cables in different genotypes or under different treatments using the methods described previ-

ously [68]. Other data was calculated by One-way ANOVA with a post-hoc Tukey and least

significant difference (LSD) test on a significant level of P< 0.05 or by Student’s t-test (� P<
0.05, �� P< 0.01, ��� P< 0.001).

Supporting information

S1 Fig. Molecular identification of ADF7 genotypes. (A) Locations of T-DNA insertion

alleles adf7-2 (SALK_024537). Black boxes represent exons, and horizontal lines represent

introns. T-DNA inserts (arrowheads) are drawn to scale. (B) to (D), ADF7 overexpression

(ADF7 OE) lines (B), and complementation (ADF7 comp) lines (C), RT-PCR analysis in adf7
mutants (D), with 18S used as an internal control. (E) RT-qPCR quantification of ADF7
expression level in Col-0, adf7-2, ADF7 comp #2, ADF7 comp #7, ADF7 OE #13, and ADF7
OE #14 plants, with 18S used as an internal control, and ADF7 expression in Col-0 is normal-

ized to 1. Values are means ± SD of three independent biological replicates. � P< 0.05, �� P<
0.01, ��� P< 0.001, Student’s t-test compared to Col-0.

(TIF)
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S2 Fig. Enlarged images of root hair phenotypes of ADF7 and VLN1 genotypes. Enlarged

images of root hair of Col-0, adf7-2, ADF7 OE #14, vln1-2, VLN1 OE #8, adf7 vln1 #1, and adf7
VLN1 OE #1. Scale bar, 200 μm.

(TIF)

S3 Fig. Molecular identification of VLN1 genotypes. (A) Locations of T-DNA insertion alleles

vln1-1 (SALK_020027) and vln1-2 (SALK_133579). Black boxes represent exons, and horizontal

lines represent introns. T-DNA inserts (arrowheads) are drawn to scale. (B) to (D), VLN1 overex-

pression (VLN1 OE) lines (B), and complementation (VLN1 comp) lines (C), RT-PCR analysis in

VLN1 T-DNA insertional mutants (D), with 18S used as an internal control. (E) RT-qPCR quan-

tification of VLN1 expression level in Col-0, vln1-1, vln1-2, VLN1 comp #9, VLN1 comp #14,

VLN1 OE #7, and VLN1 OE #8 plants, with 18S used as an internal control, and VLN1 expression

in Col-0 is normalized to 1. Values are means ± SD of three independent biological replicates. �

P< 0.05, �� P< 0.01, ��� P< 0.001, Student’s t-test, compared to Col-0.

(TIF)

S4 Fig. pADF7::ADF7::GFP is functional. (A) Images of root hairs from Col-0, adf7-2, pADF7::

ADF7::GFP in adf7-2 seedlings. Scale bar, 200 μm. (B) Histogram displaying root hair number in

Col-0, adf7-2, pADF7::ADF7::GFP in adf7-2 seedlings. Values are means ± SD of three indepen-

dent biological replicates. � P< 0.05, �� P< 0.01, ��� P< 0.001, Student’s t-test compared to Col-0.

(C) RT-PCR analysis of ADF7 expression level in the seedlings of pADF7::ADF7::GFP in adf7-2.

(TIF)

S5 Fig. pVLN1::VLN1::GFP is functional. (A) Images of root hairs from Col-0, vln1-2,

pVLN1::VLN1::GFP in vln1-2 seedlings. Scale bar, 200 μm. (B) Histogram displaying root hair

number in Col-0, vln1-2, pVLN1::VLN1::GFP in vln1-2 seedlings. Values are means ± SD of

three independent biological replicates. � P< 0.05, �� P< 0.01, ��� P< 0.001, Student’s t-test

compared to Col-0. (C) RT-PCR analysis of VLN1 expression level in the seedlings of pVLN1::

VLN1::GFP in vln1-2.

(TIF)

S6 Fig. Molecular identification of ADF7 and VLN1 double gene genotypes. RT-PCR analy-

sis of ADF7 and VLN1 gene expression in Col-0, adf7 vln1 #1, adf7 vln1 #2, adf7 VLN1 OE #1,

and adf7 VLN1 OE #2 seedlings, with 18S used as an internal control.

(TIF)

S7 Fig. Lat A treatments activate ADF7 and VLN1-comediated root hair formation. Histo-

gram displaying root hair number from Col-0, adf7-2, ADF7 OE #14, vln1-2, VLN1 OE #8, and

adf7 vln1 #1 under CK and Lat A treatments (0.4 μM). A significant difference (P< 0.05) indi-

cated by different letters among genotypes is determined for each condition by one-way

ANOVA followed by Tukey’s test.

(TIF)

S8 Fig. RT-qPCR quantification of VLN3 expression level in Col-0, adf7-2, ADF7 comp #2,

ADF7 comp #7, ADF7 OE #13, and ADF7 OE #14 seedlings.

(TIF)

S9 Fig. The expression of VLN1 in leaves from Col-0, adf7-2, ADF7 comp #2, and ADF7 OE

#14 seedlings. (A) RT-qPCR quantification of VLN1 expression level in leaves of 6-d-old seed-

lings from Col-0, adf7-2, ADF7 comp #2, and ADF7 OE #14. (B) GUS analysis of VLN1 expres-

sion from Col-0 and adf7-2 seedlings. Scale bar, 0.25 cm.

(TIF)

PLOS GENETICS ADF7 and VLN1 in root hair formation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010338 September 12, 2022 21 / 26

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010338.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010338.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010338.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010338.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010338.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010338.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010338.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010338.s009
https://doi.org/10.1371/journal.pgen.1010338


S10 Fig. Confocal microscopy images of fABD2::GFP in nuclei and F-actin of root epider-

mal cells. GFP shows the distribution of actin F-actin of root epidermal cells in the elonga-

tion/differentiation and transition regions, and the position of the nucleus was observed after

3 min of PI staining. Scale bar, 10 μm.

(TIF)

S1 Table. Primers used in this study.

(DOCX)

S1 Video. Depolymerizing process of single F-actin in Col-0 root cells.

(AVI)

S2 Video. Depolymerizing process of single F-actin in adf7-2 root cells.

(AVI)

S3 Video. Severing process of single F-actin in Col-0 root cells.

(AVI)

S4 Video. Severing process of single F-actin in adf7-2 root cells.

(AVI)

S5 Video. Bundling process of single F-actin in Col-0 root cells.

(AVI)

S6 Video. Bundling process of single F-actin in adf7-2 root cells.

(AVI)

S7 Video. Bundling process of single F-actin in vln1-2 root cells.

(AVI)

S8 Video. Bundling process of single F-actin in adf7 vln1 #1 root cells.

(AVI)
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