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Abstract 

Background:  Plasmodium vivax malaria is a major public health problem in French Guiana. Some cases of resistance 
to chloroquine, the first-line treatment used against P. vivax malaria, have been described in the Brazilian Amazon 
region. The aim of this study is to investigate a possible dispersion of chloroquine-resistant P. vivax isolates in French 
Guiana. The genotype, polymorphism and copy number variation, of the P. vivax multidrug resistance gene-1 (pvmdr1) 
have been previously associated with modification of the susceptibility to chloroquine.

Methods:  The pvmdr1 gene polymorphism was evaluated by sequencing and copy number variation was assessed 
by real-time PCR, in P. vivax isolates obtained from 591 symptomatic patients from 1997 to 2013.

Results:  The results reveal that 1.0% [95% CI 0.4–2.2] of French Guiana isolates carry the mutations Y976F and F1076L, 
and that the proportion of isolates with multiple copies of pvmdr1 has significantly decreased over time, from 71.3% 
(OR = 6.2 [95% CI 62.9–78.7], p < 0.0001) in 1997–2004 to 12.8% (OR = 0.03 [95% CI 9.4–16.9], p < 0.0001) in 2009–
2013. A statistically significant relationship was found between Guf-A (harboring the single mutation T958M) and Sal-1 
(wild type) alleles and pvmdr1 copy number.

Conclusions:  Few P. vivax isolates harboring chloroquine-resistant mutations in the pvmdr1 gene are circulating in 
French Guiana. However, the decrease in the prevalence of isolates carrying multiple copies of pvmdr1 might indicate 
that the P. vivax population in French Guiana is evolving towards a decreased susceptibility to chloroquine.
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Background
Plasmodium vivax remains the most geographically 
widespread of the five Plasmodium species infecting 
humans. As the second most common cause of malaria 
worldwide, P. vivax is the main cause of malaria in 
South America, where 390,000 cases were reported by 
the World Health Organization in 2015 [1]. Approxi-
mately 95% of these P. vivax malaria cases occur in nine 
countries of the Amazon Basin, namely Brazil, Bolivia, 
Colombia, Ecuador, French Guiana, Guyana, Peru, Suri-
name and Venezuela [1]. A total of 311 P. vivax cases 
were reported in French Guiana in 2014, representing 
70% of the total number of malaria cases [2]. Since 1995, 

the treatments of uncomplicated P. falciparum malaria, 
mefloquine or halofantrine were used in monotherapy 
until 2002 when they were replaced by the association 
atovaquone–proguanil and in 2009 by the combination of 
artemether–lumefantrine [2–4]. Like the other countries 
across the continent, chloroquine is still recommended 
as the first-line treatment for P. vivax in French Guiana.

In 1989, the first cases of chloroquine-resistant P. 
vivax infection were reported in Papua New Guinea [5]. 
First cases of P. vivax resistance to chloroquine in South 
America were described in clinical studies of unsuper-
vised chloroquine treatment in 1989 and 1992, in Colom-
bia and Brazil, respectively [6, 7]. It was only in 1996 
that the first confirmed clinical case of resistance was 
described in Brazil [8]. Chloroquine resistance has spread 
around the world over the last decade [9], and is now 
found in Southeast Asia [10–14] but also in Africa [15, 
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16], South America [8, 17–22] and the Middle East [23, 
24].

Polymorphisms in pvmdr1 gene (P. vivax multidrug 
resistance-1 gene, PVX_080100), orthologous to pfmdr1 
gene in Plasmodium falciparum (PF3D7_0523000) [25], 
has been associated with chloroquine resistance in many 
studies. Pvmdr1 Y976F and F1076L mutations are found 
in all malaria-endemic regions where chloroquine is used 
as the first-line treatment [13, 14, 26, 27]. Isolates bear-
ing only F1076L mutations were identified but were not 
associated with a chloroquine resistance [28, 29]. This 
observation supports the argument that P. vivax chloro-
quine resistance requires the presence of both mutations. 
It has been suggested that F1076L is the prerequisite for 
the secondary acquisition of Y976F, which is responsi-
ble for the decrease in chloroquine susceptibility [29]. 
However, no other studies have observed this correla-
tion between Y976F mutation and resistance phenotype 
[15, 18]. Several studies have pinpointed an increase in 
pvmdr1 gene copy number, which seems to be related to 
an increased susceptibility to chloroquine [13, 14, 30, 31]. 
Furthermore, a recent study suggested that chloroquine 
resistance and clinical severity in vivax malaria were 
associated with increased expression levels of pvmdr1 
and pvcrt-o genes [32].

This study aims to estimate the possible emergence 
of chloroquine-resistant P. vivax in French Guiana. The 
work is divided into two parts. Firstly, pvmdr1 gene poly-
morphism and copy number were assayed in P. vivax iso-
lates obtained from blood samples of patients collected 
since 1997 and the temporal evolution of pvmdr1 gene 
polymorphism and copy number were studied.

Methods
Sample collection
Between 1997 and 2013, samples were collected from 591 
symptomatic patients presenting with malaria symptoms 
at health centres in French Guiana. Plasmodium vivax 
mono-infections were diagnosed by rapid diagnostic 
tests and/or microscopic examination of the blood. Blood 
samples were collected in EDTA-coated tubes and sent 
to the National Reference Centre (NRC) for Malaria at 
the Institut Pasteur de la Guyane for further analysis and 
biobanking.

DNA extraction, amplification and sequencing
Parasite DNA was extracted from whole blood samples 
using the QIAamp DNA Blood Mini Kit (Qiagen, Court-
aboeuf, France), following manufacturer’s instructions. 
The pvmdr1 gene was amplified and sequencing using 
protocol (primers and amplification condition) previ-
ously described by Lekweiry et  al. [33] except the poly-
merase, 0.025 U/μl of Ampli Taq Gold™, 2.5 mM MgCl2, 

1× PCR Gold Buffer (Applied Biosystems). The amplifi-
cation product was loaded on a 1.5% agarose gel and vis-
ualized after electrophoresis.

Sequencing of pvmdr1 PCR product was performed by 
using the nested primers [33] generating a product length 
of 547  bp (region between codon 931 and 1095). These 
sequence were compared with the reference sequence 
Sal-1 (Genbank accession number AY571984).

Pvmdr1 and pvaldolase cloning
As a reference sample with a known pvmdr1 copy num-
ber was not available, two reference plasmids contain-
ing one copy of the pvmdr1 and pvaldolase genes were 
generated, respectively, to use as positive controls for the 
real-time PCR (qPCR). They were created by PCR ampli-
fication of pvmdr1 and pvaldolase genes using A380 and 
A379 or A382 and A383 primers, respectively (Table 1). 
Each PCR product was cloned in pCR™4-TOPO® plas-
mid using the TOPO® TA Cloning® kit (Invitrogen), fol-
lowing manufacturer’s protocol.

Real‑time PCR to quantify the pvmdr1 gene copy number
The pvmdr1 gene copy number was measured by per-
forming a qPCR in comparison to the reference gene 
pvaldolase, using the method previously described 
by Lekweiry et  al. [33]. The reproducibility problems 
encountered were solved by designing new probes using 
Primer Express® software (Applied Biosystems). These 
primers and probes are listed in Table 1. The qPCR was 
carried out in a 25 μl reaction volume containing 1 μl of 
DNA, 300 nM of each primer, 200 nM of probe, 12.5 μl of 
TaqMan® Universal Master Mix II (Applied Biosystems) 
and water. Real-time PCR was performed under the fol-
lowing conditions: 95  °C for 10  min, then 40 cycles at 
95 °C for 15 s and 65 °C for 1 min. Samples were set up in 
triplicate and experiments were repeated independently 
twice.

Results analysis was executed by StepOne™ software 
(Applied Biosystems). The signal from the pvmdr1 gene 
was normalized to the single copy pvaldolase reference 
gene, then copy number was determined using the math-
ematical model described by Pfaffl [34].

Statistical analysis
All statistical analyses were performed with R software 
(version 3.0.2). Percentages were calculated for each 
parameter studied, namely single nucleotide polymor-
phisms and increased pvmdr1 copy number, in com-
parison to the total sample size. Corresponding 95% 
confidence intervals (CI) were calculated using the exact 
(Clopper-Pearson interval) method [35]. In this study, the 
pvmdr1 copy number was analysed as a qualitative vari-
able and two groups were considered: samples with one 
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copy and samples with at least two copies of the pvmdr1 
gene.

A Chi square test for trend allowed comparison of the 
temporal evolution of pvmdr1 allele frequencies and gene 
copy number. A logistic regression was used to determine 
the association between polymorphisms and the pvmdr1 
gene copy numbers. A p value below 0.05 was considered 
significant.

Nucleotide sequence accession numbers
The Guf-A, Guf-B and Guf-C allele sequences of the 
pvmdr1 gene reported in this study were deposited 
in GenBank under accession numbers KU196660, 
KU196661 and KU196662, respectively.

Results
Demographic information
A total of 547 patients for 591 sample, 362 men and 
185 women with the sex ratio of 1.96, were included in 
this study. The average age was 29.2  years (1  month to 
76 years, including 88 children under 15 years) with para-
sitaemia between 0.001 and 4% with an average of 0.32% 
(Table  2). Three time periods (1997–2004, 2005–2008 
and 2009–2013) were considered according to the years 
2005 when the P. vivax became the dominant species 
diagnosed in French Guiana, and 2009 when the combi-
nation of artemether and lumefantrine was adopted for 
the treatment of P. falciparum and mixed infections (P. 
falciparum/P. vivax) in French Guiana (Table 2). No sig-
nificant association on all parameters (age, sex ratio and 
parasitaemia) and the time period.

Polymorphism of the pvmdr1 gene
Among the 591 genotyped samples, four non-synonymous 
mutations (T958  M, Y976F, F1070L and F1076L) and one 
synonymous mutation (L1022L) were identified. The French 
Guiana strains were then divided into four alleles (Fig.  1). 
The Sal-1 wild-type allele was present in 11.2% (n = 66/591, 
CI 95% [8.7–14.0]) of the samples while 86.5% (n = 511/591, 
CI 95% [83.4–89.1]) of isolates carried the T958 M mutation 
and this predominant allele was called Guf-A. Only 1.4% 
(n = 8/591, CI 95% [0.6–2.7]) of isolates carried the T958M/
F1070L mutations and this double mutant allele was refer-
enced as Guf-B. Finally, 1.0% (n = 6/591, CI 95% [0.4–2.2]) 
of isolates carried the T958M/Y976F/F1076L, this triple 
mutant was named Guf-C (Fig. 1).

The temporal evolution of these alleles was then deter-
mined (1997–2004, n =  136; 2005–2008, n =  120 and 
2009–2013, n =  335; Fig.  2). No significant association 
was found between the frequency of Guf-B and Guf-C 
alleles and the time period (p = 0.44 and p = 0.35, respec-
tively, Chi square test for trend). A statistically significant 
increase in the frequency of the Sal-1 allele through time 
(p  <  0.0001) has detected, along with a statistically sig-
nificant decrease for the Guf-A allele (p < 0.002) (Fig. 2). 
Furthermore, relationship between epidemiological data 
and genotype was not observed.

Relationship between copy number and genotype of the 
pvmdr1 gene
The copy number of the pvmdr1 gene was determined 
for all samples and varied from 1 to 8 (mean 1.45, CI 
95% [1.35–1.55]). The majority of the sample, 68.5% 

Table 1  Primers and probes for quantification of the pvmdr1 copy number by qPCR

MGB/NFQ minor groove binder/non-fluorescent quencher, pvmdr1 Plasmodium vivax multi-drug resistance 1

Primer and probe name Sequence Gene

A380 5′-GAG-AGG-ACG-TAA-ACG-TGC-TT-3′ pvmdr1

A379 5′-ACG-TTG-GTG-TCG-TAC-TGA-TTC-G-3′

A399 5′-FAM_TTT-GCC-GCA-ATT-GA_MGB/NFQ-3′

A382 5′-AGT-TTT-GTT-GGA-AGG-AGC-TTT-ATT-G-3′ pvaldolase

A383 5′-TGG-TTT-TCA-CAG-CAC-AGT-CGT-AT-3′

A397 5′-FAM_CCC-AAC-ATG-GTG-ACC-G_MGB/NFQ-3′

Table 2  Demographic information

Age were indicated in year; the parasitemia were indicated on percentage of red blood cell infected by P. vivax

Year Number 
of patient

Age (mini–max) Nb men Nb women Sex ratio Parasitemia % 
(mini–max)

1997–2004 136 26.7 (0.46–56) 85 50 1.7 0.4 (0.01–2)

2005–2008 120 22.9 (0.08–63) 82 38 2.16 0.5 (0.01–4)

2009–2013 291 31.2 (0.67–76) 195 97 2.01 0.3 (0.001–2.3)

Total 547 29.2 (0.08–76) 362 185 1.96 0.32 (0.001–4)
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(n =  405/591, CI 95% [64.6–72.3]), had one copy while 
31.5% (n = 186/591, CI 95% [27.7–35.4]) had two to eight 
copies. The frequency of isolates with multiple copies of 
the pvmdr1 gene was significantly higher in samples col-
lected between 1997 and 2004 (97/136, 71.3%, CI 95% 
[62.9–78.7]) than in samples from 2005 to 2008 (45/120, 
37.5%, CI 95% [28.8–46.8]) or even after 2008 (43/335, 
12.8%, CI 95% [9.4–16.9]). This decrease over time was 
statistically significant (p  <  0.0001, Chi square test for 
trend, see Fig. 3). Moreover, relationship between epide-
miological data and copy number was not observed.

The association between the copy number and genotype 
of the pvmdr1 gene was evaluated. The proportion of iso-
lates harbouring multiple copies was not equally distrib-
uted among the different alleles. A statistically significant 

association was found between the Sal-1 allele and single 
copy pvmdr1 gene (p =  0.0006) as well as between the 
Guf-A allele and copy number greater than 1 (p = 0.0002). 
No statistically significant relationship was found between 
the Guf-B and Guf-C alleles and the pvmdr1 gene copy 
number (p = 0.93 and p = 0.58, respectively, Fig. 4).

Discussion
Vivax malaria is a major public health problem in South 
America. In French Guiana, it is currently responsible for 
two-thirds of malaria cases. Resistance to chloroquine, 
the main treatment used against vivax malaria [2], has 
been reported in the Brazilian Amazon Region [4, 17, 18, 
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Fig. 1  Pvmdr1 sequence polymorphism (codon 931–1095) of 591 isolates collected in French Guiana between 1997 and 2013. Only polymorphic 
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20, 21, 32, 36, 37]. In French Guiana, the development of 
gold-mining activities and the consequent human migra-
tion between French Guiana and neighbouring countries, 
Brazil and Suriname [4, 38, 39], have raised fears that 
chloroquine-resistant P. vivax isolates may spread. It is 
therefore important to follow the circulation of resistant 
isolates. There are previous studies suggesting that Y976F 
and F1076L mutations in the pvmdr1 gene are associated 
with in  vitro resistance to chloroquine [13, 14]. Pvmdr1 
Y976F mutation alone is not sufficient to cause the failure 
of chloroquine treatment, as observed in Madagascar [15], 
Brazil [21] and Honduras [40]. It can only affect treatment 
outcome when associated with the F1076L mutation. In 
French Guiana, these two mutations were carried by 1.0% 
of the isolates (i.e., Guf-C allele). Therefore, these para-
sites could potentially be resistant to chloroquine; how-
ever, an association with clinical drug response or in vitro 
susceptibility have not been investigated. This value is 
similar to the 1.8% prevalence reported in Brazil [41].

Sal-1 and Guf-A alleles were present in 11.2 and 86.5% 
of the samples in French Guiana, respectively, showing 
significant and inverse trends in the temporal evolu-
tion of their frequency; while the frequency of the Sal-1 
allele significantly increased over time, the frequency of 
the Guf-A allele decreased. These temporal variations 
of allele frequencies could be explained by different fac-
tors, such as the increased circulation of isolates between 
French Guiana and Brazil or changes in drug policy for 
the treatment of P. falciparum. This is supported by a 
recent study showing that the T958M mutation allele is 
the majority among Brazilian isolates collected between 
2010 and 2014 [42]. Many studies in Southeast Asia have 
shown that isolates with pvmdr1 gene amplification 
were characterized by increased susceptibility to chlo-
roquine but decreased susceptibility to mefloquine [13, 

31]. A significant decrease of the proportion of isolates 
with multiple copies of pvmdr1 over this 16-year study 
period has been found, decreasing from 71.3% between 
1997 and 2004 to only 12.8% between 2009 and 2013. 
A recent study comparing P. vivax isolates from French 
Guiana (collected between 2001 and 2003) and South-
east Asia (collected in 2010) showed the number of iso-
lates with multiple copies of pvmdr1 gene to be higher 
in French Guiana than in Cambodia [43]. Moreover, 
pvmdr1 gene amplifications were rare (fewer than 2%) 
in countries where mefloquine has never been used for 
malaria treatment, such as Madagascar and Sudan [43]. 
In P. falciparum, multiple copies of pfmdr1 were associ-
ated with mefloquine-resistant isolates [44]. This has 
been confirmed in French Guiana where isolates with 
amplified copy number of pfmdr1 gene were significantly 
correlated with resistance to mefloquine and halofan-
trine, both used in monotherapy against uncomplicated 
P. falciparum malaria until 2002 [45]. P. vivax isolates 
were therefore subjected to indirect selection pressure 
by mefloquine during the treatment of P. falciparum or 
mixed infections (P. falciparum and P. vivax). When the 
use of mefloquine and halofantrine ceased in French 
Guiana, P. falciparum isolates with one copy of pfmdr1 
increased [45]. This loss of selective pressure would also 
explain the increased frequency of P. vivax isolates with a 
single copy of the pvmdr1 gene, a genotype associated to 
chloroquine resistance [13].

Recently two studies analyzing the whole genome 
sequences of isolates collected in America, Africa and 
Asia, have shown great diversity of P. vivax isolates 
according to their geographical origin in particular for 
malaria drug antifolate resistance genes involved in 
resistance to (pvdhfr and pvdhps) [46, 47]. Nevertheless, 
the role of pvmdr1 in conferring resistance to chloro-
quine is still elusive and controversial and was recently 
further challenged by global population genomic studies 
of P. vivax. Indeed, Schousboe et  al. studied the preva-
lence of polymorphisms and the diversity in microsatel-
lite markers flanking the pvmdr1 gene in P. vivax isolates 
from seven endemic countries worldwide (Pakistan, 
Afghanistan, Nepal, Sri Lanka, Ecuador, Sao Tomé and 
Sudan). Although they showed that Y976F and F1076L 
mutations in pvmdr1 gene have developed on multiple 
haplotype backgrounds by convergent evolution in these 
countries, they highlighted high levels of diversity around 
mutant alleles, suggesting these alleles were not subject 
to a selective sweep [48].

Conclusions
The present study indicates that P. vivax isolates with muta-
tions in pvmdr1 previously described as associated with 
chloroquine resistance are present at low frequency in 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sal-I Guf-A Guf-B Guf-C

Pe
rc
en

ta
ge

Allele

One copy

≥2 copy

* ** *******

Fig. 4  Evaluation of the relationship between pvmdr1 copy num-
ber and genotype. *OR = 0.12 [95% CI 0.04–0.034], p = 0.00006. 
**OR = 5.57 [95% CI 2.51–12.36], p = 0.00002. ***OR = 0.73 [95% CI 
0.15–3.64], p = 0.70. ****OR = 0.44 [95% CI 0.05–3.76], p = 0.45



Page 6 of 7Faway et al. Malar J  (2016) 15:540 

French Guiana. In addition, the number of copies of the 
gene decreases over time. A continuous surveillance of 
these genetic markers in the P. vivax population circulating 
in this region should be maintained to ensure public health.
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