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Macrophages are involved in angiogenesis, an essential process for organ growth and tissue repair, and could contribute to the
pathogenesis of angiogenesis-related diseases such as malignant tumors and diabetic retinopathy. Recently, long noncoding
RNAs (lncRNAs) have been proved to be important in cell differentiation, organismal development, and various diseases of
pathological angiogenesis. Moreover, it has been indicated that numerous lncRNAs exhibit different functions in macrophage
infiltration and polarization and regulate the secretion of inflammatory cytokines released by macrophages. Therefore, the focus
of macrophage-related lncRNAs could be considered to be a potential method in therapeutic targeting angiogenesis-related
diseases. This review mainly summarizes the roles played by lncRNAs which associated with macrophages in angiogenesis. The
possible mechanisms of the regulatory link between lncRNAs and macrophages in various angiogenesis-related diseases were
also discussed.

1. Introduction

Angiogenesis is the growth process of blood vessels and plays
important roles in the physiological functions for organ
growth and tissue repair [1], as well as a large number of
angiogenesis-related diseases such as tumors, arthritis, dia-
betic retinopathy, and age-related macular degeneration [2].
Targeting angiogenesis is an effective therapeutic method
for anticancer treatment and has been applied in many kinds
of cancer (e.g., lung cancer [3, 4] and gastric cancer [5]). The
treatment of antivascular endothelial growth factor (VEGF)
has been applied in inhibiting angiogenesis, especially in can-
cer [6] and ocular diseases [7]. However, beyond VEGF,
there are also a variety of other molecules that play important
roles in the mechanisms of angiogenesis [8, 9].

Long noncoding RNAs (lncRNAs) are those which dem-
onstrate no apparent protein-coding capacity and longer
than 200 nucleotides [10]. Recent studies indicated a variety
of regulatory functions of lncRNAs in a wide range of cellular
and developmental processes as well as pathogenesis [11–15].

In particular, lncRNAs control cell differentiation and self-
renewal through neural, skin, and muscle stem cells [16].
LncRNAs are also involved in diseases of pathological angio-
genesis, such as diabetic retinopathy [17, 18].

Macrophages are important angiogenic effector cells and
act as key modulators in both tumor growth and angiogene-
sis [19]. Many studies suggested that under various stimuli,
macrophages could be polarized to two phenotypes: classi-
cally activated M1 phenotype and alternatively activated
M2 phenotype [20–22]. Those M1 macrophages can destroy
foreign organisms and inhibit tumor growth, while M2
phenotype functions in wound healing, chronic infections,
tumor growth, and angiogenesis [23–29]. We previously
revealed that M2 macrophages, rather than M1 phenotype,
infiltrated in the inner layer of the retinas of oxygen-
induced retinopathy and enhanced retinal neovasculariza-
tion in vivo [30]. In a choroidal neovascularization mouse
model, we recognized that M1 and M2 macrophages have
different distributions, thus might have diverse potential
biological functions in angiogenesis [31]. A recent study
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reported that lncRNA MM2P regulated tumorigenesis and
angiogenesis via modulatingM2-likemacrophage polarization
[32], indicating that lncRNAs and macrophages might be
involved and have a potential regulatory link to angiogenesis.

In the present review, we summarize the roles of lncRNAs
associated with macrophages in angiogenesis and discuss the
possible mechanisms of the regulatory link between lncRNAs
and macrophages in various angiogenesis-related diseases.

2. LncRNAs Regulate Macrophage Infiltration,
Polarization, and Functions

Monocytes are considered as the precursors of macrophages,
originated from hematopoietic stem cells, and monocyte/-
macrophage differentiation plays a critical role in response
to the immune system and pathological diseases [33–35]. It
has been indicated that lncRNA lnc-MC was involved in
monocyte/macrophage differentiation, positively regulated
by PU.1, a hematopoiesis-specific transcription factor, and
negatively interacted with miR-199a to promote differenti-
ation process [36]. Besides monocyte/macrophage differen-
tiation, lncRNAs seemed to be involved in macrophage
infiltration. For example, downregulation of LRNA9884
significantly suppressed macrophage infiltration by reducing
the level of monocyte chemoattractant protein-1 (MCP-1) in
a type 2 diabetic nephropathy mice model [37]. Moreover,
lncRNA CASC2c could inhibit macrophage migration and
M2 polarization by negatively regulating the expression of
coagulation factor X, which was reported to promote the
infiltration of macrophages to the glioblastoma multiforme
tumor cells, and polarize macrophages to M2 phenotype
[38]. In contrast, activated lncRNA UCA1 promoted macro-
phage infiltration, resulting in carcinogenesis and progres-
sion of breast cancer [39].

LncRNAs could also induce macrophage polarization
and lead to regulatory effects on their functions. Lipopoly-
saccharide (LPS) and interleukin- (IL-) 4 induction was
commonly applied for M1/M2 macrophage polarization,
respectively [32]. Ye et al. observed that lncRNA Cox-2 is
expressed higher in LPS-induced M1 macrophages than
IL-4-induced M2 macrophages, and silencing lncRNA
Cox-2 expression markedly altered the macrophage polariza-
tion from M1 to M2 phenotype [40]. In addition, lncRNA
Cox-2 siRNA significantly enhanced the ability of macro-
phages in tumor proliferation, invasion, and migration by
mediating M1/M2 polarization [40]. Moreover, using the
gain-of-function and loss-of-function strategies, lncRNA
TUC339 was recognized to be required for macrophage
polarization to regulate the release of pro- or anti-
inflammatory cytokines and thereby affect tumor growth
[41]. Overexpression of TUC339 in hepatocellular carcinoma
(HCC) cells suppressed the expression of proinflammatory
factors, such as IL-1β and TNF-α, and knockdown of
TUC339 obtained an opposite effect [41]. It has been
reported that LPS could strengthen the lncRNA CCL2 levels
to mediate the expressions of inflammatory factors in macro-
phages, and this enhancement could be suppressed by SIRT1
in sepsis [42]. Knockdown of lncRNA CCL2 resulted in a
reduction of IL-1β, IL-6, and TNF-α [42]. In response to

LPS, lncRNANfkb2 and lncRNARel, located near proinflam-
matory transcription genes, were increased and closely related
to the inflammatory response in mouse macrophages [43].

Some lncRNAs could target related molecules or signal-
ing pathways to regulate macrophage polarization. For exam-
ple, lncRNA GAS5 was significantly reduced in M2-polarized
microglia, and overexpression of GAS5 suppressed micro-
glial M2 polarization via inhibition of transcription of IRF4,
which is an important regulatory molecule of M2 polariza-
tion [44]. As we discussed, lncRNA MM2P was higher
expressed in M2 macrophages rather than in M1 macro-
phages, and blockade of lncRNA MM2P could weaken the
IL-4/STAT6 signaling pathway, resulting in a reduction of
both cytokine-regulated M2 polarization and M2-induced
angiogenesis [32]. NF-κB, which is a downstream signaling
pathway of toll-like receptors (TLRs) after specific microbial
and pathogen recognition, could induce transcription of pro-
inflammatory genes and is strongly involved in the regulation
of macrophage polarization [45]. After LPS stimulation, the
expression of lncRNA Mirt2 was induced in macrophages
and suppressed the proinflammatory factors (such as TNF,
IL-1β, IL-6, and IL-12) by inhibiting the activation of
NF-κB and MAPK pathways [46]. In contrast to LPS,
Mirt2 also could promote the polarization of M2 macro-
phages induced by IL-4, but the mechanism might be inde-
pendent from STAT6 and PPARγ pathways [46]. Under
LPS-mediated inflammatory conditions, lncRNA Tnfaip3
exerts a coregulatory role with NF-κB in modulating inflam-
matory gene transcription in macrophages [47]. Another
NF-κB-mediated lncRNA FIRRE exhibited posttranscrip-
tional elevation of inflammatory genes in macrophages and
epithelial cells by interacting with heterogeneous nuclear
ribonucleoproteins U after LPS stimulating [48]. Overall,
these studies showed that the expression profiles of lncRNAs
can be clearly distinguished between M1 and M2 macro-
phages, indicating that lncRNAs could be involved in regu-
lating macrophage polarization. Dysregulation of lncRNAs
may affect macrophage polarization by targeting both down-
stream signaling pathways and the release of inflammation
cytokines.

According to competing endogenous RNA (ceRNA) net-
works, lncRNAs could act as sponges to regulate the func-
tions of miRNAs [49]. Studies had demonstrated that
lncRNA NIFK-AS1 and lncRNA CCAT1 could inhibit the
polarization of M2 macrophages by targeting miR146a and
miR-148a, respectively [50, 51]. Moreover, lncRNA XIST
and lncRNA GNAS-AS1 exhibited the promotion of M2
polarization, such functions were associated with T-cell-
specific transcription factor 4 (TCF-4) and miR-4319,
respectively [52, 53].

MALAT1 is an important lncRNA that has been widely
investigated [18, 54–57]. Recent studies had reported that
the MALAT1 regulates the production of inflammatory cyto-
kines [56] and was increased in a LPS-induced acute lung
injury model to regulate the release of IL-1β, IL-6, and
TNF-α [58]. Silencing of MALAT1 inhibited the proinflam-
matory responses by enhancing miR-146a levels in macro-
phages and epithelial cells [58]. In LPS-induced septic
cardiomyocytes, expression of MALAT1 was induced by
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IL-6 and elevated the production of TNF-α partially through
serum amyloid antigen 3 (SAA3) [59]. By targeting SAA3,
MALAT1 also could modulate the expression of IL-6 and
TNF-α in the endothelial cells under high-glucose conditions
[60]. Although the proinflammatory activities of MALAT1 in
macrophages were reported, Zhao et al. presented an
opposite effect of MALAT1, which functions as an anti-
inflammatory regulation in vitro [61]. In this study, scientists
had demonstrated that MALAT1 was upregulated by LPS to
suppress the production of proinflammatory TNF-α and IL-6
by interacting with the NF-κB pathway in macrophages. The
knockdown of MALAT1 achieved enhancement of TNF-α
and IL-6 [61]. It is known that tumor-associated macro-
phages (TAMs) exhibit similar functions to M2macrophages
[62] and MALAT1 was upregulated in TAMs compared to
nonpolarized macrophages and promoted angiogenesis
through secretion of fibroblast growth factor-2 (FGF2) pro-
tein [63]. Moreover, in macrophages, MALAT1 regulates
lysosomal-associated membrane protein 1 (lamp1) expres-
sion by sponging miR-23-3p [64]. For the above contradic-
tory effect of MALAT1 in inflammatory responses, further
investigations are required to reveal the essential mecha-
nisms of MALAT1 to macrophage functions in angiogenesis.

Together, the above studies suggest that lncRNAs could
regulate macrophage infiltration, polarization, inflamma-
tion, and secretion by targeting various pathways to change
the pro- and/or anti-inflammatory response mechanisms
(Figure 1). Further studies on the mechanism of lncRNAs in
macrophages can lead to enhance the understanding on how
lncRNAs might be involved in inflammation and thereby
affect the regulation of immune response of angiogenesis.

3. Link between Macrophages and Angiogenesis

It is widely considered that M1 macrophages present a pro-
inflammatory effect and M2 macrophages present an anti-

inflammatory effect. Besides, M2 macrophages also induce
proangiogenic functions, and the induction of M2 macro-
phages enhances cancer invasion and metastasis, as well
as the development of neovascular diseases through VEGF
[65–67]. By now, although the activation of the down-
stream pathway during angiogenesis is still not completely
clear, activated macrophages could influence the angiogenic
process through the production of angiogenic factors such
as IL-1, IL-6, IL-8, TNF-α, TGF-α, TGF-β, GM-CSF, bFGF,
and VEGF [68]. Moreover, activation of NF-κB and STAT3
is involved in the upstream pathway of macrophage-
induced angiogenesis [69, 70]. Thus, macrophages and
angiogenesis are very closely linked with complicated
mechanisms.

4. Involvement of lncRNAs in the
Pathogenesis of Angiogenesis-
Related Diseases

4.1. Tumor Angiogenesis. Many studies revealed the involve-
ment of lncRNAs in the recruitment of macrophages to
tumor cells and M1/M2 polarization of macrophages to
change the tumor microenvironment.

As we discussed before, MALAT1 not only acted as a
potential cancer biomarker [54] but also regulated angiogen-
esis in diabetic retinopathy [71], tumor [63, 72–74], hindlimb
ischemia [75], and brain vascular endothelium [76]. In par-
ticular, as we described, Huang et al. reported that MALAT1
enhanced thyroid cancer angiogenesis by regulating FGF2
secretion of TAMs [63]. In HCC cells, MALAT1 could pro-
mote angiogenesis and regulate polarization of macrophages
through sponging miR-140 [74]. These suggested that mac-
rophages might be an important modulator of angiogenesis
in the mechanisms of MALAT1.
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Figure 1: The mechanisms of lncRNAs regulate macrophage infiltration, polarization, and functions.
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Asmentioned above, MM2P could contribute to promot-
ing M2 polarization of macrophages and inducing angiogen-
esis, resulting in tumor deterioration [32]. As we described,
lncRNA UCA1 was demonstrated to be involved in macro-
phage recruitment to promote breast cancer invasion in a
previous study [39]. In cervical cancer cells, UCA1 was upex-
pressed and negatively associated with miR-206, and knock-
down of UCA1 directly decreased VEGF through miR-206
upregulation, and thereby suppressed tumor growth, viabil-
ity, migration, and invasion [77]. Another lncRNA TUC339
was significantly increased in cancer stem cell-derived exo-
somes, and VEGF was enhanced in exosomes derived from
cancer stem cells correspondingly [78]. The knockdown of
TUC339 reduced HCC cell growth and spread [79]. The
mechanism has been uncovered that TUC339 could regulate
the macrophage polarization, functioning as promotion of
anti-inflammatory cytokines and angiogenesis, thereby accel-
erating tumor proliferation [41]. Sang et al. showed that
lncRNA CamK-A was involved in macrophage infiltration
and angiogenesis by triggering the transcription of the
NF-κB signaling pathway in tumor cells [80]. By promoting
NF-κB downstream cytokines (e.g., VEGF, IL-6, and
TNF-α), Camk-A could remodel tumor microenvironment
to recruit macrophages to tumors and contribute to angio-
genesis [80]. LncRNA LNMAT1 upregulated CCL2 and
recruited M2 macrophages to the tumor, and promoted lym-
phatic metastasis via excretion of VEGF-C [81]. These stud-
ies indicated that lncRNAs could regulate the recruitment of
macrophages to the tumor, macrophage polarization, secre-
tion of VEGF, and thereby the induction of pathological
angiogenesis and tumor growth and spread.

It has been demonstrated that lncRNA PVT1 is involved
in the high microvessel density in gastric cancer as well as the
promotion of tumor growth through activation of the STAT3
signaling pathway as well as secretion of VEGFA [82]. The
knockdown of lncRNA ROR was reported to reduce angio-
genesis through inhibition of NF-κB and JAK1/STAT3 path-
ways [83]. Moreover, overexpression of miR-26 could rescue
the negative effects of ROR silencing, demonstrating that
ROR functions as a molecular sponge for miR-26 in these
activations [83]. LncRNA LIMT was suppressed by epider-
mal growth factor (EGF) and downregulated in breast cancer
and ovarian cancer, and the EGF secreted from TAMs
suppressed the levels of LIMT through activation of the
EGF-ERK pathway [84, 85]. Although the direct links
between these lncRNAs and macrophages were poorly indi-
cated, it is possible that lncRNAs could interact with
macrophage-related signaling pathways to regulate the tumor
angiogenesis.

4.2. Angiogenesis in Other Diseases. Many major causes for
blindness, such as age-related macular degeneration, retinop-
athy of prematurity, diabetic retinopathy, and retinal vein
occlusions, are due to the pathological angiogenesis [86]. In
particular, diabetic retinopathy, a complication of diabetes
mellitus, is a major cause of blindness worldwide in which
pathological processes are characterized by the formation of
abnormal blood vessels within the eye [87]. LncRNAs could
target macrophage-related signaling pathways to regulate

the pathological angiogenesis. With the high-glucose treat-
ment in human retinal endothelial cells, the expression of
lncRNA ANRIL was increased and regulated VEGF expres-
sion through polycomb repressive complex 2 (PRC2) com-
plex [88]. By binding to the NF-κB signaling pathway,
ANRIL could induce pathologic damage of retinopathy in
the diabetic rat model [89]. Moreover, ANRIL could also pro-
mote angiogenesis by activating the NF-κB pathway in diabe-
tes combined with cerebral infraction in a rat model [90].
Similarly, the expression of lncRNA MIAT was also elevated
on high glucose stress through impacting the VEGF signaling
pathway, while knockdown of MIAT attenuated retinal ves-
sel dysfunction [91]. Clinical investigations in diabetes
patients had shown that increased expression of MIAT was
markedly associated with diabetic retinopathy process, and
the increased MIAT decreased the viability of ARPE-19 cells
in vitro via targeting the TGF-β1 pathway [92]. The high-
glucose conditions suppress the expression of lncRNA
MEG3, whereas the rescue of MEG3 could delay diabetic ret-
inopathy by inhibiting TGF-1 and VEGF levels [93]. In addi-
tion, MEG3 could also be regulated by activation of the
PI3k/Akt pathway in diabetes mellitus-related microvascular
dysfunction [94].

LncRNANEAT1 was reported to be involved inM2mac-
rophage polarization [95] and could promote inflammation
in macrophages [96, 97]. NEAT1 could accelerate angiogene-
sis by enhancing VEGF, SIRT1, and BCL-XL in brain micro-
vascular endothelial cells [98]. Indeed, loss of NEAT1
expression exhibits downregulation of VEGF and upregula-
tion of miR-377 resulting in antiangiogenesis and proapopto-
sis [98], while the mechanisms of macrophage polarization
and functions lack investigation. In contrast, lncRNA MEG3
negatively regulated angiogenesis after ischemic stroke via
suppressing the Notch pathway [99], and the silencing of
MEG3 resulted in a proangiogenesis effect in vascular endo-
thelial cells [100]. Yan et al. found MEG3 could be activated
and participated in apoptosis of macrophages under oxidized
low-density lipoprotein stimulation, indicating a novel role of
MEG3/miR-204/CDKN2A pathway in macrophages [101].
Therefore, these two lncRNAs were reported to be related to
both angiogenesis and macrophages in each study, and it is
highly hypothesized that lncRNAs might alter macrophage
functions to regulate pathological angiogenesis. On the other
hand, we demonstrated that M2 macrophages, rather than
M1, have essential functions in promoting retinal pathologi-
cal neovasculization, while more experimental evidence is
needed to support this hypothesis [30]. In our previous study,
198 upregulated and 175 downregulated lncRNAs were
identified by microarray analysis in an oxygen-induced reti-
nopathy mouse model [102]. Among them, we highlighted
four validated lncRNAs that could be potentially involved in
cell adhesion molecules and thereby affect the progress of
pathological retinal angiogenesis [102]. In a mouse model of
choroidal neovascularization induced by laser photocoagula-
tion, we identified 716 altered lncRNAs, and the altered target
genes of 7 validated lncRNAs were enriched in the immune
system process and the chemokine signaling pathway [103].
Therefore, macrophages might also be involved in the immu-
nological regulation associated with those altered lncRNAs.
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Moreover, lncRNA could be involved in monocyte/-
macrophage differentiation to regulate the pathogenesis.
For example, lncRNA NTT was reported to be elevated in
rheumatoid arthritis and its activation contributes to mono-
cyte/macrophage differentiation, resulting in the pathological
process of rheumatoid arthritis [104].

Thus, lncRNAs are involved in various diseases associ-
ated with angiogenesis (Figure 2) and partially via the regula-
tion of the functions of macrophages.

5. Summary

In sum, lncRNAs have been proved to play essential roles in
angiogenesis in a variety of diseases. As shown in Figure 2,
the mechanisms of direct effect to endothelial cells include
regulating the secretion of growth factors or cytokines, such
as VEGF or FGF2, and through a diverse range of pathways.
On the other hand, some lncRNAs may also be associated
with macrophage infiltration, differentiation, and polariza-
tion, and both lncRNAs and macrophages were involved in
and have potential links to angiogenesis. Though some prog-
ress has been achieved in characterizing the functional
lncRNAs in regulation of macrophage polarization, the
mechanisms remain unclear, and further investigations are
needed to understand the exact roles of lncRNAs which link
to macrophages and angiogenesis. Therefore, targeting
lncRNAs and the links with macrophages could be consid-
ered a novel therapeutic method in treating angiogenesis in
different diseases.
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