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In this research article, a new mathematical model of delayed differential equations is developed which discusses the interaction
among CD4 T cells, human immunodeficiency virus (HIV), and recombinant virus with cure rate. The model has two distributed
intracellular delays. These delays denote the time needed for the infection of a cell. The dynamics of the model are completely
described by the basic reproduction numbers represented by 𝑅0, 𝑅1, and 𝑅2. It is shown that if 𝑅0 < 1, then the infection-free
equilibrium is locally as well as globally stable. Similarly, it is proved that the recombinant absent equilibrium is locally as well as
globally asymptotically stable if 1 < 𝑅0 < 𝑅1. Finally, numerical simulations are presented to illustrate our theoretical results. Our
obtained results show that intracellular delay and cure rate have a positive role in the reduction of infected cells and the increasing
of uninfected cells due to which the infection is reduced.

1. Introduction

Human immunodeficiency virus (HIV) is a virus that causes
the condition of acquired immunodeficiency syndrome
(AIDS).The virus attacks a particular type of immune system
cell in the body, known as CD4 helper lymphocyte cells.
HIV destroys these cells, making it harder for body to
fight off other infections. Without treatment HIV-1 infection
passes through three different phases for HIV-1 infection
without treatment. The first one is the primary infection,
the second is chronic infection, and the third is acquired
immunodeficiency syndrome (AIDS). Several scientists and
researchers are working globally to investigate an effective
way to cure AIDS but they failed to completely eliminate
immunodeficiency virus from the human body.

In the recent past, mathematical modeling was often used
to study in vivo infection dynamics of many viruses such
as HIV-I, HBV, and HCV. Researchers have gained much
knowledge from these models about the mechanism of the
interactions of different components such as infected cells
and immune systemwithin a host and have thereby enhanced

the progress in understanding the HIV-1 infection. Such
understanding in turn may offer guidance for developing
new drugs and for designing optimal combination of existing
therapies. The basic and simple model of HIV-1 infection
consisting of three populations, uninfected cells, infected
cells, and viral particles, is governed by the following three-
dimensional model of nonlinear ordinary differential equa-
tions (ODEs) [1–3]:

�̇� (𝑡) = 𝜆 − 𝑑𝑥 (𝑡) − 𝛽𝑥 (𝑡) V (𝑡) ,
̇𝑦 (𝑡) = 𝛽𝑥 (𝑡) V (𝑡) − 𝑎𝑦 (𝑡) ,
V̇ (𝑡) = 𝑘𝑦 (𝑡) − 𝑝V (𝑡) .

(1)

The different densities of uninfected cells and infected cells
and the density of virus have been denoted by 𝑥(𝑡), 𝑦(𝑡),
and V(𝑡), respectively. 𝜆 is the rate at which new susceptible
cell is generated. 𝑑 is natural death rate of uninfected cells
and 𝛽 is the rate of infection. 𝑎 is the death rate of infected
cells which produce new virus particles at a rate 𝑘. Rong et
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al. [4] extended the basic model of HIV-1 infection to four-
dimensional ordinary differential equation model, where
latent period for the infected cells is included and a portion
of these cells is reverted to the uninfected class.This improve-
mentmakes the use of nonlinear stabilitymethods nontrivial.
The authors only established the local asymptotic stability
of the equilibria. However, they left the global stability of
the model as an open problem. Buonomo and Vargas-de-
León [5] resolved elegantly the issue left in [4] and obtained
the conditions of global stability of the equilibrium states by
using two distinct techniques: Lyapunov direct method and
Li and Muldowney’s geometric approach. In fact, to build
up a more beneficial understanding of a virus dynamics in
vivo, so many authors have been devoted to studying the
mechanism of infected cells reverting to the uninfected state
by loss of all cccDNA from their nucleus, (see Tian and Liu
[6]). Conclusive evidences that infected CD4 T cells could be
cured by chemotherapy can be found in [7, 8], which is one
of our motivations in the modeling for viral dynamics.

In different control measures, recombinant virus is one
which is used for controlling the infection of HIV-1 [9–
13]. The decline of HIV-1 load about 1000-fold has been
proved using recombinant in vitro studies. But the efficacy
of this control strategy for decreasing the viral load in AIDS
patients is unknown. Genetic engineering offers an alterna-
tive approach, featuring modification of a viral genome to
produce recombinant capable of controlling infections by
other viruses [11]. This method has been used to modify
rhabdoviruses, including the rabies and the vesicular stom-
atitis viruses (VSV), making them capable of infecting and
killing cells previously attacked by HIV-1. The engineered
virus codifies the preceptor pair CD4 and CXCR4 of the host
cell membrane and bind to the protein complex gp120/41 of
HIV-1 expressed on the surface of infected cells [9]. A basic
estimation using a currently engineered virus indicated an
HIV-1 load reduction of 9 percent and a recovery of host
cells to 17 percent of their normal level. Greater success (98
percent HIV reduction, 44 percent host cells recovery) is
expected asmore competent engineered viruses are designed.
These results suggest that therapy using viruses could be
an alternative to extend the survival of AIDS patients. The
purpose of introducing this virus is to fight with HIV to
control this infection. In [11], a new virus was introduced into
model (1) and the model modified to the following form:

�̇� (𝑡) = 𝜆 − 𝑑𝑥 (𝑡) − 𝛽𝑥 (𝑡) V (𝑡) ,
̇𝑦 (𝑡) = 𝛽𝑥 (𝑡) V (𝑡) − 𝑎𝑦 (𝑡) − 𝛼𝑤 (𝑡) 𝑦 (𝑡) ,
�̇� (𝑡) = 𝑎𝑤 (𝑡) 𝑦 (𝑡) − 𝑏𝑧 (𝑡) ,
V̇ (𝑡) = 𝑘𝑦 (𝑡) − 𝑝V (𝑡) ,
�̇� (𝑡) = 𝑐𝑧 (𝑡) − 𝑞𝑤 (𝑡) .

(2)

Here the new variables 𝑤(𝑡) and 𝑧(𝑡) stand for recombinant
virus and double-infected cells, respectively. The rate of
production of double-infected cells is 𝛼. The removal rate
of recombinant is denoted by 𝑞𝑤. 𝑏𝑧 is the death rate of
double-infected cells which release recombinant at a rate𝑐𝑧. The authors of the above model analyzed the structure

of equilibrium solutions and presented some simulations.
Further, Jiang et al. [12] completely analyzed this model. Yu
and Zou [13] modified model (2) by incorporating a control
parameter 𝜂 to measure the injection rate of the recombinant
for controlling/eliminating the HIV virus. Tian et al. [14]
modified this model further by introducing the time lag into
model (2) because there is time lag in infection process. They
extendedmodel (2) by introducing time delay and studied the
effect of delay in controlling this infection.

In this paper, we consider that the contact process
between the uninfected and virus-producing cells is not
instantaneous.Thus, we include a delay, similar to the disease
transmission term, in the rate of contact term. Further we
also incorporate recovery rate of unproductively infected cells
to uninfected cells. The recovery of these cells to uninfected
cells is due to loss of all DNA from their nucleus by using
drugs therapy [15, 16]. Our proposed model is extended to
the followingmodel after incorporating the above-mentioned
terms:

�̇� (𝑡) = 𝜆 − 𝑑𝑥 (𝑡) − 𝛽𝑒−𝑎𝜏𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) + 𝛾𝑦 (𝑡) ,
̇𝑦 (𝑡) = 𝛽𝑒−𝑎𝜏𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) − (𝑎 + 𝛾) 𝑦 (𝑡)

− 𝛼𝑤 (𝑡) 𝑦 (𝑡) ,
�̇� (𝑡) = 𝛼𝑤 (𝑡) 𝑦 (𝑡) − 𝑏𝑧 (𝑡) ,
V̇ (𝑡) = 𝑘𝑦 (𝑡) − 𝑝V (𝑡) ,
�̇� (𝑡) = 𝑐𝑧 (𝑡) − 𝑞𝑤 (𝑡) ,

(3)

where 𝛾 is the rate of reversion of infected cells. 𝜏 denotes
time lag in contact and infection process. We present the
dynamical behavior of the proposed model and show how
delays and cure rate influence stability. We prove the well-
posedness of the proposedmodel and study the effect of delay
and cure rate in controlling HIV-1. We find the basic repro-
duction numbers. It is shown that infection-free equilibrium𝐸0 is locally as well as globally asymptotically stable. It is also
shown that 𝐸1 (recombinant absent equilibrium) is locally as
well as globally asymptotically stable.

We have divided this paper into the following sections.
The well-posedness and positivity of the solution are dis-
cussed in the next section. In Section 3, local and global
stabilities of infection-free equilibrium 𝐸0 are discussed. The
stability of recombinant absent equilibrium 𝐸1 is presented
in Section 4. Numerical simulation is discussed in Section 5.
Finally, we have given conclusion in Section 6.

2. Positivity and Well-Posedness of
the Solution

This section discusses the positivity and well-posedness of
system (3).

Theorem 1. All the solutions of system (3) are nonnegative
provided the initial conditions are nonnegative and bounded.

Proof. Consider 𝐵 = 𝐶([−𝜏, 0]; 𝑅5) to be the Banach space
of continuous mapping. These are the mappings from [−𝜏, 0]
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to 𝑅5 equipped with the sup-norm. For system (4), consider
the initial conditions (𝑥(𝜙), 𝑦(𝜙), 𝑧(𝜙), V(𝜙), 𝑤(𝜙)) ∈ 𝑋,
satisfying

𝑥 (𝜙) ≥ 0,
𝑦 (𝜙) ≥ 0,
𝑧 (𝜙) ≥ 0,
V (𝜙) ≥ 0,
𝑤 (𝜙) ≥ 0,

𝜙 ∈ [−𝜏, 0] .

(4)

There exists unique solution (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), V(𝑡), 𝑤(𝑡)) of
system (3) under the given initial conditions (4). By using
constant of variation formula, we get the following solution
of system (3):

𝑥 (𝑡) = 𝑥 (0) 𝑒−∫𝑡0 (𝑑+𝛽V(𝜁))𝑑𝜁

+ 𝜆∫𝑡
0
𝛽𝑒−𝑎𝜏𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) 𝑒−∫𝑡𝜂 (𝑑+𝛽V(𝜁))𝑑𝜁𝑑𝜂,

𝑦 (𝑡) = 𝑦 (0) 𝑒−∫𝑡0 (𝑎+𝛼𝑧(𝜁))𝑑𝜁

+ ∫𝑡
0
(𝛽𝑒−𝑎𝜏𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)) 𝑒−∫𝑡𝜂 (𝑎+𝛼V(𝜁))𝑑𝜁𝑑𝜂,

𝑧 (𝑡) = 𝑧 (0) 𝑒−𝑏𝑡 + ∫𝑡
0
𝛼𝑤 (𝑡) 𝑦 (𝑡) 𝑒−∫𝑡𝜂 −𝑏(𝑡−𝜁)𝑑𝜁𝑑𝜂,

V (𝑡) = V (0) 𝑒−𝑝𝑡 + ∫𝑡
0
𝑘𝑒−𝑝(𝑡−𝜂)𝑑𝜂,

𝑤 (𝑡) = 𝑤 (0) 𝑒−𝑞𝑡 + ∫𝑡
0
𝑐𝑧 (𝜂) 𝑒−𝑞(𝑡−𝜂)𝑑𝜂,

(5)

which show the positivity of the solution. For boundedness
of the solution (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), V(𝑡), 𝑤(𝑡)), we consider

𝑀(𝑡) = 𝑐𝑘𝑥 (𝑡) + 𝑐𝑘𝑦 (𝑡) + 𝑐𝑘𝑧 (𝑡) + 𝑎𝑐2 V (𝑡)
+ 𝑏𝑘2 𝑤 (𝑡) .

(6)

The derivative of (6) yields

𝑑𝑀(𝑡)
𝑑𝑡
= 𝑐𝑘 (𝜆 − 𝑑𝑥 (𝑡) − 𝛽𝑒−𝑎𝜏𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) + 𝛾𝑦 (𝑡))
+ 𝑐𝑘 (𝛽𝑒−𝑎𝜏𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) − 𝑎𝑦 (𝑡) − 𝛾𝑧 (𝑡))
+ 𝑎𝑐2 (𝑘𝑦 (𝑡) − 𝑝V (𝑡)) +

𝑏𝑘
2 (𝑐𝑧 (𝑡) − 𝑞𝑤 (𝑡))

= 𝑐𝑘𝜆
− (𝑑𝑐𝑘𝑥 (𝑡) + 𝑎2𝑐𝑘𝑦 (𝑡) +

𝑏
2𝑐𝑘𝑦 (𝑡) − 𝛼𝑤 (𝑡) V (𝑡))

+ 𝑐𝑘 (𝑎𝑤 (𝑡) 𝑦 (𝑡) − 𝑏𝑧 (𝑡) + 𝑞𝑏𝑘2 𝑤 (𝑡) + 𝑝
𝑎𝑐
2 V (𝑡))

≤ 𝑐𝑘𝜆𝑒−𝑎𝜏 − Ω𝑀(𝑡) .
(7)

Here Ω = min{𝑑, 𝑎/2, 𝑏/2, 𝑞, 𝑝}. This means that 𝑀(𝑡) is
bounded, so 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), V(𝑡), and 𝑤(𝑡) are bounded.

System (4) has the following three possible biologi-
cally meaningful equilibria [17, 18]: disease-free equilib-
rium 𝐸0(𝑥0, 𝑦0, 𝑧0, V0, 𝑤0), recombinant absent equilibrium𝐸1(𝑥1, 𝑦1, 𝑧1, V1, 𝑤1), and recombinant present equilibrium𝐸2(𝑥2, 𝑦2, 𝑧2, V2, 𝑤2) are given by

𝐸0 = (𝜆𝑑 , 0, 0, 0, 0) ,

𝐸1 = ((𝑎 + 𝛾) 𝑝𝛽𝑘𝑒−𝑎𝜏 ,
𝜆𝑘𝛽𝑒−𝑎𝜏 − 𝑑𝑝 (𝑎 + 𝛾)

𝑘𝑎𝛽𝑒−𝑎𝜏 , 0,
𝜆𝑘𝛽𝑒−𝑎𝜏 − 𝑑𝑝 (𝑎 + 𝛾)

𝑝𝑎𝛽𝑒−𝑎𝜏 , 0) ,

𝐸2 = ( (𝛼𝜆𝑐 + 𝛾𝑏𝑞) 𝑝
𝛼𝑐𝑑𝑝 + 𝛽𝑘𝑞𝑏𝑒−𝑎𝜏 ,

𝑏𝑞
𝛼𝑐 ,

𝑞
𝛼𝑐 (

𝑐𝑘𝜆𝛼𝛽𝑒−𝑎(𝜏) − 𝛼𝑐𝑑𝑝 (𝑎 + 𝛾) − 𝑎𝑏𝑞𝑘𝛽𝑒−𝑎𝜏
𝛼𝑐𝑑𝑝 + 𝑏𝑘𝑞𝛽𝑒−𝑎𝜏 ) ,

𝑘𝑞𝑏
𝛼𝑐𝑝 ,

𝛼𝑐𝑘𝛽𝜆𝑒−𝑎(𝜏) − 𝛼𝑐𝑑𝑝 (𝑎 + 𝛾) − 𝑎𝑏𝑞𝑘𝛽𝑒−𝑎𝜏
𝛼 (𝛼𝑐𝑑𝑝 + 𝑏𝑘𝑞𝛽𝑒−𝑎𝜏) ) .

(8)

Each equilibrium point can be interpreted as follows. 𝐸0 is an
infection-free equilibrium corresponding to maximal levels
of healthy CD4 T cells. The second equilibrium 𝐸1 corre-
sponds to positive levels of healthy CD4T cells, infected cells,
and virus, but no recombinant virus.The third equilibrium𝐸2
corresponds to positive levels of healthy CD4 T cells, infected
cells, virus, and recombinant virus.

The basic reproduction number (see [19]) is obtained
from the proposed model as follows:

𝑅0 = 𝑘𝛽𝜆𝑒−𝑎𝜏
𝑑𝑝 (𝑎 + 𝛾) . (9)

For 𝑅0 < 1, 𝐸0 is the only equilibrium which is biologically
meaningful. If 𝑅0 > 1, there is another equilibrium point 𝐸1.
But 𝐸2 exists if and only if 𝑅2 > 1, where

𝑅2 = 𝛼𝛽𝜆𝑐𝑘𝑒
−𝑎𝜏 − 𝛼𝑐𝑑𝑝 (𝑎 + 𝛾)

𝛽𝑏𝑘𝑞 (𝑎 + 𝛾) 𝑒−𝑎𝜏
= (𝑎 + 𝛾) 𝛼𝑐𝑑𝑝𝛽𝑏𝑘𝑞𝑒−𝑎𝜏 (𝑅0 − 1) .

(10)
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Suppose that 𝑅1 = 1+𝛽𝑏𝑘𝑞𝑒−𝑎𝜏/𝛼𝑐𝑑𝑝, and 𝑅2 > 1 if and only
if 𝑅0 > 𝑅1.
3. Stability of the Disease-Free Equilibrium 𝐸0
The dynamical behavior of system (4) at 𝐸0 is discussed in
this section.

Theorem 2. For 𝑅0 < 1, the disease-free equilibrium 𝐸0 is
locally asymptotically stable while, for 𝑅0 > 1, 𝐸0 becomes
unstable and the recombinant absent equilibrium 𝐸1 occurs.
Proof. After liberalization around 𝐸0 system (4) becomes

�̇� (𝑡) = −𝑑𝑥 (𝑡) − 𝛽𝑒−𝑎𝜏 𝜆𝑑V (𝑡 − 𝜏) + 𝛾𝑦 (𝑡) ,
̇𝑦 (𝑡) = 𝛽𝑒−𝑎𝜏 𝜆𝑑V (𝑡 − 𝜏) − (𝑎 + 𝛾) 𝑦 (𝑡) ,
�̇� (𝑡) = −𝑏𝑧 (𝑡) ,
V̇ (𝑡) = 𝑘𝑦 (𝑡) − 𝑝V (𝑡) ,
�̇� (𝑡) = 𝑐𝑧 (𝑡) − 𝑞𝑤 (𝑡) .

(11)

The characteristic equation corresponding to the Jacobian
matrix of the linearized system (11) is given by

(𝑏 + 𝜌) (𝑑 + 𝜌) (𝑞 + 𝜌)
⋅ [(𝑎 + 𝛾 + 𝜌) (𝑝 + 𝜌) − 𝜆𝑑𝛽𝑘𝑒−𝜏(𝜌+𝑎)] ,

(12)

where 𝜌 stands for eigenvalue. The first factor of the above
equation has three negative roots and the nature of the roots
of the second factor is discussed in the following:

(𝑎 + 𝛾 + 𝜌) (𝑝 + 𝜌) = 𝜆𝑑𝛽𝑘𝑒−𝜏(𝜌+𝑎). (13)

The modulus of the left hand side of (13) satisfies
(𝑎 + 𝛾 + 𝜌) (𝑝 + 𝜌) ≥ (𝑎 + 𝛾) 𝑝, (14)

provided that 𝜌 has nonnegative real part.Themodulus of the
right hand side of (13) gives

𝜆
𝑑𝛽𝑘

𝑒−𝜏(𝜌+𝑎) = (𝑎 + 𝛾) 𝑝𝑅0 < (𝑎 + 𝛾) 𝑝. (15)

But this is contradiction. Thus, when 𝑅0 < 1, then all the
eigenvalues have negative real part. Thus the infection-free
state 𝐸0 is locally asymptotically stable. For 𝑅0 > 1, we have

𝑔 (𝜌) = (𝑎 + 𝛾 + 𝜌) (𝑝 + 𝜌) − 𝜆𝑑𝛽𝑘𝑒−𝜏(𝜌+𝑎). (16)

Now 𝑔(0) = (𝑎 + 𝛾)𝑝(1 − 𝑅0) < 0 and lim𝜌→∞𝑔(𝜌) = +∞.
There exists at least one positive root of 𝑔(𝜌) = 0. Therefore,
the infection-free equilibrium 𝐸0 is unstable if 𝑅0 > 1 (see
[20]).

Theorem3. Thedisease-free equilibrium𝐸0 is globally asymp-
totically stable when 𝑅0 < 1,
Proof. Consider

𝑉0 (𝑡) = 12 (𝑥 (𝑡) −
𝜆
𝑑)
2 + 𝜆𝑑𝑦 (𝑡) +

𝜆
𝑑𝑧 (𝑡)

+ (𝑎 + 𝛾) 𝜆𝑘𝑑 V (𝑡) + 𝑏𝜆𝑐𝑑𝑤 (𝑡)
+ 𝛽𝜆𝑑 𝑒−𝑎𝜏 ∫

𝑡

𝑡−𝜏
𝑥 (𝜁) V (𝜁) 𝑑 (𝜁) ,

(17)

where𝑉0 stands for Lyapunov function.The derivative of (17)
and the use of system (4) yield

�̇�0 (𝑡) = (𝑥 (𝑡) − 𝜆𝑑) (𝜆 − 𝑑𝑥 (𝑡)
− 𝛽𝑒−𝑎𝜏𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) + 𝛾𝑦 (𝑡))
+ 𝜆𝑑 (𝛽𝑒−𝑎𝜏𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) − 𝑎𝑦 (𝑡) − 𝛾𝑦 (𝑡)
+ 𝛼𝑤 (𝑡) 𝑦 (𝑡)) + 𝜆𝑑 (𝑤 (𝑡) 𝑦 (𝑡) − 𝑏𝑧 (𝑡))

+ (𝑎 + 𝛾) 𝜆𝑘𝑑 (𝑘𝑦 (𝑡) − 𝑝V (𝑡)) + 𝑏𝜆𝑐𝑑 (𝑐𝑧 (𝑡) − 𝑞𝑤 (𝑡))
+ 𝛽𝜆𝑑 𝑒−𝑎𝜏 ∫

𝑡

𝑡−𝜏
𝑥 (𝜁) V (𝜁) 𝑑 (𝜁) .

(18)

After further simplification, the above equation becomes

�̇�0 (𝑡) = −(𝑥 (𝑡) − 𝜆𝑑)

⋅ ((𝑥 (𝑡) − 𝜆𝑑) + 𝛽𝑒−𝑎𝜏𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏))

− (𝜆𝑑 − 𝑥 (𝑡)) 𝛾𝑦 −
𝑞𝑏𝜆
𝑐𝑑 𝑤 (𝑡)

− (𝑎 + 𝛾) 𝑝𝜆𝑑𝑘 ( 𝑘𝛽𝜆𝑒−𝑎𝜏
(𝑎 + 𝛾) 𝑑𝑝 − 1) V (𝑡)

= −(𝑥 (𝑡) − 𝜆𝑑)

⋅ ((𝑥 (𝑡) − 𝜆𝑑) + 𝛽𝑒−𝑎𝜏𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏))

− (𝜆𝑑 − 𝑥 (𝑡)) 𝛾𝑦 −
(𝑎 + 𝛾) 𝑝𝜆

𝑑𝑘 (1 − 𝑅0) V (𝑡)

− 𝑞𝑏𝜆𝑐𝑑 𝑤 (𝑡) .

(19)

Thus, when 𝑅0 < 1, then (19) implies that �̇�0(𝑡) < 0
and equality holds if and only if 𝑥0 = 𝜆/𝑑, 𝑦(𝑡) =0, 𝑧(𝑡) = 0, V(𝑡) = 0, 𝑤(𝑡) = 0. Thus, by using LaSalle’s
invariance principle (see [21]), we conclude that𝐸0 is globally
asymptotically stable when 𝑅0 < 1.
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4. Stability of Recombinant
Absent Equilibrium 𝐸1

This section is devoted to the analysis of 𝐸1.
Theorem 4. If 1 < 𝑅0 < 𝑅1, then the recombinant present
equilibrium𝐸1 is locally asymptotically stable while𝐸1 becomes
unstable for 𝑅0 > 𝑅1.
Proof. The linearized form of model (4) at 𝐸1(𝑥1, 𝑦1,𝑧1, V1, 𝑤1) becomes

�̇� (𝑡) = −𝑑𝑥 (𝑡) − 𝛽𝑒−𝑎𝜏 (𝑥1V (𝑡 − 𝜏) + V1𝑥 (𝑡 − 𝜏))
+ 𝛾𝑦 (𝑡) ,

̇𝑦 (𝑡) = 𝛽𝑒−𝑎𝜏 (𝑥1V (𝑡 − 𝜏) + V1𝑥 (𝑡 − 𝜏))
− (𝑎 + 𝛾) 𝑦 (𝑡) − 𝛼𝑦1𝑤 (𝑡) ,

�̇� (𝑡) = 𝛼𝑦1𝑤 (𝑡) − 𝑏𝑧 (𝑡) ,
V̇ (𝑡) = 𝑘𝑦 (𝑡) − 𝑝V (𝑡) ,
�̇� (𝑡) = 𝑐𝑧 (𝑡) − 𝑞𝑤 (𝑡) .

(20)

Let 𝑍1(𝜌) 𝑍2(𝜌) = 0 be the characteristic equation of the
Jacobian matrix of system (20), where

𝑍1 (𝜌)
= 𝜌2 + (𝑏 + 𝑞) 𝜌 + 𝑏𝑞
− 𝑐𝛼 (𝜆𝑘𝛽𝑒−𝑎𝜏 − 𝑑𝑝 (𝑎 + 𝛾))𝑎𝑘𝛽𝑒−𝑎𝜏 ,

(21)

𝑍2 (𝜌)
= 𝜌3 + (𝑎 + 𝛾 + 𝑝 + 𝑘𝛽𝜆

(𝑎 + 𝛾) 𝑝𝑒−𝑎𝜏)𝜌2

+ [ 𝑘𝛽𝜆
(𝑎 + 𝛾) 𝑝𝑒−𝑎𝜏 (𝑎 + 𝛾 + 𝑝) + (𝑎 + 𝛾) 𝑝] 𝜌

+ 𝑘𝛽𝜆𝑒−𝑎𝜏 − (𝑎 + 𝛾) (𝜌 + 𝑑) 𝑝𝑒−𝜌𝜏.

(22)

Now 𝑍1(𝜌) can be simplified as

𝑍1 (𝜌) = 𝜌2 + (𝑏 + 𝑞) 𝜌 + 𝑏𝑞 (1 − 𝑅2) , (23)

which indicates that 𝑍1(𝜌) = 0 has two roots with negative
real part if and only if 𝑅2 < 1 (i.e., 𝑅0 < 𝑅1) or one positive
and one negative root if 𝑅2 > 1 (i.e., 𝑅0 > 𝑅1). Therefore, if𝑅0 > 𝑅1, then the single infection equilibrium 𝐸2 is unstable.
After some simplification 𝑍2(𝜌) = 0 can be written as

𝜌3 + 𝑎2 (𝜏) 𝜌2 + 𝑎1 (𝜏) 𝜌 + 𝑎0 (𝜏) − (𝑐1𝜌 + 𝑐2) 𝑒−𝜌𝜏 = 0, (24)

where

𝑎2 (𝜏) = 𝑎 + 𝛾 + 𝑝 + 𝑘𝛽𝜆
(𝑎 + 𝛾) 𝑝𝑒−𝑎𝜏,

𝑎1 (𝜏) = 𝑘𝛽𝜆
(𝑎 + 𝛾) 𝑝𝑒−𝑎𝜏 (𝑎 + 𝛾 + 𝑝) + (𝑎 + 𝛾) 𝑝,

𝑎0 (𝜏) = 𝑘𝛽𝜆𝑒−𝑎𝜏,
𝑐1 = (𝑎 + 𝛾) 𝑝,
𝑐2 = (𝑎 + 𝛾) 𝑝𝑑.

(25)

It is clear that 𝜌 = 0 is not a root of (24) if𝑅0 > 1.When 𝜏 = 0,
(24) becomes

𝜌3 + 𝑎2 (0) 𝜌2 + (𝑎1 (0) − 𝑐1) 𝜌 + 𝑎0 (0) − 𝑐2 = 0. (26)

Using Routh-Hurwitz criterion (see [22]), we can prove that

𝑎2 (0) = 𝑎 + 𝛾 + 𝑝 + 𝑘𝛽𝜆
(𝑎 + 𝛾) 𝑝 > 0,

𝑎1 (0) − 𝑐1 = 𝑘𝛽𝜆
(𝑎 + 𝛾) 𝑝 (𝑎 + 𝛾 + 𝑝) > 0,

𝑎0 (0) − 𝑐2 = (𝑎 + 𝛾) 𝑝𝑑 (𝑅0𝜏=0 − 1) > 0.

(27)

Similarly,

𝑎2 (0) (𝑎1 (0) − 𝑐1) − (𝑎0 (0) − 𝑐2)
= 𝑘2𝛽2𝜆2
(𝑎 + 𝛾)2 𝑝2 (𝑎 + 𝛾 + 𝑝)

+ 𝑘𝛽𝜆
(𝑎 + 𝛾) 𝑝 (𝑎 + 𝛾 + 𝑝)

2 + (𝑎 + 𝛾) 𝑝𝑑 > 0.
(28)

Thus, any root of (24) has negative real part when 𝜏 = 0. Now
we consider the distribution of the roots when 𝜏 > 0. Let 𝜌 =𝑖𝜅 (𝜅 > 0) be the pure imaginary root of (24).Then, we obtain

− 𝑖𝜅3 − 𝑎2 (𝜏) 𝜅2 + 𝑖𝑎1 (𝜏) 𝜅 + 𝑎0 (𝜏) − (𝑖𝑐1𝜅 + 𝑐2) 𝑒−𝑖𝜅𝜏
= 0. (29)

Themodulus of the above equation gives the following result:

𝐻𝑠 (𝜅2) = 𝜅6 + [𝑎22 (𝜏) − 2𝑎1 (𝜏)] 𝜅4
+ [𝑎21 (𝜏) − 2𝑎0 (𝜏) 𝑎2 (𝜏) − 𝑐21 ] 𝜅2 + 𝑎20 (𝜏)
− 𝑐22 = 0.

(30)

Since

𝑎22 (𝜏) − 2𝑎1 (𝜏) = (𝑎 + 𝛾)2 + 𝑝2 + 𝑑2𝑅20 > 0,
𝑎21 (𝜏) − 2𝑎0 (𝜏) 𝑎2 (𝜏) − 𝑐21 = 𝑑2 [(𝑎 + 𝛾)2 + 𝑝2] 𝑅20
> 0,

𝑎20 (𝜏) − 𝑐22 = (𝑎 + 𝛾)2 𝑝2𝑑2 (𝑅20 − 1) > 0,

(31)
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we see that all the coefficients of the above equation are posi-
tive which implies that the function𝐻𝑠(𝜅2) is monotonically
increasing for 0 ≤ 𝜅2 < ∞ with 𝐻𝑠(0) > 0. Therefore, (30)
has no positive roots if 𝑅0 > 1. Equation (24) has all the roots
with negative real part if 𝜏 > 0 and 𝑅0 > 1.
Theorem 5. For 1 < 𝑅0 < 𝑅1, the recombinant present
equilibrium 𝐸1 is globally asymptotically stable.

Proof. Let us construct the Lyapunov functional

𝑉1 (𝑡) = (𝑥 − 𝑥1 ln𝑥) + (𝑦 − 𝑦1 ln𝑦) + 𝑧
+ 𝑎 + 𝛾𝑘 (V − V1 ln V) + 𝑏𝑐𝑤
+ 𝑥1V1𝛽𝑒−𝑎𝜏 ∫

𝑡

𝑡−𝜏
( 𝑥 (𝜃) V (𝜃)
V1𝑥 (𝜃 + 𝜏) − ln𝑥 (𝜃) V (𝜃)) 𝑑𝜃.

(32)

The derivative of (32) yields

�̇�1 (𝑡) = (1 − 𝑥1𝑥 ) �̇� + (1 −
𝑦1𝑦 ) ̇𝑦 + �̇� + 𝑎 + 𝛾𝑘 (1

− V1
V
) V̇ + 𝑏𝑐 �̇� + 𝑥1V1𝛽𝑒−𝑎𝜏 (

𝑥 (𝑡) V (𝑡)
𝑥 (𝑡 + 𝜏) V1

− 𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)𝑥 (𝑡) V1 − ln (𝑥 (𝑡) V (𝑡))

+ ln (𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏))) = (1 − 𝑥1𝑥 ) (𝜆 − 𝑑𝑥 (𝑡)

− 𝛽𝑒−𝑎𝜏𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) + 𝛾𝑦 (𝑡)) + (1 − 𝑦1𝑦 )
⋅ (𝛽𝑒−𝑎𝜏𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) − (𝑎 + 𝛾) 𝑦 (𝑡)
− 𝛼𝑤 (𝑡) 𝑦 (𝑡)) + 𝛼𝑤 (𝑡) 𝑦 (𝑡) − 𝑏𝑧 (𝑡) + 𝑎 + 𝛾𝑘 (1
− V1

V
) (𝑘𝑦 (𝑡) − 𝑝V (𝑡)) + 𝑏𝑐 (𝑐𝑧 (𝑡) − 𝑞𝑤 (𝑡))

+ 𝑥1V1𝛽𝑒−𝑎𝜏 ( 𝑥 (𝑡) V (𝑡)
𝑥 (𝜏 + 𝑡) V1 −

𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)
𝑥 (𝑡) V1

+ ln𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)𝑥 (𝑡) V (𝑡) ) .

(33)

Model (1) at single infection equilibrium 𝐸(𝑥1, 𝑦1, 𝑧1, V1, 𝑤1)
becomes

𝜆 = 𝑑𝑥1 + 𝛽𝑒−𝑎𝜏𝑥1V1 + 𝛾𝑦1,
𝛽𝑒−𝑎𝜏𝑥1V1 = (𝑎 + 𝛾) 𝑦1,

𝑘𝑦1 = 𝑝V1.
(34)

If 𝜏 is very large, that is, when the time delay in the contact of
uninfected targeted cells and pathogen virus is large and the
latent period is very large, then the rate of infection will be
very small and contrarily if 𝜏 is very small, then the infection

will spread more rapidly. Therefore, we suppose that delay is
very large, and taking limit we get

lim
𝜏→∞

(𝑥 (𝑡 + 𝜏)) = 𝑥 (𝑡) . (35)

Using the above identities and assumption (33) in (35), we
get

�̇�1 (𝑡) = 𝑑𝑥1 (2 − 𝑥
𝑥1 −

𝑥1𝑥 ) + 𝛽𝑒−𝑎𝜏𝑥1V1 (3 −
𝑥1𝑥

− 𝑦V1𝑦1V −
𝑦1𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)𝑦𝑥1V1

+ ln 𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)𝑥V ) − (𝑥1𝑥 − 1) 𝛾𝑦

+ 𝛼𝑑𝑝𝛽𝑘 (𝑅0 − 𝑅1) 𝑤 (𝑡) .

(36)

The following inequalities hold [14]:

2 − 𝑥
𝑥1 −

𝑥1𝑥 ≤ 0,

3 − 𝑥1𝑥 − 𝑦V1𝑦1V −
𝑦1𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)𝑦𝑥1V1

+ ln 𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)𝑥V ≤ 0.

(37)

Therefore, by using the above inequalities, (36) implies that𝑑𝑉1/𝑑𝑡 < 0 when 𝑅0 < 𝑅1, and the equality holds when𝑥 = 𝑥1, 𝑦 = 𝑦1, 𝑧 = 0, V = V1, 𝑤 = 0. Therefore,
by LaSalle’s invariance principle [21], we conclude that 𝐸1 is
globally asymptotically stable.

5. Numerical Simulation

In this section, we present the numerical simulations by using
MATLAB to illustrate our theoretical results.The drugs ther-
apy can control the HIV-1. Using drugs therapy, the infected
cells revert to the uninfected cells. For numerical simulation,
we consider the values of the parameters presented in Table 1
[11].

Figures 1–3 are the oscillations of uninfected cells,
infected cells, double-infected cells, pathogen virus, and
recombinant virus. Figure 1 shows the dynamical behavior of
HIV-1 infection for the delay term 𝜏 = 1.5 and for different
recovery rates 𝛾 = 0.01, 0.1, 0.3, 0.5, 0.7, 0.9 and represents
that as the value of the recovery rate increases the density of
of uninfected cells increases and the concentration of infected
cells decreases. Figure 2 shows that by varying time delay𝜏 = 0.7 and keeping the values of 𝛾 constant, the amplitude of
oscillation increases and the rate towards stability decreases.
Figure 3 shows that if we further reduce the delay time𝜏 = 0.4, then amplitudes of oscillations increases. More
importantly, it is noted that the amplitudes of the oscillations
in Figure 3 are almost double of that in Figure 1 though
their frequencies are almost not changed. These figures show
that introducing even very small time delay in the model
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Figure 1: Simulation of system (4) for 𝜏 = 1.5, showing convergence to the stable equilibrium 𝐸1.
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Figure 2: Simulation of system (4) for 𝜏 = 0.7 showing convergence to the stable equilibrium 𝐸2.
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Figure 3: Simulation of system (4) for 𝜏 = 0.4 showing oscillating behavior.
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Table 1: Parameters values used for numerical simulation.

Parameters Definition Value (day−1)
𝜆 Generation rate of host cell 2 cells/mm3

𝑑 Natural death rate of host cell 0.01
𝛽 Rate of infection 0.004mm3/vir
𝑎 Death rate of HIV-1 infected cell 0.5
𝛼 Rate of double infection Assumed 𝛼 = 𝛽
𝑏 Death rate of double-infected cell 2
𝑘 HIV-1 production rate by infected cells 50 vir/cell
𝑝 Removal rate of HIV-1 3

𝑐 Production rate of recombinant 2000 vir/cell
by a double-infected cell

𝑞 Rate of removal of recombinant Assumed 𝑞 = 𝑝
𝜏 Delay 1.0∼1.5 days

can produce significant quantitative changes in solutions,
which cannot be observed from the model without delay.
Also, as the value of recovery rate increases the infected cells
revert to the healthy cells more rapidly and converge to stable
equilibrium.We can see that the infection would always keep
stability when the cure rate 𝛾 is larger. Therefore, we can
also claim that the cure rate 𝛾 is a very important parameter
and by improving the cure rate, we will control the disease.
Moreover, the significant qualitative changes due to existence
of delay can be observed. These results also suggest that the
delay is very important fact which should not be missed.

6. Conclusion

In this paper, a delayed HIV-1 model with drugs therapy
is presented. The improved model with delay has three
equilibrium solutions 𝐸0, 𝐸1, and 𝐸2. It has been shown
that 𝐸0 is locally as well as globally asymptotically stable for𝑅0 ∈ (0, 1), which loses its stability at 𝑅0 = 1. Then, 𝐸0
bifurcates into 𝐸1. Next, it is also proved that 𝐸1 is also locally
and globally asymptotically stable for 𝑅0 ∈ (1, 𝑅1). Delay,
as the bifurcation parameter, plays a very important role in
determining the dynamic behavior of the system. Delay may
change the dynamical behavior quantitatively, even in the
normal range of values. This indeed suggests that delay is a
very important fact which should not be missed in HIV-1
modeling. The drugs therapy also has an important effect on
model (3). As the value of recovery rate increased the infected
cells revert to the uninfected cells resulting in decrease in
infected cells and increase in healthy cells. And this infection
can easily be controlled if we improve the cure rate.
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