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TECHNICAL ADVANCE

Machine learning to predict post‑operative 
acute kidney injury stage 3 after heart 
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Abstract 

Background:  Acute kidney injury (AKI) stage 3, one of the most severe complications in patients with heart trans-
plantation (HT), is associated with substantial morbidity and mortality. We aimed to develop a machine learning (ML) 
model to predict post-transplant AKI stage 3 based on preoperative and perioperative features.

Methods:  Data from 107 consecutive HT recipients in the provincial center between 2018 and 2020 were included 
for analysis. Logistic regression with L2 regularization was used for the ML model building. The predictive perfor-
mance of the ML model was assessed using the area under the curve (AUC) in tenfold stratified cross-validation and 
was compared with that of the Cleveland-clinical model.

Results:  Post-transplant AKI occurred in 76 (71.0%) patients including 15 (14.0%) stage 1, 18 (16.8%) stage 2, and 43 
(40.2%) stage 3 cases. The top six features selected for the ML model to predicate AKI stage 3 were serum cystatin 
C, estimated glomerular filtration rate (eGFR), right atrial long-axis dimension, left atrial anteroposterior dimension, 
serum creatinine (SCr) and FVII. The predictive performance of the ML model (AUC: 0.821; 95% confidence interval 
[CI]: 0.740–0.901) was significantly higher compared with that of the Cleveland-clinical model (AUC: 0.654; 95% [CI]: 
0.545–0.763, p < 0.05).

Conclusions:  The ML model, which achieved an effective predictive performance for post-transplant AKI stage 3, 
may be helpful for timely intervention to improve the patient’s prognosis.
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Background
Heart transplantation (HT) remains as a life-sustaining 
treatment choice for numerous end-stage heart disease 
patients [1]. Despite the advancement of various immu-
nosuppressive therapies and treatment programs, the 
incidence rates of acute kidney injury (AKI) as well as 
severe AKI requiring renal replacement therapy (RRT) 
in patients with HT remain high in recent years [2]. AKI 
most commonly occurs in the first week after HT, with 
the incidence of 22–76%, and is associated with high 
rates of morbidity and mortality [3–6].
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Early AKI detection after HT is meaningful for inter-
ventions that prevent future kidney damage and preserve 
the kidney function, because AKI is associated with more 
than 60% mortality rate among hospitalized postsurgical 
patients who received intensive care [7]. Moreover, AKI, 
especially stage 3, is correlated with subsequent progres-
sive chronic kidney disease (CKD) along with decreased 
survival rates of HT recipients. Various features associ-
ated with AKI stage 3, such as drugs, immunosuppres-
sion therapies, hemodynamics, and some anesthesia- and 
surgery-related factors have been identified by traditional 
models in previous studies [6, 8]. However, their predic-
tive performance is relatively limited due to the limited 
amount of patient’s information extracted and some 
unsatisfying features with conflicting effects. For these 
reasons, it is indispensable to develop a novel and effi-
cient model to predict AKI stage 3.

As a powerful tool for intelligent data analysis, machine 
learning (ML) can be utilized to model medical data. 
Computational algorithms are constructed to develop 
a model to correlate a spectrum of features of the given 
datasets with the outcome. ML has been commonly 
used in medical data analysis for diagnosis and progno-
sis of a variety of tumors, such as breast [9] and pros-
tate cancers [10]. Furthermore, there is clear evidence 
that ML can be used for analysis in other medical fields 
as well. For instance, a recent study on predicting 5-year 
all-cause mortality in patients with suspected coronary 
artery disease showed that ML had superior predictive 
performance compared with traditional clinical or coro-
nary computed tomography angiography metrics alone 
[11]. We hypothesize that ML adds incremental value to 
the prediction of adverse events. Therefore, the objective 
of this study was to evaluate the feasibility and accuracy 
of ML to predict AKI stage 3 in HT patients and then 
to compare the performance to that of existing clinical 
metrics.

Methods
Data collection
Data of all HT patients in Guangdong Provincial People’s 
Hospital were collected and analyzed from January 2018 
through September 2020. All patients had undergone 
primary orthotopic deceased-donor HT due to various 
causes. Exclusion criteria were recipient age < 18 years at 
the time of operation, retransplantation, or RRT prior to 
HT (Fig. 1). We obtained patient data from the hospital 
database or electronic records. This retrospective study 
was approved by the Institutional Review Board of the 
Guangdong Provincial People’s Hospital and was con-
ducted in accordance with the Declaration of Helsinki. 
The need for informed consent was waived given the ret-
rospective nature of the study.

Study features
We reviewed the patients’s medical records retro-
spectively and collected clinical data including: demo-
graphic features, pretransplant renal function features, 
liver function features, the use of invasive hemody-
namic support therapies, echocardiography features, 
donor characteristics, aortic clamp time, cardiopulmo-
nary bypass time, blood transfusion. All features were 
divided into three subsets: preoperative, perioperative, 
and donor characteristics.

Study outcomes
The study outcome was post-transplant AKI defined 
based on the Kidney Disease: Improving Global Out-
comes (KDIGO) criteria [12]: an increase in serum 
creatinine (SCr) by ≥ 0.3 mg/dl (≥ 26.5 umol/L) within 
48 h or to > 1.5 times baseline within the first 7 postop-
erative days. AKI was classified into 3 stages depending 
on the level of SCr: stage 1, SCr increase by ≥ 0.3 mg/
dl (≥ 26.5 umol/L) within 48 h or 1.5–1.9-fold increase 
from the baseline; stage 2, 2–2.9-fold increase from the 
baseline; stage 3, ≥ threefold increase from the baseline, 
increase in SCr by ≥ 4.0  mg/dl (≥ 354 umol/L) or the 
start of RRT. The baseline SCr was referred to the last 
SCr value before HT. Next, we calculated the estimated 
glomerular filtration rate (eGFR) by using the Chronic 
Kidney Disease-Epidemiology Collaboration Group 
equation [13].

Fig. 1  Diagram of study population based on AKI severity 
postoperatively. AKI, acute kidney injury; RRT, renal replacement 
therapy
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Machine learning
Feature selection, model building, and model evalu-
ation were all part of the ML system (Fig.  2). It was 
mostly implemented in WEKA 3.8.

To evaluate the worth of a feature, Pearson’s correlation 
between the feature and the class was calculated. The corre-
lations between the features included were ranked descend-
ingly (Fig. 3), and we selected those most closely related to 
postoperative AKI stage 3. The details of feature selection are 
shown in the additional file: (see Additional file 1: Table S1).

We selected different classifiers (e.g., logistic regression 
with L2 regularization, logistic regression, random forest, 
naïve Bayes, and support vector machine) to build classifi-
ers based on the features highly correlated with AKI stage 
3. Detailed information about the model selection is avail-
able in the additional file: (see Additional file 2: Table S1). 
After the model selection procedure, the logistic regres-
sion with L2 regularization was the selected model. L2 
regularization is a regularized method that shrinks the 
regression coefficients towards 0 by placing a penalty on 
the summation of the estimated coefficients. Although 
the regularization method may lead to biased regression 
estimates, it results in a more stable model that produces 
excellent predictive performance in particular when 
applied to external datasets (further details about the 
algorithm are available in the Additional file 3) [14].

A tenfold cross-validation was used to assess the per-
formance of the ML model. The dataset was randomly 
divided into ten folds with approximately the same num-
ber of patients in each fold. Nine folds served as the 

training set, while the remaining fold served as the vali-
dation set. In all, each fold was used nine times as a train-
ing set and once as a validation set. Thus, the outcome of 
each patient was predicted once.

Statistical analysis
Continuous features with normal distribution based upon 
the Durbin-Watson test were presented as mean ± standard 
deviation; data with skewed distributions were presented as 
median and interquartile range (IQR); and categorical fea-
tures were presented as frequency (percentage). The receiver 
operator characteristic curves were used to evaluate the 
performance of the ML model and of the reported Cleve-
land-clinical model to predict post-transplant AKI stage 3. 
In Cleveland-clinical model, preoperative serum creatinine 
level, serum albumin level, insulin-requiring diabetes, and 
cardiopulmonary bypass time have been reported based on 
large samples study as independent predictors of postop-
erative AKI [15]. And the differences between areas under 
the curves (AUCs) were compared based on Delong et al. 
[16]. The accuracy, sensitivity, and specificity of the model 
based on the optimum cutoffs were computed. All statistical 
analyses were performed with SPSS version 22.0 software 
(SPSS, Chicago, Illinois, USA) and R statistical software (R 
Foundation, Vienna, Austria) by using RStudio Server ver-
sion 1.3. The presented statistical significance levels were all 
two-sided and p < 0.05 was considered significant.

Results
Study population
From 141 patients with HT from January 2018 through 
September 2020, 34 were excluded for the following rea-
sons: younger than 18 years old (n = 15); had preoperative 
RRT (n = 16); younger than 18 years old and had preop-
erative RRT (n = 2); and had retransplantation (n = 1). 
Finally, a sample of 107 patients was analyzed with 76 
(71.0%) patients suffering from AKI. Furthermore, the 
incidences of AKI stages 1, 2, and 3 were 15 (14.0%), 18 
(16.8%), and 43 (40.21%), respectively. Of those who met 
the criteria for AKI stage 3, 40 (93.0%) received RRT, 
which lasted for a median of 159 (76–373) hours, and 18 
(41.8%) deaths were observed (Table 1). Donor, recipient, 
and surgery-related characteristics are listed in Table 1.

Feature selection
The features were ranked by Pearson correlation in 
descending order (Fig. 3). The top six features were iden-
tified as significant and used to train the ML model. 
Those features were as follows: preoperative serum 
CysC (r = 0.379), eGFR (r = 0.357), right atrial long-
axis dimension (RA-l; r = 0.328), left atrial anteroposte-
rior dimension  (LA-ap, r = 0.307), SCr (r = 0.260), and 
FVII (r = 0.252).

Fig. 2  Workflow for the classification of patients undergoing HT with 
and without post-transplant AKI stage 3 using machine learning. AKI, 
acute kidney injury
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Fig. 3  Feature selection. Pearson’s correlation was used to evaluate the worth of a feature. The features were ranked in descending order by 
Pearson’s correlation and the top six features were used to build the ML model. Abbreviation as in Table 1



Page 5 of 9Li et al. BMC Cardiovascular Disorders          (2022) 22:288 	

Table 1  Donor, recipient and surgical characteristics in the cohorts

Features No AKI
31 (28.9)

AKI stage1
15 (14.0)

AKI stage2
18 (16.8)

AKI stage3
43 (40.2)

Preoperative characteristics
 Age, years 49 (37–60) 48 (29–57) 47 (32–55) 52 (46–59)

 Male, sex 26 (83.9) 12 (80) 14 (77.8) 40 (93.0)

 Height, cm 168 (162–172) 168 (165–170) 169 (163–175) 168 (163–172)

 Weight, kg 58 (53–70) 60 (54–69) 65 (52–70) 62 (55–77)

 BMI, kg/m2 21 (19–24) 20 (19–24) 22 (20–24) 23 (20–27)

 Serum albumin 41.2 (37.5–43.7) 40.9 (38.5–42.6) 42.4 (38.8–44.3) 39.2 (36.8–42.5)

Primary cardiac disease (yes)
 Dilated cardiomyopathy 21 (67.7) 11 (73.3) 7 (38.8) 22 (51.2)

 Valvular disease 3 (9.7) 0 (0) 1 (5.6) 8 (18.6

 Ischemic cardiac disease 4 (3.2) 2 (13.3) 6 (33.3) 11 (25.6)

 Restrictive cardiomyopathy 1 (3.2) 1 (6.7) 0 (0.0) 11 (25.6)

 Hypertrophic cardiomyopathy 1 (3.2) 0 (0.0) 1 (5.6) 1 (2.3)

 Other cardiac disease 1 (3.2) 1 (6.7) 2 (11.1) 5 (11.6)

Medical history (yes)
 Prior cardiac surgery 7 (22.6) 8 (53.3) 10 (55.6)

 Insulin-requiring diabetes 1 (3.2) 1 (6.6) 2 (11.1) 8 (18.6)

 Hypertension 3 (9.7) 2 (13.3) 7 (6.5) 9 (20.9)

 Hyperlipidemia 0 (0.0) 0 (0.0) 1 (5.6) 2 (4.7)

 Peripheral vascular disease 4 (12.9) 0 (0.0) 6 (33.3) 7 (16.3)

 Coronary arterial disease 4 (12.9) 2 (13.3) 7 (38.9) 12

Heart function
 NT-proBNP, pg/mL 1982 (1083–3848) 4076 (1350–6001) 2498 (1031–4513) 4328 (1223–10,506)

 HCY, μmol/L 10 (7–40) 6 (4–6) 12 (8–12) 257 (10–897)

INTEMACAS
 1 2 (6.5) 0 (0.0) 0 (0.0) 1 (2.3)

 2 1 (3.2) 2 (13.3) 0 (0.0) 1 (2.3)

 3 1 (3.2) 1 (6.7) 0 (0.0) 4 (9.3)

 4 3 (9.7) 3 (20.0) 5 (27.8) 5 (11.6)

 5 1 (3.2) 0 (0.0) 0 (0.0) 6 (14.0)

 6 6 (19.4) 3 (20.0) 2 (11.1) 7 (16.3)

 7 17 (54.8) 6 (40) 11 (61.1) 19 (44.2)

Renal function
 Baseline SCr, mmol/L 98 (78–118) 77 (71–87) 85 (71–85) 109 (91–150)

 eGFR, ml/min/1.73m2 78 (63–93) 102 (77–112) 89 (76–113) 64 (41–83)

 CKD (eGFR < 60 mL/min per 1.73 m2) (yes) 6 (19.3) 0 (0.0) 0 (0.0) 16 (37.2)

 UNAG, U/L 17 (10–38) 17 (7–40) 14 (12–25) 25 (8–43)

 UNAG/Ucr, U/mmol 5 (2–21) 4 (1–13) 3 (2–17) 10 (3–26)

 CysC, mg/L 1.4 (0.9–1.7) 1.0 (0.8–1.5) 1.1 (0.9–1.4) 1.6 (1.4–2.5)

 Ualb/Ucr, mg/g 122 (87–182) 129 (35–275)) 93 (9–169) 160 (28–1139)

 Upro/Ucr, mg/g 156 (38–295) 106 (14–11,620) 61 (53–61) 148 (19–312)

Liver function
 TBIL, umol/L 20 (15–34) 21 (19–25) 19 (15–23) 19 (14–29)

 DBIL, umol/L 5 (3–10) 5 (4–8) 4 (3–5) 5 (3–10)

Preoccupative support (yes)
 IABP 5 (16.1) 2 (13.3) 0 (0.0) 6 (14.9)

 ECMO 2 (6.5) 3 (20.0) 2 (11.1)) 4 (9.3)

Echocardiography
 LA-ap, mm 46 (40–53) 52 (45–55) 53 (45–60)
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Table 1  (continued)

Features No AKI
31 (28.9)

AKI stage1
15 (14.0)

AKI stage2
18 (16.8)

AKI stage3
43 (40.2)

 LVIDd, mm 71 (60–78) 73 (65–89) 66 (59–72) 67 (62–77)

 LVIDs, mm 63 (50–69) 66 (53–78) 58 (50–67) 59 (51–70)

 LVEF, % 26 (23–31) 23 (18–33) 27 (23–34) 24 (19–32)

 RV-l, mm 61 (52–57) 60 (47–68) 61 (57–64) 63 (58–71)

 RA-l, mm 51 (46–58) 60 (47–68)) 50 (46–58) 63 (54–59)

 IVSd, mm 9 (7–10) 8 (7–9) 9 (8–9) 9 (8–10)

 Mitral regurgitation area, cm2 7 (3–12) 8 (4–14) 4 (2–9) 8 (3–11)

 Tricuspid regurgitation area, cm2 3 (1–6) 6 (1–8) 3 (1–4) 6 (3–9)

 SPAP, mmHg 34 (27–58) 38 (31–59) 45 (31–55) 46 (38–60)

 Days on waiting list 21 (11–30) 21 (18–30) 24 (10–56) 21 (7–33)

Donor characteristics
 Age, years 37 (31–43) 33 (22–44) 47 (32–54) 33 (23–45)

 Male, sex 29 (93.5) 14 (93.3) 17 (94.4) 38 (88.4)

 Weight, kg 65 (60–68) 60 (57–70) 65 (52–70) 60 (65–70)

Cause of death (yes)
 Trauma 21 (67.7) 10 (66.7) 10 (55.6) 28 (65.1)

 CVA 9 (29.0) 4 (26.7) 6 (33.3) 11 (25.6)

 Others 4 (3.2) 5 (6.7) 2 (11.1) 4 (9.3)

 Time of ischemia donor heart, min 202 (183–234) 219 (171–283) 207 (180–256)

Perioperative characteristics
 Aortic clamp time, min 131 (110–139) 123 (118–134) 133 (113–162) 122 (113–144)

 CPB time, min 250 (219-312C) 250 (219–312) 261 (210–298) 245 (225–293)

Intra-op transfusions—units
 FVII 400 (400–400) 200 (200–200) / 200 (200–200)

 FVIII 800 (800–800) 800 (800–800) 800 (800–800) 800 (800–800))

 PCC 800 (800–800) 800 (800–800) 800 (800–800) 800 (800–800)

 Cryo 10 (10–10) 10 (10–11) 10 (10–10) 10 (10–10)

 RBC 6 (2–6) 3 (2–3) 3.5 (3.5–3.5) 6 (4–8)

 PLT 1 (1–2) 1 (1–2) 1 (1–2) 1 (1–1)

 FFP 400 (0–400) 400 (400–400) 400 (400–400) 400 (400–600)

Postoperative characteristics
 Post-operative SCr, μmol/L 128 (95–147) 135 (119–150) 206 (153–255) 347 (225–467)

 RRT (yes) 0 (0.0) 0 (0.0) 0 (0.0) 40 (93.0)

 RRT time, h 0 (0–0) 0 (0–0) 0 (0–0) 159 (76–373)

 Days in ICU 6 (5–8) 6 (5–9) 7 (6–12) 10 (8–16)

 Re-admission to hospital (yes) 3 (9.7) 2 (13.3) 2 (11.1) 11 (25.6)

 Death (yes) 6 (19.4) 3 (20.0) 0 (0.0) 18 (41.8)

Data displayed as median and interquartile range or n (%)

BMI, body mass index; CKD, chronic kidney disease; CPB, cardiopulmonary bypass; Cryo, cryoprecipitation; CVA, cerebrovascular accident; CysC, cystatin C; DBIL, 
direct bilirubin; ECMO, extracorporeal membrane oxygenator; eGFR, estimated glomerular filtration rate; FFP, fresh frozen plasma; FVII, factor VII; FVIII, factor VIII; 
HCY, homocysteine; IABP, intra-aortic balloon pump; ICU, intensive care unit; IVSd, interventricular septal end-diastolic thickness; LA-ap, left atrial anteroposterior 
dimension; LVEF, left ventricular ejection fraction; LVIDd, left ventricular internal diameter in diastole; LVIDs, left ventricular internal diameter in systole; NT-proBNP, 
N-terminal pro brain-type natriuretic peptide; PCC, prothrombin complex concentrate; RA-l, right atrial long-axis dimension; RBC, red blood cell; RRT, renal 
replacement therapy; RV-l, right ventricular long-axis dimension; SCr, serum creatinine; SPAP, systolic pulmonary artery pressure; TBIL, total bilirubin; UAlb, urine 
albumin; Ucr, urine creatinine; PLT, blood platelet; UNAG, urine N-acetyl-κ-d-glucosaminidas; Upro, urine protein
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Prediction of AKI stage 3
The ML model exhibited a significantly higher AUC 
(0.821; 95% [CI]: 0.740–0.901) compared to the exist-
ing clinical model for prediction of AKI stage 3 (AUC: 
0.654, 95% [CI]: 0.545–0.763, p < 0.05) (Fig. 4). The accu-
racy, sensitivity, and specificity for the prediction of AKI 
stage 3 were 80.4%, 86.0%, and 70.3% for the ML model; 
and 69.2%, 44.2%, and 41% for Cleveland clinical model, 
respectively.

Discussion
In the present study, the results suggested that the ML 
model could be an effective tool for risk stratification and 
prediction of post-transplant AKI stage 3 for individual 
patients. The performance of the ML model was superior 
to that of the reported clinical model confirmed by large 
samples at the Cleveland Clinic Foundation. As far as 
we know, this study is the first to evaluate the predictive 
capability of ML methods for the assessment of severe 
postoperative AKI in patients undergoing HT.

Early identification and prevention of AKI in patients 
undergoing HT may play an important role in select-
ing treatment regimens and thus improving progno-
sis, given the high short- and long-term mortality risks 
associated with AKI after HT. If acute renal failure 
happens, the short-term mortality increases 3.5-fold 
and 1-year mortality 2.3-fold [1]. However, the abil-
ity to accurately identify high-risk patients who may 
develop AKI is a major challenge in clinical practice. 
Although traditional risk factors for the prediction 
of post-transplant AKI have been identified, they are 
population-based tools [7, 17], which are less effective 
for individual risk evaluations. Furthermore, the tra-
ditional features to predict post-transplant AKI from 

existing models have relatively limited predictive per-
formance [18], highlighting the need for a more precise 
model for personalized treatment decisions.

Analyzing and integrating numerous risk features in 
each individual patient can be a challenging task for 
the clinician. The increasing number of clinical features 
affecting risk stratification from various medical checks 
amplifies the intricacy of assessment and makes it more 
difficult for clinicians to make a correct decision involv-
ing risk stratification in each patient. Moreover, the 
unanticipated aspects of possible interactions between 
a few weaker risk features in an individual patient are 
frequently underestimated [11]. Machine learning, 
both supervised and unsupervised, can overcome these 
challenges by deep integration of the experimental 
and clinical datasets to build powerful risk models and 
reclassify patient groups [19].

Our results demonstrated that by the integration of 
clinical information, experimental datasets, and ultra-
sonography-derived metrics, the ML model (AUC: 
0.821) showed superior risk prediction for AKI stage 3 
compared with Cleveland-clinical model (AUC: 0.654). 
The features had been identified as predictors of AKI by 
logistic regression analysis in previous studies [15]. In 
our study, the ML model provided an excellent value in 
prognostic performance while considering 53 features 
and potential feature–feature interactions in patients. 
This characteristic permits a deep exploration of all 
available data for non-linear patterns that could predict 
the risk stratification of a particular individual [14].

As reported in previous studies, the occurrence of 
AKI is the consequence of multifactorial interactions 
that cannot be interpreted with a single etiologic factor 
[18, 20, 21]. In the light of our findings, CysC, eGFR, 
RA-l, LA-ap, SCr and FVII were all predictive factors 
included in the ML model for predicting the develop-
ment of AKI stage 3. In particular, CysC, a biomarker 
for the quantification of kidney function loss, was the 
most related predictive factor in patients with AKI 
stage 3, and it may have the ability to detect AKI one 
to two days before the rise of SCr with higher accuracy 
and precision [22]. Furthermore, except for acute renal 
failure, no other factors were found to alter CysC levels, 
enhancing its effectiveness as an endogenous marker 
for predicting AKI. Our findings confirm the predictive 
value of eGFR ranked lower than CysC. One explana-
tion for this may be that CysC reflects GFR changes 
more sensitively compared to SCr, and eGFR, which 
used widely in clinical practice instead of GFR, is calcu-
lated with SCr in this study[22].

Cardiac features can reflect the confluence of heart–kid-
ney interactions through hemodynamic dimensions. The 
difference between arterial perfusion pressure and venous 

Fig. 4  Receiver operating characteristic curves for prediction of 
post-transplant AKI stage 3. For AKI stage 3 prediction, machine 
learning using the logistic regression with L2 regularization in 
tenfold cross-validation showed a significantly higher area under the 
curve than all other clinical metrics using DeLong’s test (*p < 0.05, 
**p < 0.001). AUC, area under the curve; ML, machine learning;
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outflow pressures must be adequately large to keep suf-
ficient renal blood flow and glomerular filtration. In the 
setting of this concept, the inability of impaired left ven-
tricular function makes low forward flow with reduced 
left ventricular ejection fraction (LVEF), and consequently 
leading to prerenal hypoperfusion. Interestingly, we found 
that LVEF had no significant effect on the development of 
AKI stage 3. This is supported by previous studies, such as 
Jin et  al. [23] demonstrated that LVEF was not indepen-
dently or significantly associated with the development 
of AKI after cardiac operations. This was illustrated by a 
relative preservation of eGFR derived from efferent arteri-
olar constriction following on from the renin-angiotensin 
system to accommodate the decreased LVEF. In patients 
with markedly reduced renal blood flow exceeding renal 
autoregulatory capacity, the compensatory increase in 
eGFR was lost and could evolve into AKI. Alternatively, the 
elevated central venous pressures, as a result of changes in 
right heart structure such as an augmented diameter of 
RA-l, can bring about an increased renal resistance; the 
kidneys may subsequently become more susceptible to the 
occurrence of AKI. This mechanism has been presented 
in clinical researches in patients with cardiac dysfunction 
using invasive hemodynamic measurements [24, 25].

The relationship between coagulation factors and 
the incidence of AKI should be further verified by large 
samples. FVII was turned out to be a predictor of post-
transplant AKI in this study, although consistent with 
other prior work that higher numbers of transfusions, 
particularly higher blood and cryoprecipitate transfusion, 
were associated with the incidence of AKI [26]. However, 
In Jocher et al., there were no differences in the intra-op 
pRBC, FFP, platelets, or coagulation factors between the 
No-AKI and AKI groups, suggesting that transfusion was 
not a risk factor of AKI [27]. The decision to transfuse 
is influenced by unmeasured factors, such as severity of 
intraoperative bleeding and pre-existing comorbidities.

There was a high incidence of AKI (71%) in this study, 
which met the upper end of the incidence range of 
22–76% reported in prior studies [3–6]. We speculated 
that there may be the following reasons. Our cohort 
had a long CPB duration that was associated with a 
higher incidence of post-operative AKI [26–28]. Sev-
eral mechanisms may play crucial roles, including renal 
hemodynamic changes (hemodilution, hypothermia, and 
non-pulsatile flow), hemolysis caused by turbulent flow 
and occlusive roller pumps leading to generation of reac-
tive oxygen species [21]. In addition, most of our patients 
were admitted to hospital for acute heart failure, espe-
cially the incidence of right heart failure was relatively 
high. And RV function is a central determinant of Cardi-
orenal Syndrome hemodynamics [20]. Patients after HT 
underwent intrinsic oxidative stress as well as systematic 

and intrarenal inflammation, which is related to AKI [29, 
30]. This could be explained by renal tubular epithelial 
cells are extremely susceptible to oxidative stress, par-
ticularly during ischemia–reperfusion phase.

Study limitations
This study has several limitations. First, our research was 
a single center study with a relatively limited sample size. 
Although the ridge logistic regression with the L2 regu-
larization could cope with over-fitting problems that may 
occur owing to small sample size, a multicenter study 
will be better to confirm our findings. Second, although 
we appraised 53 diverse features with the ML algorithm, 
we did not consider additional features, such as cardiac 
magnetic resonance due to its retrospective nature, that 
may contribute to better risk prediction. Third, we did 
not conduct external validation to verify the robustness 
of our results using an independent dataset from other 
centers; this is our future research direction.

Conclusions
In summary, the ML model based on preoperative and 
perioperative features can serve as an effective tool for 
the prediction of post-transplant AKI stage 3. Through 
the model, the risk of an individual patient with potential 
AKI stage 3 after HT could be identified accurately, ena-
bling a timely intervention.
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