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Abstract: Matrix metalloproteinases (MMPs) are calcium-dependent zinc-containing endopeptidases
involved in multiple cellular processes. Among the MMP isoforms, MMP-9 regulates cancer invasion,
rheumatoid arthritis, and osteoarthritis by degrading extracellular matrix proteins present in the
tumor microenvironment and cartilage and promoting angiogenesis. Here, we identified two potent
natural product inhibitors of the non-catalytic hemopexin domain of MMP-9 using a novel quantum
mechanical fragment molecular orbital (FMO)-based virtual screening workflow. The workflow
integrates qualitative pharmacophore modeling, quantitative binding affinity prediction, and a
raw material search of natural product inhibitors with the BMDMS-NP library. In binding affinity
prediction, we made a scoring function with the FMO method and applied the function to two
protein targets (acetylcholinesterase and fibroblast growth factor 1 receptor) from DUD-E benchmark
sets. In the two targets, the FMO method outperformed the Glide docking score and MM/PBSA
methods. By applying this workflow to MMP-9, we proposed two potent natural product inhibitors
(laetanine 9 and genkwanin 10) that interact with hotspot residues of the hemopexin domain of
MMP-9. Laetanine 9 and genkwanin 10 bind to MMP-9 with a dissociation constant (KD) of 21.6
and 0.614 µM, respectively. Overall, we present laetanine 9 and genkwanin 10 for MMP-9 and
demonstrate that the novel FMO-based workflow with a quantum mechanical approach is promising
to discover potent natural product inhibitors of MMP-9, satisfying the pharmacophore model and
good binding affinity.

Keywords: matrix metalloproteinase 9; fragment molecular orbital; quantum chemistry; virtual screening;
structure-based drug design; laetanine; genkwanin

1. Introduction

Matrix metalloproteinases (MMPs) are calcium-dependent zinc-containing endopep-
tidases that degrade extracellular matrix proteins and participate in tissue remodeling
and signaling events [1,2]. MMPs are involved in multiple cellular processes, including
proliferation, migration, cancer invasion, host defense, angiogenesis, and metastasis [3,4].
Twenty-three MMPs have been identified in humans, including secreted and membrane-
bound forms, sharing common structural and functional domains [2]. These 23 MMPs have
multiple domains and typically include a signal sequence, propeptide, catalytic domain,
linker domain, and hemopexin domain [5]. The catalytic domain of MMPs contains a
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zinc-ion-binding motif. Although many MMP inhibitors have been developed, they exhibit
adverse effects in the clinical trial stage because of the lack of specificity between the target
MMP and other members of the MMP family, as the zinc-binding site is common in all
MMPs [6].

To overcome the adverse effects caused by MMP inhibitors targeting the zinc-binding
site, the inhibition of the less conserved and non-catalytic domains of MMPs has been
suggested to increase the specificity and selectivity [7,8]. Since the hemopexin domains are
less conserved among MMPs, they have been considered a suitable site for the development
of selective inhibitors of MMPs [7,8]. Moreover, among MMPs with the hemopexin domain,
the gelatinase subfamily (MMP-2 and MMP-9) is important in collagen degradation through
the digestion of gelatin, which is generated by collagenases [9]. MMP-9 is a 92 kDa type-IV
collagenase that can degrade type-IV collagen and other extracellular matrices. MMP-9 is
involved in tumor growth initiation and invasion in basal and squamous cell carcinomas
and is associated with the radial growth phase of melanoma and tumor angiogenesis [4].
The expression levels of MMP-9 in patients with breast cancer are correlated with poor
prognosis [7]. Therefore, suppressing MMP-9 via the hemopexin domain would be a good
strategy for inhibiting MMP-9-mediated pathological processes.

Natural products have been considered an important source of lead and candidate
compounds for new medicines in drug discovery because they provide efficient and wide
coverage of drug-like chemical spaces [10]. Although natural products possess vast chemi-
cal diversity and are a rich source of novel compound classes for biological studies [11],
challenges related to the quality control of materials and commercial availability exist.
Recently, Lee et al. developed the Bioinformatics and Molecular Design Research Center
Mass Spectral Library—Natural Products (BMDMS-NP), which was sufficiently exhaustive
to represent the structural diversity of commercially available natural products [12]. There-
fore, to the best of our knowledge, the BMDMS-NP library is a good starting point for the
discovery of natural product inhibitors.

Structure-based drug design (SBDD) is considered one of the most powerful tools for
drug discovery [13]. The necessary pharmacological activities of drugs are based on their
three-dimensional structures. Understanding their complex structures is critical in SBDD
methods. Since the requirement for the therapeutic effect of a ligand is the capability of the
ligand to bind to the target protein, the systematic analysis of the binding complex between
the target protein and the ligand through SBDD is a crucial step in drug discovery. The
binding affinity of a ligand for a given target protein can be calculated from the binding
free energy between the ligand and target protein. Therefore, to explain the difference in
binding affinity obtained from the experiment, the energies calculated in the SBDD must
also correspond to the free energy.

Structure-based virtual screening (SBVS) methods have reduced the number of un-
necessary experiments, which has led to a decrease in the time and cost involved in the
lead compound discovery. Most scoring functions in SBVS methods are rooted in free en-
ergy calculations with a molecular mechanical empirical potential energy function (a force
field) [14] or quantum mechanical (QM) molecular orbital calculations, allowing the esti-
mation of changes in the binding affinity between the target protein and ligands. Empirical
potential energy functions have frequently been used to study protein–ligand complexes in
SBVS methods because of their low computational cost [15]. For example, docking scores
and the molecular mechanics/generalized Born surface area (MM/GBSA) method are gen-
erally used to predict the binding affinities of small molecular ligands [16–19]. However,
the empirical potential energy functions in a force field are adopted to reproduce the mean
energy and lack many important effects, such as electronic polarization, charge transfer,
and halogen bonding [15], which leads to the imprecise description of protein–ligand
complexes. The use of QM methods as scoring functions is promising because it can help
explain important effects while hindering many applications of the QM method to the
SBVS process for large biological systems due to the high computational cost.
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Fragment molecular orbital (FMO) was developed by Kitaura et al. in 1999 and offers
faster computational speeds than the traditional QM method without the loss of accuracy
due to the fragmentation of biological systems [20]. The FMO method and pair interaction
energy decomposition analysis (PIEDA) have been used to analyze protein–ligand inter-
actions and provide accurate information for investigating the binding potential [21,22].
Even with the FMO method, applications to SBVS still incur high computational costs.
Recently, the density-functional tight-binding (DFTB) and polarizable continuum model
(PCM) methods were combined with the FMO method [23]. FMO–DFTB/PCM showed
efficient predictions of protein–ligand interactions with moderate accuracy and a fast com-
putational speed [24]. Morao et al. demonstrated that FMO–DFTB3/PCM showed good
correlations with the experimental values of pKi for human β2-adrenoceptor (R2 = 0.7833),
and pIC50 for human P2Y12 receptor (R2 = 0.8121) [24]. The FMO–DFTB method outper-
formed the GBVI/WSA force-field-based scoring function in identifying a set of 10 binders
and 500 decoys of the human k-opioid receptor [25]. Therefore, FMO–DFTB/PCM has the
potential to act as a scoring function in the SBVS method.

In this study, we devised a novel quantitative FMO-based virtual screening work-
flow to identify novel natural product inhibitors of the MMP-9 enzyme. To validate the
FMO-based scoring function in the workflow, we applied the method to two protein targets
(acetylcholinesterase and fibroblast growth factor 1 receptor) from DUD-E benchmark
sets [26] and compared the performance using the Glide docking score and MM/PBSA
methods. We applied the newly devised workflow to MMP-9 in five steps. First, to de-
velop a modified pharmacophore model and obtain hotspot information, we performed
high-level FMO–RIMP2/PCM calculations with the complex structures between the ref-
erence ligands and MMP-9 from molecular docking simulations. Second, we performed
pharmacophore-based virtual screening using the BMDMS-NP library and selected the
first virtual hits. Third, we performed molecular docking followed by FMO analysis at
the FMO–DFTB3/D/PCM level with the first virtual hits and selected the second virtual
hits based on the hotspot interaction profiles and ranking using the FMO scoring function.
Fourth, we performed gelatin zymography assays with the first hits, repeated the third step
at the high-level FMO–RIMP2/PCM level, and finally selected the top two hits. Fifth, we
performed a surface plasmon resonance (SPR) analysis to measure the binding affinities of
the top hits with MMP-9. Finally, we searched the raw materials of the two hits using the
integrated database and found a correlation between the reported physiological effects of
the raw materials and MMP-9. As a result, we identified the two natural product inhibitors
with the novel FMO-based virtual screening workflow and demonstrated that this work-
flow could be used as a promising strategy to discover novel natural product inhibitors
of MMP-9.

2. Materials and Methods
2.1. Structure Preparation

The X-ray structures of acetylcholinesterase (PDB ID: 1E66) and fibroblast growth
factor receptor 1 (PDB ID: 3C4F) were retrieved from the Protein Data Bank [27–29]. All
missing side chains and loops of the protein were filled using Prime implemented in the
Schrödinger suite (ver. 2018-3) [30,31]. Hydrogen atoms were added to the structure at
pH 7.0, and their positions were optimized using the PROPKA module implemented in the
Schrödinger suite (ver. 2018-3) [32]. Restrained energy minimization was performed on the
structure with OPLS3 within 0.3 Å root-mean-square deviation [33]. Ligand structures of
the actives and decoys of each target were prepared using the LigPrep module implemented
in the Schrödinger suite (ver. 2018-3) [34]. A total of 446 actives and 484 experimental
decoys were used for acetylcholinesterase, and 225 actives and 143 experimental decoys
were used for fibroblast growth factor receptor 1. Duplicate structures were removed from
each benchmarking set. The X-ray crystal structure of the hemopexin domain of MMP-9
was retrieved from the Protein Data Bank (PDB ID: 1ITV). The protein structure and six
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known inhibitors (1–6) of the hemopexin domain of MMP-9 were prepared in the same
way. All inhibitors of MMP-9 in this study are shown in Supplementary Figure S1.

2.2. Pharmacophore-Based Virtual Screening

Pharmacophore-based virtual screening was conducted using the Phase module im-
plemented in the Schrödinger suite (ver. 2018-3) from the BMDMS-NP library [35,36]. The
3D pharmacophore model of MMP-9 has eight features: two hydrogen acceptors, three
hydrogen donors, one positive ionic feature, one hydrophobic feature, and one aromatic
ring. In the pharmacophore model, we treated hydrophobic and aromatic ring features as
equivalent and treated acceptor and negative features as equivalent. The first 467 virtual
hits were selected from 2739 natural products in the BMDMS-NP library.

2.3. Molecular Docking

Molecular docking simulations were performed using the Glide-SP in the Prime
module, implemented in the Schrödinger suite (ver. 2018-3) [17]. In the Glide-SP protocol,
5000 conformers per ligand were generated and maintained for energy minimization during
the initial phase of docking. To utilize Glide, which was designed as close to an exhaustive
search [17], we generated all possible poses and performed post-docking minimization for
all generated poses. The top 10 docking poses of each virtual hit were selected by ranking
the docking poses with Emodel scores and removing duplicate docking poses by visual
inspection [18].

2.4. MM-GBSA Simulation

Molecular mechanics generalized Born surface area (MM-GBSA) simulations were per-
formed using the Prime module implemented in the Schrödinger suite (ver. 2018-3) [37].
MM-GBSA simulation is one of the most popular methods for estimating the relative bind-
ing affinities of protein–ligand complexes [16]. The relative binding free energy, ∆Gbind,
was estimated using Equation (1):

∆Gbind = Gcomplex − Gprotein − Gligand (1)

where ∆Gbind represents the difference between the energy of the protein–ligand complex
state in an aqueous solution and the energy of the states in which the ligand and protein do
not interact in an aqueous solution. The brackets indicate ensemble averages. Gcomplex is
the average free energy in the complex calculated using the MM-GBSA method, whereas
Gprotein and Gligand are the energies in the unbound protein and ligand after separating the
protein from the complex.

2.5. Fragment Molecular Orbitals (FMOs)

Fragment molecular orbital is a linear-scaling QM method that transforms a larger
system into smaller parts called fragments. By performing QM calculations on the frag-
ments, the FMO method dramatically reduces the computational cost. The two-body FMO
calculation consists of four consecutive processes: fragmentation, fragment self-consistent
field (SCF) calculation, fragment pair SCF calculation, and evaluation of total properties
such as energy and gradient [38,39].

In the fragmentation step, we used one-fragment-per-residue fragmentation, where a
ligand or each residue of a target protein was defined as a fragment. The residues were
divided into fragments at the alpha carbon sites based on hybrid projection orbital scheme
fragmentation to decrease the computational cost and correct errors from the projection
operator [40]. Two cysteine residues that formed disulfide bonds in the target protein
were defined as one fragment. All molecular orbitals of each fragment (monomer) were
optimized in the electrostatic field of the entire system by SCF cycles, while the energies
and electron densities were optimized simultaneously [39]. The same process was then
applied to the fragment pair (dimer). The difference between the process of the monomer
and that of the dimer is the size of the fragment, because the two fragments in the monomer
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are treated as a fragment in the dimer. The energies of the monomers and dimers were
used to determine the total energy of the system. Especially in drug discovery, the binding
affinity of the protein–ligand system is simply approximated as the sum of the PIE. The
PIE in the FMO calculations was defined using Equation (2) and was decomposed using
PIEDA to provide more physical details [41].

∆Eint
ij = ∆EES

ij + ∆EEX
ij + ∆ECT+mix

ij + ∆EDI
ij + ∆Gsol (2)

The PIE (∆Eint
ij ) between fragments i and j is composed of five energy terms: elec-

trostatic (∆EES
ij ), exchange-repulsion (∆EEX

ij ), charge transfer with the higher-order mixed

term (∆ECT+mix
ij ), dispersion (∆EDI

ij ), and solvation energy (∆Gsol). The binding affinities
between the target protein and ligand were approximated using the TIE, which is the sum
of PIEs between the target protein and ligands. It is important to note that TIE is not the
difference between the energies of the free and bound ligands, but rather indicates the
strength of the interactions between the target protein and the ligand [42].

All ab initio FMO calculations were performed using the 30 June 2019 version of
GAMESS software [43]. To investigate key interactions, the two-body FMO method was
applied to 10 complexes between MMP-9 and 10 ligands (six reference ligands and four hits)
at the resolution of the identity second-order Møller–Plesset perturbation (RIMP2) [44] and
polarizable continuum model (PCM) [45] with the 6–31 G** basis set (FMO–RIMP2/PCM
level). The two-body FMO method was used at the FMO–DFTB3/D/PCM level to rank
the docked ligands. An extension of the self-consistent charge-density-functional tight-
binding method is derived via a third-order expansion of the density functional theory
method (DFTB3) [46]. DFTB3 calculations were performed with the 3OB parameter set [47],
UFF-type dispersion correction (DFTB3/D) [48,49], and polarizable continuum model
(PCM) [23]. Based on the previous reports [21,38,42,50], we considered the interaction with
a pair interaction energy more stable than −3.0 kcal/mol to be significant. In the FMO
calculations, we included the entire hemopexin domain from the crystal structure.

2.6. FMO-Based Virtual Screening

FMO-based virtual screening consists of three steps. First, we performed FMO/PIEDA
analysis with known protein–ligand complexes at the FMO–RIMP2/PCM level. In the
FMO/PIEDA analysis, we quantitatively identified the hotspot residues, which have
significant interactions that are more stable than −3.0 kcal/mol with at least half of the
reference ligands. In the second step, we generated a pharmacophore model using the
hotspot information obtained in the first step. We then performed pharmacophore-based
virtual screening with the reference ligands for validation and the BMDMS-NP library for
the first virtual hits. In the third step, we generated protein–ligand complex structures
using molecular docking simulations and performed FMO analysis of the first virtual hit
complexes at the FMO–DFTB3/D/PCM level to predict the binding affinity and investigate
the hotspot interaction profile of each virtual hit. The binding affinities were approximated
using the TIE calculated by the sum of the PIEs between the protein target and ligand.
The hotspot interaction profiles are calculated by the sum of PIEs between the hotspot
residues and ligand, and the hotspot similarity between virtual hits and reference ligands is
measured in Tanimoto coefficients between the hotspot interaction profiles [51], where the
value is 1 if PIE between the hotspot residue and ligand is more stable than −3 kcal/mol.
The calculated binding affinities and hotspot profile similarities were used as the scoring
functions to rank the first virtual hits. To evaluate the scoring function using FMO–TIE,
similarity ranking was not applied to the two benchmarking sets. For MMP-9, we selected
the virtual hits if the similarity score was more than 0.5, with at least one reference ligand,
and ranked the filtered virtual hits with the ranking by TIE.
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2.7. Gelatin Zymography and Wound-Healing Assays

Gelatin zymography assays were conducted as follows, based on the protocol de-
scribed by Toth et al. [52]. HT1080, a human fibrosarcoma cell line, was cultured in Dul-
becco’s modified Eagle’s medium (DMEM; Gibco-BRL, Grand Island, NY, USA) containing
10% fetal bovine serum (FBS; WelGENE, Daegu, Republic of Korea) and 1% penicillin and
streptomycin (Sigma-Aldrich, Steinheim, Germany). In 100 mm cell culture dishes, HT1080
cells were seeded (4 × 105 cells/dish) and incubated for 24 h in a 5% CO2 incubator at
37 ◦C. After 24 h, the medium was changed to a 7 mL serum-free medium to obtain a more
concentrated supernatant containing MMP-9. After incubation for 48 h, the medium was
collected, and the supernatant was obtained after centrifugation at 10,000 rpm for 10 min.
Stock solutions of hit compounds were dissolved in 100% DMSO at a concentration of
20 mM. Supernatants (35 uL) containing 300 µM of hit compounds were incubated for 1 h
at 37 ◦C and loaded onto 7.5% SDS-polyacrylamide gels containing 0.1% gelatin. The gels
were electrophoresed at 120 V and washed twice with 2.5% Triton X-100 for 90 min at room
temperature. Subsequently, the gels were incubated in incubation buffer (10 mM CaCl2,
150 mM NaCl, and 50 mM Tris-HCl, pH 7.5) for 20 h. The gels were then stained using
Coomassie Brilliant Blue solution and scanned using an LAS-3000 imager (Fuji film Co.,
Tokyo, Japan). Images of the gels were analyzed using ImageJ software (NIH, Bethesda,
MD, USA).

Wound-healing assays were conducted as follows, based on the procedures of Ro-
driguez et al. [53]. Human A375SM cells were used in the wound-healing assays, because
it was demonstrated that MMP-9 can be a marker of aggressiveness in several tumors,
including melanoma [54,55]. Human A375SM cells were cultured in DMEM (Gibco-BRL,
Grand Island, NY, USA) containing 10% FBS (WelGENE, Daegu, Republic of Korea) and
1% penicillin and streptomycin (Sigma-Aldrich, Steinheim, Germany), seeded in 35-mm
cell culture dishes (2 × 105 cells/dish), and incubated for 24 h. After 24 h, using a 200 µL
pipette tip, the cell monolayers were scratched to make a straight-line scratch and then
washed with a medium to remove cell debris. The hit compound was dissolved in 100%
dimethyl sulfoxide (DMSO) at a concentration of 20 mM. After washing, the cells were
treated with 30 µM of hit compounds and incubated for 24 h. The same concentration
of DMSO was used in the control group. The scratched areas were calculated using the
TScratch program (CSElab) [56].

Each experiment was repeated three times and the data are presented as the
means ± standard error of the mean. Statistical differences between groups were ana-
lyzed by the Student’s t-test. A p-value <0.05 was considered to indicate a statistically
significant difference.

2.8. Surface Plasmon Resonance (SPR) Analysis

Purified recombinant human MMP-9 protein with a His-tag was prepared under
catalog number 10327-H08H (Leehyo Bioscience Co., Ltd., Seongnam, Republic of Korea).
The interactions between MMP-9 and natural product inhibitors (9 and 10) were investi-
gated using Biacore 3000. Purified MMP-9 was immobilized on the HC1000M sensor chip
with amine coupling with the running buffer (10 mM HEPES, 150 mM NaCl, and 0.005%
Tweens20) at pH 7.4 and a flow rate of 10 µL/min. The ligands were diluted with the
running buffer (10 mM HEPES, 150 mM NaCl, and 0.005% Tweens20) at pH 7.4 and 5%
DMSO at eight different concentrations. Compound 9 was diluted with 0, 6.25, 12.5, 25,
50, 100, 200, and 400 µM; compound 10 was diluted with 0, 0.78, 1.56, 3.13, 6.25, 12.5, 25,
and 50 µM. Ligands were passed over the chip at a flow rate of 30 µL/min. Regeneration
was performed with 0.5 M NaCl at a flow rate of 10 µL/min. The association constant
(ka in M−1s−1) represents the rate of complex formation, and the dissociation rate constant
(kd in s−1) represents the rate of complex decay. High binding affinity interactions were
characterized by low KD values, which were represented by the equation KD = kd/ka.
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2.9. Search of Raw Materials with Integrated Database

A raw material information search was conducted using an in-house, integrated
database. The resources of the integrated database were downloaded from COCONUT,
FooDB, and KNApSAcK databases [57–59]. These resources include information on metabo-
lites, plant species, and metadata from functional products and diseases. Plant species
information was retrieved from the names and structures of the final hits.

3. Results

To find novel natural product inhibitors targeting the hemopexin domain of MMP-9,
we devised an FMO-based workflow by integrating qualitative pharmacophore modeling,
quantitative binding affinity prediction, and raw material search of hit compounds. The
workflow in this study is shown in Figure 1A and consists of three steps: FMO-based virtual
screening, structure–activity relationship (SAR) analysis, SPR analysis, and the search for
raw materials obtained from an integrated database.
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the two benchmarking sets.
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3.1. FMO-Based Virtual Screening and Validation with Two Benchmarking Sets

The FMO method enables us to quantify the molecular interactions between ligands
and protein residues and even the interactions between protein residues. FMO-based
virtual screening includes three steps: the identification of hotspots by FMO analysis,
FMO-based pharmacophore screening, and FMO analysis with FMO–DFTB3/D/PCM.

First, to identify the hotspot residues between the target protein and the known small
molecular inhibitors, we performed a high-order FMO–RIMP2/PCM analysis of the ref-
erence complexes. The hotspot residues were identified with the common significant
interactions in the known small molecular inhibitors based on the FMO results, where we
defined the interactions present in half of the reference ligands as common. Second, we
made a pharmacophore model with the known small molecular inhibitors and modified
the model with the hotspot residue information not only for the shape of the known small
molecular inhibitors but also for the interactions with the target protein. Third, to accu-
rately quantify the binding affinities of the ligands, we applied FMO analysis as a scoring
function in the SBVS method. Because the QM method majorly depends on structural
coordinates, we generated 5000 conformers per ligand and performed molecular docking
and post-docking minimization with all generated conformers to find plausible binding
poses. Because Glide approximates a complete systematic search of the conformational,
orientational, and positional space of the docked ligand [17], we assumed that generat-
ing as many conformers as possible would increase the possibility of generating correct
binding poses. Because the FMO calculations of all binding poses complexed with the
target protein require high computational costs, we applied the pharmacophore models to
reduce the costs. We selected the top 10 plausible binding poses per virtual hit based on the
Emodel score to reduce computational cost again, having a relatively significant weighting
of electrostatic and van der Waals interaction energies [17]. We then analyzed the top 10
binding poses by FMO analysis at the FMO–DFTB3/D/PCM level and ranked all virtual
hits with total interaction energy (FMO–TIE) scores.

To evaluate the scoring function of the FMO analysis at the FMO–DFTB3/D/PCM
level, we applied this method to two known protein targets (acetylcholinesterase and
fibroblast growth factor receptor 1) from the DUD-E benchmarking set [26]. We selected
two protein targets because the two sets had a balanced number of actives and experimental
decoys. A receiver operating characteristic (ROC) curve of our method is shown as FMO–
TIE in Figure 1B. We also showed the ROC curves from other scoring functions, i.e., from
the Glide docking score and MM-GBSA simulation, where we selected the top score of the
scoring functions in the top 10 binding poses. For acetylcholinesterase, the area under the
ROC curve (AUC) of FMO–TIE was 0.855, whereas the AUCs of the docking score and MM-
GBSA were 0.667 and 0.702, respectively. For fibroblast growth factor receptor 1, the AUC
of FMO–TIE was 0.880, whereas those of the docking score and MM-GBSA were 0.345 and
0.553, respectively. The scoring function of the FMO analysis at the FMO–DFTB/D/PCM
level outperformed the scoring functions from the Glide docking score and the MM-GBSA
simulation in the two benchmarking sets.

3.2. Application of FMO-Based Virtual Screening to MMP-9

To discover specific natural product inhibitors of MMP-9, we applied a novel FMO-
based virtual screening workflow to the hemopexin domain of MMP-9 using the BMDMS-
NP library. Because the BMDMS-NP library is as structurally diverse as phytochemicals
in the ZINC15 database [12], we used the BMDMS-NP library for the chemical library
(Figure 1A).

To prepare reference complexes with the hemopexin domain of MMP-9, we collected
six inhibitors known to bind to the hemopexin domain [7,60] and created the complex
structures using molecular docking simulations. To identify and investigate the hotspot
residues of the hemopexin domain of MMP-9, we analyzed six reference complexes using
high-level FMO analysis at the FMO–RIMP2/PCM level. The FMO results from the six
ligands are shown in Supplementary Figures S2 and S3, which revealed 33 significant
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interactions between the six ligands and the hemopexin of MMP-9. We identified 18 hotspot
residues, having significant interactions with at least three of six ligands that were more
stable than −3.0 kcal/mol. The interaction map is shown in Figure 2. These results were in
agreement with those of a previous study showing that Glu14, Glu60, Lys65, Arg106, and
Gln154 residues are essential in the hemopexin binding pocket [61]. The interaction map
showed two different hotspot patterns for the six ligands. Compounds 1 and 2 showed one
pattern of interactions with Lys65, Arg106, and Gln154, whereas compounds 3, 4, and 5
showed the other pattern of interactions with Glu14, Ser31, Glu32, Asp56, Glu60, Glu61,
Leu67, Asp151, Glu157, and Ala159. Moreover, compound 6 showed a mixed pattern of
interactions with Glu14, Lys65, Arg106, and Gln154.
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Figure 2. Comparison of hotspot residues of MMP-9 involved in ligand binding. Hotspot residues
are represented in the rows. Ligands are represented in the columns. In each box of the matrix,
interactions between the ligand and the residues are colored from dark blue (PIE < −100 kcal/mol)
and blue (PIE < −3 kcal/mol), to light-yellow (PIE > 0 kcal/mol). The PIE values are calculated at
the FMO–RIMP2/PCM level.

Based on the two interaction patterns from the FMO analysis and the shape of the six
reference structures, we generated a modified pharmacophore model with eight features
for the hemopexin domain and illustrated the model in Supplementary Figure S4. To
validate the pharmacophore model, we applied the model to six ligands and obtained the
six ligands with actives after setting the criteria of at least four of the eight features. We
then performed pharmacophore-based virtual screening with the BMDMS-NP library and
obtained the first 467 virtual hits.

To predict the binding affinities of the first virtual hits, we performed an FMO analysis
at the FMO–DFTB3/D/PCM level. We generated all plausible binding poses with Glide
by performing molecular docking and post-docking minimization with all generated
conformers. We obtained the top 10 binding poses per virtual hit with the Emodel score
and analyzed the top 10 complexes with FMO analysis at the FMO–DFTB3/D/PCM level.
We then ranked the virtual hits by FMO–TIE and additionally checked whether the hotspot
profiles of the virtual hits had a Tanimoto similarity of more than 0.5 with six ligands.
Finally, we selected the first 35 virtual hits and performed gelatin zymography. From
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gelatin zymography assays, we selected the top four hits (7, 8, 9, and 10) from the first
virtual hits (Supplementary Figure S5).

3.3. Novel Ligands Targeting the Hemopexin Domain of MMP-9

To more accurately investigate the hotspot interaction profiles between MMP-9 and the
top four hits, we performed FMO analysis with high-level FMO–RIMP2/PCM calculations
and illustrated the FMO results in Figure 3 and Supplementary Figure S6. The top four
second virtual hits had similar hotspot interaction patterns to those of the six ligands shown
in Figure 2, and their Tanimoto similarities are shown in Supplementary Figure S7. The
FMO analysis detected seven significant interactions in compound 7 and eight significant
interactions in compound 8. They had a partial hotspot interaction pattern compared
with those of the six ligands, in which the similarity values of compounds 7 and 8 with
compound 5 were 0.5 and 0.57, respectively. In contrast, FMO analysis detected nine
significant interactions between compound 9 and nine residues of MMP-9: Glu14, Ile15,
Asn17, Glu60, Glu61, Pro62, Asp151, Phe155, and Glu157. Moreover, FMO analysis detected
11 significant interactions between compound 10 and 11 residues of MMP-9: Ala13, Glu14,
Ile15, Phe59, Glu60, Glu61, Pro62, Arg106, Asp151, Gln154, and Glu157. Compound 9 had
a similar hotspot interaction pattern to compounds 3, 4, and 5, with similarity values of
0.867, 0.867, and 0.8, respectively. Compound 10 had a mixed hotspot interaction pattern,
like that of compound 6, in which the similarity value was 0.64.
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Figure 3. The FMO results for compounds 9 and 10 in complex with the hemopexin domain of
MMP-9. (A) The structure of compound 9 binding to the hemopexin domain of MMP-9. The carbon
atoms of 9 are shown in cyan. (B) The structure of compound 10 binding to the hemopexin domain
of MMP-9. The carbon atoms of 10 are shown in white. The carbon atoms of the residues of MMP-9
are shown in green. The nitrogen and oxygen atoms are shown in blue and red, respectively. The
right bar plot describes the PIEs of the significant residues in the hemopexin domain of MMP-9. All
interactions shown here have attractive PIE values more stable than −3.0 kcal/mol. The PIE values
are calculated at the FMO–RIMP2/PCM level.
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Based on the FMO results, we selected the top two hits and performed a wound-
healing assay and SPR analysis, as illustrated in Figure 4. Since extracellular matrices must
be degraded by MMPs for cell migration, a wound-healing assay can show the inhibition
of MMPs. In the wound-healing assays, the A375SM cells treated with compound 9 or
10 showed lower migration rates than the control (59 and 36.8% of the relative open area,
respectively). SPR analysis was performed to determine whether the top two compounds
(9 and 10) directly bind to MMP-9. We measured the binding affinity between MMP-9
and the top two hits (Figure 4). Compound 9 exhibited a dose-dependent change with a
dissociation constant (KD) of 21.6 µM, where the ka was 5.79 × 102 M−1s−1 and the kd was
1.25 × 10−2 s−1. Compound 10 exhibited a change with a KD of 0.614 µM, where the ka was
2.07 × 104 M−1s−1 and the kd was 1.27 × 10−2 s−1. This showed that compound 10, with
the mixed hotspot interaction pattern, had a higher binding affinity than compound 9, with
one hotspot interaction pattern.
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Figure 4. The inhibition of MMP-9 by compounds 9 and 10. (A) Wound-healing assays for A375SM
cells exposed to 30 µM for 24 h. The wounded region was observed with the TScratch program.
(B) The results of the wound-healing assays. Columns are the mean percentage of the relative
open area after 24 h compared to 0 h, and the error bars are the standard error of the mean (n = 3).
** p < 0.01 vs. control group. (C) Sensorgrams of 9 binding to MMP-9. (D) Sensorgrams of 10 binding
to MMP-9.

3.4. Raw Materials of the Novel Ligands

The raw materials of compounds 9 and 10 were retrieved from an in-house integrated
database (Figure 1A). Compound 9 (laetanine) was found in KNApSAcK with C00027405.
The raw materials associated with compound 9 were Lindera glauca and Litsea laeta. Lindera
glauca extract inhibits proliferation by inducing apoptosis in human colorectal cancer
HT-29 cells [62]. Compound 10 (genkwanin) was found in FooDB with FDB006932. The
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raw materials associated with compound 10 were Salvia officinalis, Thymus vulgaris, Salvia
rosmarinus, Ocimum basilicum, and Satureja montana. Salvia officinalis extract showed a
potential effect on UV-exposed skin aging [63]. Moreover, Thymus vulgaris extract alleviated
UVB irradiation by inhibiting MAPK/AP-1 and activating the Nrf2-ARE antioxidant
system [64]. The essential oil of Salvia rosmarinus showed antioxidant and cholinesterase
inhibitory activity [65]. The formulated cream of Ocimum basilicum showed anti-aging
effects [66]. The potential effects of the raw material extracts are related to the signaling
pathways of MMP-9 [67–69]. Therefore, we suggest that one of the molecular targets of the
raw material extracts from compounds 9 or 10 would be MMP-9, because compounds 9
and 10 directly inhibit MMP-9 with a high binding affinity in this study.

4. Discussion

Natural products play a significant role in drug discovery and have two advantages.
First, natural products are known to have a high diversity in chemical space [11,70,71].
They are characterized by scaffold diversity and structural complexity and have been
considered a major source of oral drugs “beyond Lipinski’s rule of five” [72]. However,
since natural products have topological similarities, the overlapping structures may lead to
redundant experiments with similar structures. Therefore, we used the BMDMS-NP library,
because its structural diversity was comparable to that of commercially available natural
products [12]. Secondly, botanical medicines with complex mixtures of natural products
have been used because of the potential synergistic therapeutic effects of the components
in the mixtures [72]. The search for raw material information from the integrated database
can connect a single component to raw material extracts and correlate the inhibitory effects
of a single component and extracts. This can support the development of mixtures as
therapeutics, such as nutraceuticals and cosmeceuticals.

The FMO method is a useful tool for SBDD because it provides accurate and significant
information on the protein–ligand complexes [38,50]. Although the FMO method was
successfully applied for a scoring function in this study, the SBVS method requires not
only a scoring function but also a docking process. In the comprehensive evaluation of
10 docking programs by Wang et al., the ligand binding poses could be identified in most
cases by most docking programs, including Glide [73]. It is important to understand the
advantages and limitations of many docking methods before QM methods can be used
to predict the binding affinities of the binding poses. Although the docking methods
are known to reproduce the binding poses within 2 Å root-mean-square deviation, the
small pose generation error may disturb QM-based virtual screening, owing to the high
sensitivity of the QM methods to the binding poses. Therefore, it is important to validate
the complementarities between QM and docking methods before integrating them into the
virtual screening workflow.

In summary, we integrated the FMO method into a virtual screening workflow for
quantitative binding affinity prediction and hotspot interaction profiling. FMO analysis
with FMO–DFTB3/D/PCM (FMO–TIE) outperformed the Glide docking score and MM-
GBSA simulations in the two benchmarking sets. Furthermore, we applied the FMO-based
workflow to the hemopexin domain of MMP-9 and proposed two potent natural product
inhibitors (laetanin 9 and genkwanin 10). Laetanin 9 and genkwanin 10, identified in this
study, showed lower migration rates than the control in the wound-healing assays, whereas
laetanine 9 and genkwanin 10 directly bind to MMP-9 with a KD of 21.6 and 0.614 µM,
respectively. Although laetanine 9 showed a lower migration rate than genkwanin 10,
genkwanin 10 showed a higher inhibition rate in the gelatin zymography assay and bound
to MMP-9 more strongly in the SPR assay than laetanine 9. One of the reasons for this
may be the low solubility of genkwanin 10. More studies to support their functions would
be required to use the compounds as active ingredients. Even though the FMO-based
virtual screening method was successfully applied to two benchmarking sets and MMP-9,
it could be further improved by considering other factors, including desolvation penalty,
polarization factors between proteins and ligands, and entropy effects. Therefore, the FMO-
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based workflow is an efficient SBVS tool for the design, assessment, and filtering of new
compounds, which can reduce the effort and cost of chemical synthesis in drug discovery.

5. Conclusions

A novel FMO-based virtual screening workflow was introduced to investigate hotspot
interaction patterns and to predict virtual hits in SBDD through ab initio quantum mechan-
ical fragment molecular orbital calculations. The FMO-based analysis outperformed the
Glide docking score and MM-GBSA simulations as scoring functions for the two bench-
marking sets. Through FMO-based virtual screening, we identified two novel natural
product inhibitors of MMP-9 (laetanine 9 and genkwanin 10). Furthermore, we collected
raw material information on the natural product inhibitors and correlated the known phys-
iological effects of the raw material extracts with the MMP-9 signaling pathway. Overall,
the outcomes of this study can be summarized in two points. First, the promising strategy
described in this study could be used in SBDD for targeting MMP-9. Second, the final
compounds could be used as active ingredients in nutraceuticals and cosmeceuticals after
more studies to support their functions are conducted.
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