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SUMMARY

Diverse cellular processes are driven by motor pro-
teins that are recruited to and generate force on
lipid membranes. Surprisingly little is known about
how membranes control the force from motors and
how this may impact specific cellular functions.
Here, we show that dynein motors physically cluster
into microdomains on the membrane of a phago-
some as it matures inside cells. Such geometrical
reorganization allows many dyneins within a cluster
to generate cooperative force on a single microtu-
bule. This results in rapid directed transport of the
phagosome toward microtubule minus ends, likely
promoting phagolysosome fusion and pathogen
degradation. We show that lipophosphoglycan, the
major molecule implicated in immune evasion of
Leishmania donovani, inhibits phagosome motion
by disrupting the clustering and therefore the coop-
erative force generation of dynein. These findings
appear relevant to several pathogens that prevent
phagosome-lysosome fusion by targeting lipid mi-
crodomains on phagosomes.

INTRODUCTION

Microtubule motors of the kinesin and dynein families drivemany

cellular processes such as organelle transport, chromosome

segregation, and beating of cilia/flagella. This diversity of func-

tion requires the cellular localization and activity of motors to

be regulated in many ways (Vale, 2003). Regulation of motors

at the single-molecule level by motor-associated regulatory pro-

teins has been studied extensively (Vallee et al., 2012; Verhey

and Hammond, 2009). However, most cellular functions require

large forces that can only be generated collectively by a team

of many motors (Mallik et al., 2013). Little is known about

how such motor teams are assembled at appropriate cellular

locations before they can execute a specific task. The substrate

on which motor teams must assemble inside cells is usually a

lipid membrane, for example, the bilayer membrane covering

vesicular cargoes that are transported by motors. We therefore
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wondered if motor recruitment to a lipid membrane can be

controlled by the membrane itself, perhaps in coordination with

other membrane-bound proteins that regulate vesicle trafficking

(e.g., Rab GTPases).

In this respect, the heterogeneity of biological membranes is

of particular interest. Cholesterol and sphingolipids appear

enriched within lipid microdomains (also known as lipid rafts),

where they enhance membrane packing to promote microdo-

main formation (Mayor and Rao, 2004; Rao and Mayor, 2014;

Simons and Ikonen, 1997). This process is likely facilitated by a

combination of protein-lipid and protein-protein interactions,

because microdomains are enriched in specific proteins (e.g.,

glycosylphosphatidylinositol [GPI]-anchored proteins) and may

be maintained by active processes that drive the membrane

away from thermodynamic equilibrium (Rao and Mayor, 2014).

Motors could be localized to microdomains by direct binding

to lipids (Klopfenstein et al., 2002) or via adaptor proteins (Jo-

hansson et al., 2007). Membranous regions of highmotor density

could potentially be created by clustering many copies of a mo-

tor within a microdomain. Such geometrical clustering may be of

advantage if multiple motors are to work cooperatively as a team

(Mallik et al., 2013; Rai et al., 2013). Geometrical arguments sug-

gest that motor clustering is necessary for efficient transport of

micron-sized cargoes (Erickson et al., 2011). Indeed, coopera-

tive improvement in transport of artificial liposomes through

clustering-induced dimerization of kinesin-3motors has been re-

ported (Klopfenstein et al., 2002). A minus-end-directed kinesin

is also shown to localize into membrane domains near the apical

subplasma membrane of polarized epithelial cells (Noda et al.,

2001).

However, the functional relevance of clustering of motors

and its impact on specific cellular processes is unknown. In

this context, the appearance of microdomains on phagosomes

with maturation is particularly interesting (Dermine et al.,

2001,2005; Goyette et al., 2012). Phagocytosis and subsequent

encapsulation of microbes into a membranous vesicle result

in the formation of a phagosome. Phagosome maturation is inti-

mately connected to microtubule (MT) motor-driven motion.

Early phagosomes (EPs) move in a bidirectional (back-and-forth)

manner on MTs, when they physically interact with and ex-

change lipids and proteins with endosomes (Blocker et al.,

1997; Vieira et al., 2002). Intriguingly, this motion changes as

the phagosome matures, so that late phagosomes (LPs) exhibit
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rapid unidirectional dynein-driven transport toward the MT

minus end. The mechanism of this change is important to under-

stand because it facilitates fusion of phagosomes with perinu-

clear lysosomes and is essential for pathogen clearance. MT

depolymerization blocks delivery of fluid phase markers from

endosomes to phagosomes and also reduces phagosome-

lysosome fusion (Blocker et al., 1996; Desjardins et al., 1994;

Harrison et al., 2003). Importantly, pathogens such asMycobac-

terium tuberculosis (Sun et al., 2007) and Salmonella (Harrison

et al., 2004) specifically inhibit this switch to dynein-dependent

transport as a survival strategy.

We therefore wondered if microdomains on the phagosome

membrane could upregulate dynein-driven transport of phago-

somes. Cholesterol appears to be amajor player in microdomain

formation on cellularmembranes (Mayor andRao, 2004; Rao and

Mayor, 2014; Simons and Ikonen, 1997). Dynein-driven transport

of endosomes increases in cholesterol storage disorders like

Niemann-Pick disease, where cholesterol-laden ‘‘paralyzed’’ en-

dosomes cluster around the MT minus ends (Lebrand et al.,

2002). Cholesterol accumulation into endolysosomes results in

cholesterol-poor phagosomes that are unable to fuse with lyso-

somes (Huynh et al., 2008). Interestingly, the GTPase Rab7 that

recruits dynein to phagosomes interacts with the cholesterol

sensor ORP1L (Rocha et al., 2009) and is enriched in a choles-

terol-rich detergent resistant fraction of phagosomalmembranes

(Goyette et al., 2012).

Taken together, the above observations suggest a molecular

connection between dynein, Rab7, and cholesterol within micro-

domains on the phagosome membrane. Here, we show using

multiple experimental approaches that dynein clusters into

microdomains on the membrane of a phagosome as it matures

inside cells. This geometrical clustering allows many dyneins to

simultaneously contact a single MT and generate large coopera-

tive force. This force drives rapid retrograde transport of late

phagosomes (LPs), likely enabling their fusion with degradative

lysosomes. We also show that lipophosphoglycan, the main

molecule used by pathogenic Leishmania donovani parasites to

survive inside macrophages, specifically disrupts the clustering

of dynein on LPmembranes to block retrograde transport of LPs.

RESULTS

Transport- and Maturation-Dependent Changes of
Latex Bead Phagosomes Inside Cells
Weused phagocytosed beads (latex or silica) to understand how

motor-driven transport and phagosome maturation impact each

other. Phagocytosed beads undergo biogenesis inside cells

to acquire a bilayer lipid membrane (Desjardins and Griffiths,

2003). Motor and non-motor proteins assemble in situ on this

membrane to drive vigorous transport of these ‘‘latex bead

phagosomes’’ (henceforth referred to as phagosomes) along

MTs (Blocker et al., 1997; Rai et al., 2013). Motion at defined

stages of maturation can be assayed using a pulse-chase strat-

egy that allows phagosomes to mature for specific chase pe-

riods after ingestion. Proteomic and biochemical studies have

extensively used latex bead phagosomes to understand phago-

some biology (Desjardins and Griffiths, 2003; Desjardins et al.,

1994). These refractile and spherical phagosomes are also ideal
for optical trapping to measure forces generated by motors (Rai

et al., 2013).

Beads were phagocytosed into J774 mouse macrophages

(Rai et al., 2013) or into Dictyostelium discoideum cells. The

beads were chased inside Dictyostelium cells for 5–10 min to

investigate early phagosome (EP) motion and for >30 min to

investigate LP motion (Barak et al., 2014). EPs moved in bidirec-

tional manner inside agar-flattened Dictyostelium cells (Fig-

ure 1A; Movie S1). For EPs, fast unidirectional segments of

motion were interrupted by pauses followed by reversal and

rapid unidirectional motion in opposite direction. In contrast,

LP motion was largely uninterrupted and unidirectional (Fig-

ure 1A). Many LPs appeared to move smoothly inside cells

over distances longer than apparent from Figure 1A, but the

convoluted trajectories prevented reliable characterization of

motion. Figure 1A also shows representative tracks of endo-

somes inside Dictyostelium cells. These endosomes do not

have beads inside them but are highly motile endogenous vesi-

cles at various stages of maturation. The motion of EPs was

very similar to the bidirectional motion of endosomes, but the

motion of LPs resembled that of unidirectional endosomes.

The velocity of motile EPs within fast unidirectional segments

was similar to unidirectional velocity of LPs and endosomes (Fig-

ure 1C). The bidirectional (EP) and unidirectional (LP) motions are

also reproduced for phagosomes inside J774 mouse macro-

phages (Figure S1A). Therefore, phagocytosed beads appear

to replicate specific maturation-dependent aspects of motion

within the endophagosomal pathway. Phagosomes mature

beyond the EP stage within�10min of ingestion inDictyostelium

(Barak et al., 2014). It was therefore practically impossible to

assay inside Dictyostelium cells how motor function changes

from EPs to LPs.

In Vitro Reconstitution of Early and Late Phagosome
Transport
Vesicle transport can be reconstituted in Dictyostelium cell

extract, permitting controlled evaluation of motor protein activity

(Pollock et al., 1999; Soppina et al., 2009b). Detailed protocols

have been described (also see Experimental Procedures) for pu-

rification of EPs and LPs from Dictyostelium using a pulse-chase

strategy (Barak et al., 2014; Gotthardt et al., 2006). Phagosomes

purified from Dictyostelium were used for in vitro motility assays

(Figure 1B; Movies S2 and S3) on polarity-labeled MTs (Soppina

et al., 2009a). We verified the identity and purity of EPs and LPs

purified in a similar manner from J774 or RAW264.7 mouse

macrophage cell lines (Experimental Procedures; also see

Figure S2). A clear difference was observed (Figure 1B) between

motion of purified EPs (bidirectional with frequent reversals)

and LPs (unidirectional retrograde, with rare reversals). In vitro

motion of EPs and LPs was characteristically similar to their

corresponding motion inside cells (compare Figures 1A and

1B). Figure 1B also shows bidirectional and unidirectional tracks

of endosomes purified from Dictyostelium, which appear very

similar to EPs (bidirectional) and LPs (unidirectional). The velocity

of purified EPs, LPs, and endosomes during uninterrupted

segments of motion was statistically same as their respective

velocities inside cells (Figure 1C). Figure 1D reports run lengths

for purified EPs and LPs (35 of each used for analysis). A
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Figure 1. Latex Bead Phagosome Motion Inside Dictyostelium Cells and in Cell Extract

(A) Position-time plots of early phagosomes (EPs), late phagosomes (LPs), and endosomes inside Dictyostelium cells. The distance traveled along a curved

trajectory (assumed to be a microtubule) was calculated as a function of time. MT orientation inside cells is uncertain.

(B) Position-time plots of purified EPs, LPs, and endosomesmoving along singlemicrotubules in an in vitromotility assay. Themicrotubule orientation is shown on

the right.

(C) Velocity of motile EPs, LPs, and endosomes inside Dictyostelium cells and in vitro. Direction of motion (toward plus or minus end of MT) is uncertain inside

Dictyostelium cells and has therefore not been assigned. Plus (P)- or minus (M)-directed motion is indicated for in vitro motion. Error bars show SEM. One-way

ANOVA shows no statistical difference between these velocities.

(D) In vitro run length of EPs and LPs (35 of each analyzed). Error bars represent SEM.

See also Figures S1 and S2.
run was defined as a period of uninterrupted fast motion (Rai

et al., 2013; Soppina et al., 2009b). No difference in plus-directed

run lengths was seen between EPs and LPs. In contrast, minus-

end-directed LPs usually moved much farther than EPs (Fig-

ure 1D). The actual run length is likely larger for these LPs,

because they often got stuck at obstacles or reached the end

of the MT during in vitro motion. Note that runs of EPs could

end in reversals or detachments from the MT. The persistent

long minus-end-directed runs of purified LPs along single MTs

is reminiscent of similar observations insidemousemacrophages

(Rai et al., 2013) and may facilitate degradative fusion of phago-

someswith lysosomes (Blocker et al., 1997;Harrison et al., 2003).
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Force Measurement on Early and Late Phagosomes
The above data show that a switch from bidirectional (EP) to

retrograde unidirectional (LP) motion in the phagosomal/endo-

somal pathway is reproduced in our in vitro motility assays. To

understand the mechanism of this switch, we measured the

force generated by motors on purified EPs and LPs using an

optical trap (Experimental Procedures). Motors on EPs gener-

ated vigorous force in both directions, with frequent transitions

between plus and minus-end-directed stalls (Figure 2A). In

contrast, LPs exhibited repeated minus-end directed stalls (Fig-

ure 2B). The total number of plus and minus stalls were counted

(23 EPs and 21 LPs used) to determine the ratio of minus:plus



Figure 2. Optical Trapping of EPs and LPs Reveals Differences in Dynein Number, Function, and Cooperativity

(A) Stall force records of three individual EPs purified fromDictyostelium. The corresponding force is also shown. A schematic on the right shows the microtubule

orientation, a trapped phagosome (purple sphere), and focused optical trap beam (red). These are not drawn to scale. The direction of force generation by kinesin

and dynein is also shown.

(B) Stall force records for a single LP purified from Dictyostelium. Inset shows the ratio of minus:plus stalls on EPs and LPs. EPs show equal number of stalls in

both directions, but LPs show twice as many minus stalls. Error bars represent SEM.

(legend continued on next page)
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stalls (Figure 2B, inset). The significant increase in this ratio for

LPs showed that dynein driven stalls dominate as the phago-

some matures and likely cause the minus-end-directed bias in

LP motion. Qualitatively similar differences in force generation

between EPs (bidirectional) and LPs (minus-end directed) were

also seen for phagosomes inside J774 cells (Figure S1B).

Figure 2C shows a histogram for plus-directed (kinesin-driven)

stall forces on EPs and LPs. The histogram for EPs and LPs ap-

pears similar, with a major peak at �6 pN followed by a broad

distribution centered at �12 pN. This is similar to observation

on LPs inside J774 cells (Rai et al., 2013). We have earlier shown

using purified kinesin-coated beads that the Dictyostelium

Unc104 kinesin generates �6 pN force (Soppina et al., 2009b).

Therefore, one or two kinesins appear to drive the motion of

EPs as well as LPs, in agreement with the similar plus-directed

run length of EPs and LPs (Figure 1D). It therefore appears that

kinesin activity on phagosomes is not sensitive to maturation.

Enhanced retrograde transport of LPs therefore does not arise

from a suppressed kinesin activity on LPs. In contrast to the

observation for kinesin, minus-end-directed stalls showed a pro-

nounced shift toward higher force on LPs (Figure 2D). A cumula-

tive frequency count showed that only 50% EPs exerted >6 pN

force, but this fraction was 86% for LPs. The major peaks

for minus-end-directed LPs appeared at �4, 6, 8, 10, 12, 14,

and 16 pN (Figure 2D, red arrows), whereas the peaks for EPs

were at �2, 4, and 6 pN (Figure 2D, black arrows). We have

earlier shown using purified dynein-coated beads that single

Dictyostelium dynein generates �1.1 pN force, similar to

mammalian dynein (Soppina et al., 2009b). The �2pN interval

between peaks in the force histogram agrees with our earlier

observation on LPs inside J774 cells (Rai et al., 2013). This

possibly happens because dynein is recruited in pairs to LPs

via a dimer of Rab7, with each dynein-pair generating 1.1 3

2�2 pN force (Rai et al., 2013). Dynein is recruited to early endo-

somes/phagosomes by Rab5, which is also a dimer in the active

GTP-bound conformation (Daitoku et al., 2001).

Optical trapping therefore confirmed an increase in frequency

and magnitude of minus-end-directed force generating events

on LPs. Since force measurements suggested similar activity

of one or two kinesins on EPs and LPs (Figure 2C), the improved

minus-end-directed motion must stem from enhanced dynein

activity on LPs. Such enhancement could arise in one or more

of the following ways: (1) molecular properties and function of

dynein is different on LPs compared to EPs; (2) there is more

dynein on LPs than on EPs; or (3) organization of dynein on

the LP membrane is different from the EPs, allowing more dy-

neins to generate force simultaneously. In what follows, we will

examine the evidence pertaining to each of these possibilities.
(C) Stall force histogram for plus-directed stalls of EPs and LPs purified fromDictyo

(D) Stall force histogram for minus-end-directed (dynein driven) stalls of EPs and L

LP data, suggesting more active dyneins on LPs. Arrows with �2 pN periodicity

(E) Minus-end-directed run lengths for beads coated with purified dynein and LP

force >8 pN is also shown. Minimum of 19 runs analyzed for each condition. Erro

(F) Time for which dyneins survive against half-maximal load (TSTALL; see Figure

beads, EPs, and LPs at low force (between 3 and 5 pN). TSTALL is higher for LPs

represent SEM.

See also Figure S1.
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No Significant Difference in Molecular Function and
Amount of Dynein between Early and Late Phagosomes
As already mentioned, minus-end-directed velocities for EPs

and LPs were statistically the same (Figure 1C). Both EPs and

LPs showed a 2 pN periodicity in force histograms (Figure 2D),

suggesting that the force generated by a pair of dyneins is

similar. Therefore, each dynein on EPs as well as LPs likely gen-

erates �1 pN force, which is the same as the force generated by

purified Dictyostelium dynein-coated beads (Soppina et al.,

2009b). We next measured minus-end-directed run lengths of

dynein-coated beads and LPs (both 759 nm diameter) that

were first made to stall against the optical trap before release

and free motion on the MT (Mallik et al., 2005). We chose only

LPs that generated 3–5 pN force to enable a fair comparison

with dynein-coated beads. The average stall force was statisti-

cally same for beads and such LPs (3.13 ± 0.66 pN and 3.29 ±

0.56 pN, respectively; p = 0.3), confirming motion driven by

approximately the same number of dyneins. The run length

was also statistically same for dynein-coated beads and LPs

generating 4–6 pN force (Figure 2E). This suggests no significant

increase in dynein’s processivity through association with LP-

specific regulatory proteins. As expected, LPs exhibiting higher

force in minus direction had longer runs because they were likely

driven by more dyneins (Figure 2E).

Next, we estimated the persistence of dyneins against load by

measuring the time spent by cargo above half-maximal load

against an optical trap (TSTALL ; see double-headed arrow in

Figure 2B). Again, stalls within the same force regime showed

statistically same TSTALL for beads, EPs, and LPs (Figure 2F).

Taken together, velocity, force, run length, and TSTALL suggest

no significant change in the molecular function of dynein with

phagosome maturation. The higher net-minus force on LPs

therefore likely results from a larger number of dyneins that

can engage a MT simultaneously to drive LP motion. This is sup-

ported by additional peaks of �2 pN periodicity at higher force

for LPs (Figure 2D).

We next probed the obvious possibility that improved retro-

grade motion is caused by increased recruitment of dynein on

LPs. Immuno-electron microscopy of phagocytosed beads in

J774 cells has reported no increase in dynein on LPs compared

to EPs, and no increase was seen on late endosomes compared

to early endosomes (Habermann et al., 2001). Figure 3A shows

three representative EPs and three LPs (numbered in the figure)

that were purified from Dictyostelium. Dynein consistently

showed a non-uniform punctate distribution on LPs, but not so

on EPs. We traced a circle along the circumference of individual

EPs/LPs (Experimental Procedures) to determine the fluores-

cence intensity as a function of the angular rotation (q; shown
stelium. Both histograms are similar with peaks at�6 pN and�12 pN (arrows).

Ps purified from Dictyostelium. A clear shift toward higher forces is seen in the

indicate peak positions (see text).

s, both generating force between 3 and 5 pN. Run length for LPs generating

r bars show SEM.

2B) is plotted for dynein-coated beads, EPs, and LPs. The TSTALL is similar for

generating >8 pN force. Minimum 20 stalls used for each condition. Error bars



Figure 3. Clustering of Dynein, Rab7, and Flotillin into Cholesterol-Rich Domains on Late Phagosomes

(A) Confocal images showing dynein immunofluorescence staining for three EPs (top; numbered 1, 2, and 3) and three LPs (bottom; numbered 1, 2, and 3). The

EPs/LPs were purified from Dictyostelium. Dynein is detected using an antibody raised against Dictyostelium dynein heavy chain. The phagosomes are 2 mm in

diameter. Note the comparatively uniform staining of dynein along circumference of EPs but distinctly punctate staining along LPs. Three puncta are indicated

(as a, b, and c) on LP#3. Angular position along phagosome circumference is measured using the rotation angle (q).

(B) The pixel intensity for dynein staining along circumference of EP#3 and LP#3 (see Figure 3A) is plotted as a function of angle (q). The peak positions (a, b, and c)

correspond to the puncta on LP#3 in Figure 3A.

(C) Themean pixel intensity (calculated along eight EPs and seven LPs) is statistically the same for EPs and LPs, suggesting that no significant change in dynein as

a function of phagosome maturation. Error bars represent SD.

(D) Fluctuation in dynein staining intensity along phagosome membrane is estimated from the SD in intensity measured along the circumference. EPs have lower

fluctuation (suggesting uniform staining) compared to LPs (punctate staining). Error bars represent SD.

(E) Probability (PCONTACT) that a dynein motor of size D added in uniform (nonclustered) manner onto a spherical cargo of radius (R) will be able to contact a MT at

the bottom of the cargo. This suggests that it is very difficult for many (more than five) randomly distributed dyneins to simultaneously engage aMT to transport an

LP (see text). Inset shows a spherical cargo of radiusRwith two dyneins (each of lengthD) attached to it. The dyneins heads are also in contact with amicrotubule

(MT) at the base of the cargo. The maximum arc of contact for dyneins along the cargo surface is shown (red).

(F) Confocal double immunofluorescence staining of two individual LPs (numbered 1 and 2) purified from J774 cells for dynein (green) and flotillin-1 (red). Dynein is

detected using an antibody against dynein intermediate chain. The LPs are 2 mm in diameter. Dynein and flotillin show a very similar punctate pattern on each LP

and therefore appear to colocalize.

(G) Confocal double immunofluorescence staining of two LPs (numbered 1 and 2) purified from J774 cells for dynein (green) and Rab7 (red). Dynein and Rab7

show similar punctate patterns, suggesting colocalization into puncta.

(H) Confocal immunofluorescence staining of LAMP1 (LP marker) on two LPs (numbered 1 and 2) shows a continuous and uniform distribution of LAMP1.

(I) The SD of fluorescence intensity along LP circumference is plotted for dynein, flotillin-1, and LAMP1 (five LPs used for each). Error bars represent SD.

See also Figures S1, S2, S3, and S4.
in Figure 3A). Figure 3B shows representative profiles of EP#3

and LP#3 (see numbering in Figure 3A). The EP shows high basal

values of pixel intensity and smaller fluctuations. In contrast, the

baseline for LP intensity is almost zero, but there are strong

peaks corresponding to intense puncta (puncta on LP#3 and

corresponding peaks in Figure 3B are marked as a, b, and c).

Themean pixel intensity after averaging along the circumference

for eight EPs and seven LPs is statistically the same (Figure 3C).
This suggests no significant difference in dynein amount be-

tween EPs and LPs at the single-phagosome level. Quantitative

western blotting confirms that the amount of dynein does not

change significantly between purified EPs and LPs (Figure S2F).

Figure 3D plots the SD in pixel intensity along the circumference

for EPs and LPs. The SD is significantly higher for LPs, suggest-

ing that dynein intensity is nonuniform on LPs. These data sug-

gest that dynein redistributes from more uniform organization
Cell 164, 722–734, February 11, 2016 ª2016 The Authors 727



(on EPs) to a punctate organization on LPs, where it presumably

clusters within small domains. This clustering appears to occur

with no significant recruitment of additional dynein on LPs.

Clustering of Dynein and Why This Is Needed for
Transport of Large Cargoes
The punctate staining provided preliminary evidence that dynein

exists in clusters on the LP membrane (Figure 3A). We observed

approximately eight puncta of dynein (see LPs in Figure 3A) along

an LP of 2 mmdiameter (circumference = 6.28mm). The number of

puncta per unit length (and per unit area) was calculated, yielding

�20 puncta on the entire surface of such LPs. Assuming that the

inter-puncta distance is maintained, the approximately 6-fold

smaller surface area of a 759-nm-diameter LP (used for motility)

yields only approximately three puncta on its entire surface. The

long minus runs (Figures 1B and 1D) and high force (up to �16

pN; Figure 2D) therefore suggest that the motile LPs are largely

driven by multiple dyneins within a single puncta.

A spherical cargo of radius R is schematized in Figure 3E

(inset) with two dyneins (each of length D) attached to the cargo

and also engaged to aMT. If their attachment points on the cargo

are moved further upward, then the dyneins cannot reach the

MT. The maximum arc along which dyneins can contact the

MT is shown in red. Dyneins situated along this arc within

distance �D perpendicular to the plane of paper may also reach

the MT (Figure S1C). Therefore, there exists an approximately

rectangular contact area on the cargo ( = ACONTACT), such that

only dyneins within ACONTACT can drive transport along a single

MT. An expression for ACONTACT is derived in Figure S1C. As

an example, ACONTACT �0.09 mm2 for a spherical cargo of 1 mm

diameter with surface area of 3.14 mm2. If we now randomly

place motors on the spherical cargo, the probability that a motor

will fall within ACONTACT, and therefore engage the MT, is

PCONTACT = ACONTACT / (4pR
2). Here, the denominator is the total

surface area of the spherical cargo. We plot PCONTACT as a func-

tion of cargo radius in Figure 3E, with D = 70 nm. For neuronal

vesicles with a diameter of �100 nm (Hendricks et al., 2010),

there is an �50% probability that an added dynein will be able

to drive transport. However, PCONTACT reduces rapidly with

increasing cargo size. For an EP or LP used in our motility assays

(R = 380 nm and R/D �6), a randomly added dynein would

have only a 4% chance of contacting the MT, thereby making

multiple-dynein-driven motion along a single MT quite unlikely.

Similar conclusions have been reached using computer simula-

tions (Erickson et al., 2011). This problem can be overcome

by generating a nonuniform dynein distribution, with multiple

dyneins clustered within ACONTACT. We emphasize that acti-

vating dynein molecularly using regulatory proteins (Vallee

et al., 2012) is of little help, because the activated dyneins would

never be able to contact a single MT simultaneously without

clustering.

Dynein, Flotillin, andRab7Colocalize intoMicrodomains
on the Phagosome Membrane
What mechanisms can cluster dynein on a cargo membrane?

The staining of dynein on LPs (Figure 3A) was reminiscent of

similarly punctate staining for the cholesterol-binding protein

flotillin on phagosomes (Dermine et al., 2001). We therefore sus-
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pected that dynein localizes into, and clusters within, choles-

terol-rich microdomains on the LPs. Double-immunostaining of

LPs purified from J774 cells against dynein and flotillin showed

that dynein indeed co-localizes with flotillin into punctate struc-

tures on LPs (Figure 3F; two representative LPs numbered 1

and 2 are shown). This is also clear from the overlapping pixel

intensity profiles of dynein and flotillin along the circumference

of an LP (Figure S3A). Cross-correlation analysis also confirmed

the co-localization of dynein with flotillin (Figure S3B). LPs

also showed a punctate staining for cholera toxin B as reported

earlier (Dermine et al., 2005), confirming the presence of lipid

microdomains on LPs (Figure S4A).

The GTPase Rab7 interacts with dynein and recruits dynein to

LPs in a GTP-dependent manner (Harrison et al., 2003; Rocha

et al., 2009). Rab7 also interacts with the cholesterol sensor

ORP1L (Rocha et al., 2009) and could therefore be present in

membrane microdomains. Double immunostaining for dynein

and Rab7 showed that these proteins colocalize into the same

punctae on LPs (Figure 3G). In contrast to dynein and Rab7, dis-

tribution of the LP marker LAMP1 was uniform and continuous

(Figure 3H), as also reported by others (Dermine et al., 2001).

Figure 3I plots the SD (i.e., the fluctuation) in fluorescence

intensity calculated along the circumference of LPs for dynein,

flotillin, and LAMP-1 (five LPs used for each protein). The punc-

tate staining of dynein and flotilin-1 is reflected in significantly

higher SD compared to LAMP1.

To investigate whether dynein’s punctate staining is an artifact

from disruption of phagosome membrane during purification,

we performed immunostaining for dynein inside macrophage

cells. While the staining on EPs was more uniform, a punctate

staining for dynein was again apparent on LPs inside cells

(Figure S4B). To investigate whether punctate staining is an

artifact of antibody clustering, we phagocytosed latex beads

into stable HeLa bacterial artificial chromosome (BAC) cells

where the dynein intermediate chain is tagged to GFP (Poser

et al., 2008). Dynein-GFP again appeared in punctate arrange-

ment on LPs (Figure S4C). We also isolated detergent-resistant

membranes (DRMs) from purified LPs (Goyette et al., 2012) to

find that dynein is enriched in the DRM fraction along with flotil-

lin-1 (Figure S4D). However, DRM formation may be an artifact

and its relevance to lipid microdomains inside cells is unclear

(Rao and Mayor, 2014).

Increase in Membrane Cholesterol on Phagosomes with
Maturation
Since cholesterol is an important component of membrane

microdomains, we investigated whether clustering of dynein

correlates with an increase in membrane cholesterol on LPs.

This possibility is supported by the enrichment of the choles-

terol-binding protein flotillin on late phagosomes (Goyette

et al., 2012). Immunofluorescence images revealed barely

detectable flotillin-1 on EPs, but intense and punctate staining

on LPs (Figure 4A). We next stained purified EPs and LPs with

filipin, an antibiotic used to detect cholesterol in lipid mem-

branes. Images for filipin could only be acquired under epifluor-

escence illumination, possibly obscuring the punctate staining

of filipin on LPs. Higher filipin staining was observed on LPs

as compared to EPs (Figure 4B). A statistically significant



Figure 4. LPs Have More Membrane

Cholesterol Than EPs

(A) Confocal immunostaining images of purified

EPs and LPs using antibody against flotillin-1.

(B) Representative image of purified EPs and LPs

stained for filipin (a cholesterol marker). Images are

taken under epifluorescence illumination.

(C) Mean intensity of flotillin and filipin staining

along circumference for EPs (10 used) and LPs

(49 used). Error bars represent SEM.

(D) Ratio of cholesterol on LPs to EPs, as

measured by different methods (see main text).

OD-570, measurement of cholesterol by colorim-

etry using an Abcam assay kit. LC/MS/MS, liquid

chromatography mass spectrometry. GC-MS, gas

chromatography mass spectrometry for choles-

terol. The average of all measurements is also

shown (error bar represents SD).

See also Figures S4, S5, and S6.
increase in pixel intensity of flotillin and filipin was measured on

the LP circumference (Figure 4C). The images in Figures 4A and

4B provide microscopic evidence for higher cholesterol on LPs

as compared to EPs.

We next estimated the amount of membrane-associated (free)

cholesterol on bulk samples of purified EPs and LPs. This was

done using a cholesterol assay kit and also by quantitative lipido-

mics (Figures S5 and S6; see Supplemental Experimental Proce-

dures, section 12). Averaging over all these methods, we found

�1.6-fold more cholesterol on LPs than on EPs (Figure 4D).

Sphingomyelin (SM) and cholesterol are known to interact, and

their concentrations correlate in cell membranes (Ito et al.,

2000). The SM content is 1.74 times higher in LPs than EPs (Des-

jardins et al., 1994). This is in good agreement with the LP:EP

cholesterol ratio measured here. Since EPs are derived from

the cholesterol-rich plasma membrane, it is not obvious how

LPs acquire more cholesterol than EPs. It is possible that EPs

are formed from cholesterol-poor domains of the plasma mem-

brane. A role for cholesterol recycling from endosomes is also

possible, though these issues remain to be addressed in detail.

Dynein Clustering Hypothesis for Rapid Unidirectional
Transport of Late Phagosomes
The observed increase in cholesterol and punctate staining of

dynein/Rab7/flotillin on LPs (Figures 3A, 3F, and 3G) prompted

us to make the following dynein clustering hypothesis: As phag-

osomes mature, they fuse with cholesterol-rich endolysosomes

to acquire cholesterol and membrane associated ‘‘raftophilic’’

proteins (e.g., Rab7, flotillin) that promote and stabilize micro-

domain formation on the LP membrane. Rab7 interacts with

cholesterol-bound ORP1L and is therefore recruited preferen-

tially within cholesterol-rich microdomains on LPs. Rab7-

ORP1L binding stabilizes a GTP-bound state of Rab7, which in
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protein (RILP), dynactin, and dynein to

the microdomains on LPs (Rocha et al.,

2009). ORP1L-Rab7-RILP bound dyneins

therefore cluster within microdomains.

Multiple dyneins clustered within a micro-
domain can simultaneously engage a single MT to generate

robust directed transport of LPs.

Blocking the vacuolar proton pump ATPase with bafilomycin

prevents fusion of phagosomes with late endosomes and also

blocks the recruitment of flotillin-1 to late phagosomes (Dermine

et al., 2001). Cholesterol is therefore likely acquired by phago-

somes via interactions with the endosome membrane. Rab7

may also have a role in regulating dynein function on LPs, but

we do not believe that it directly regulates dynein’s single mole-

cule function. Rather, Rab7 possibly first localizes to microdo-

mains using its lipid anchor and then acts as a local scaffold to

recruit dyneins preferentially within the microdomains. It is also

likely that Rab7-GTP stabilizes the formation of microdomains,

because Rab7-GTP can dimerize on the lipid membrane (Jo-

hansson et al., 2007). We are unable to comment on the possible

co-clustering of kinesin with dynein into microdomains or the

exclusion of kinesin from microdomains. Kinesin-1 could not

be detected on LPs by immunofluorescence and western

blots of DRM fractions, possibly because there is �20-fold less

kinesin-1 compared to dynein on LPs (Rai et al., 2013). It also ap-

pears more physiologically relevant to cluster dynein into micro-

domains, because dynein (and not kinesin) is adapted to work in

large teams (Mallik et al., 2013; Rai et al., 2013).

Effect of Cholesterol Depletion on Late Phagosomes
To verify a role for cholesterol in dynein-driven LP motion, we

performed in vitro motility assays with purified LPs after incuba-

tion with methyl-beta-cyclodextrin (MbCD), which removes

cholesterol from lipid membranes. MbCD did not influence dy-

nein’s molecular function, because beads passively coated

with purified dynein showed no change in velocity and motile

fraction after addition of MbCD (Figure 5A). In contrast, motile

fraction of dynein driven LPs was significantly reduced after
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Figure 5. Effect of Cyclodextrin and Lipophosphoglycans on Dynein’s Function and Organization on LPs

(A) Motile fraction of dynein-coated beads and LPs treated with MbCD and lipophosphoglycans (LPGs) purified from Leishmania. There is a dose-dependent

reduction of LP motion upon MbCD and LPG treatment. Such treatments had no effect on motility of dynein-coated beads. Error bars represent SD.

(B) Minus-end-directed stall force records of LPs that were mock treated, MbCD treated (10 mM), or LPG treated (4.2 mM). The maximum force is �7 pN in all

cases (i.e., six or seven dyneins). Plateau-like region for untreated LPs is absent for MbCD and LPG treated LPs.

(C) TSTALL calculated from stalls such as shown in Figure 5B. TSTALL is significantly reduced after MbCD and LPG treatment of LPs. Error bars represent SD.

(D) Representative images of untreated, MbCD treated (10 mM), or LPG treated (4.2 mM) LPs stained for filipin (cholesterol marker), dynein, and Rab7. Images for

filipin acquired under epifluorescence illumination. Images for dynein and Rab7 were acquired on a confocal microscope.

(E) Reduction in fluorescence intensity of filipin on LPs after MbCD treatment, but no reduction after LPG treatment. Aminimum of 20 LPs was used for each case.

Analysis performed in blind manner for (E)–(G). Error bars represent SEMs. *p > 0.2, ***p < 0.001.

(F) No reduction in fluorescence intensity of dynein is seen along the circumference of LPs after MbCD or LPG treatment. A minimum 20 LPs was used for each

case. Error bars represent SEM.

(G) A statistically significant reduction in fluorescence intensity of Rab7 along the circumference of LPs is seen after MbCD treatment. No such reduction is seen

after LPG treatment. A minimum 20 LPs was used for each case. Error bars represent SEM.

See also Figures S4, S5, and S6.
MbCD treatment (Figure 5A). MbCD had no effect on velocity of

the few minus-end-directed LPs that moved (2.1 ± 0.3 mm/s at

20 mM MbCD, similar to untreated LPs). These observations

suggest that MbCD disrupts transport of LPs without interfering

with the single-molecule function of dynein. We observed infre-

quent minus-end-directed stalls of LPs with lower forces after

MbCD treatment (Figure 5B). The plateau-like regions usually

seen for LPs were missing, and TSTALL was significantly lowered

(Figure 5C). Multiple dyneins therefore failed to generate force

cooperatively and detached abruptly against load after MbCD

treatment. A reduction in filipin staining confirmed that MbCD

removed cholesterol from LP membranes (Figures 5D and 5E).

The sharp punctate staining of dynein on LPs subtly changed
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to a more diffuse distribution after MbCD treatment (Figure 5D;

see quantification later). Interestingly, the mean intensity for

dynein staining along circumference was unchanged (Figure 5F),

suggesting no loss of dynein from LPs upon MbCD treatment.

This was verified by western blotting experiments, where no

change in dynein amount on purified LPs was seen after MbCD

treatment (Figures S4E and S4F). Analysis of the fluctuations

in fluorescence intensity also suggested a more diffuse distribu-

tion of dynein after MbCD treatment of LPs (Figures S4G, S4H,

and S4J).

Since MbCD did not remove dynein from LPs and did not

interfere with motion of dynein-coated beads, it could inhibit

LP motion by disrupting dynein clusters or by removing



dynein-associated regulatory proteins from the LP membrane.

Indeed, we detected reduced intensity of Rab7 and flotillin stain-

ing on LPs after MbCD treatment (Figure 5D). Approximately

50% reduction in Rab7 and flotillin was estimated by measuring

fluorescence intensity on treated and untreated LPs (29 each)

and by performing western blots of purified LPs (Figure S4F).

MbCD experiments therefore suggested a role of cholesterol in

dynein-driven LP motility but could not distinguish between

two possible mechanisms of motility reduction, namely disrup-

tion of dynein’s clustered organization versus loss of dynein

regulators (e.g., Rab7). To address this issue, we next devised

experiments to disrupt the microdomains on LPs without

removing cholesterol and Rab7 from LPs.

Effect of Leishmania Lipophosphoglycans on Late
Phagosomes
The protozoan parasite Leishmania donovani causes visceral

Leishmaniasis or kala-azar, the second largest parasitic killer

disease in the world after malaria. Leishmania targets a liver-

specific microRNA to reduce serum cholesterol, and liposomal

delivery of cholesterol can protect against leishmaniasis (Ghosh

et al., 2013). This suggests that cholesterol is a major player in

Leishmania pathogenesis. The Leishmania promastigote resides

within phagosomes inside macrophages but avoids degrada-

tionbyaltering its fusionwith lateendosomesand lysosomes (Der-

mine et al., 2000, 2005). Similar to LPs, flotillin has been observed

in punctate arrangement on Leishmania-containing phagosomes

(Dermine et al., 2001). Leishmania expresses a cell-surface glyco-

lipid called lipophosphoglycan (LPG). Studies with mutant Leish-

mania lackingLPGshow thatLPG is themainmolecule thatblocks

fusion of Leishmania with lysosomes. LPG is a GPI-anchored

glycolipid with a glycan core and a polymer of Gal(b 1,4)Mana1-

PO4 repeating units. The GPI lipid anchor presumably localizes

LPG to cholesterol-rich domains on the surface of Leishmania-

containing phagosomes. Western blot and slot blot experiments

showed no change in amount of flotillin andGM1on phagosomes

after LPG treatment—this suggests that LPG treatment may not

remove microdomain-associated proteins (e.g., Rab7, flotillin)

from the phagosome membrane (Dermine et al., 2005).

We therefore assayed minus-end-directed motility of LPs in

presence of LPG to observe a reduction in the motile fraction

after LPG treatment (Figure 5A). The few LPs that moved in pres-

ence of LPG showed velocity equivalent to untreated LPs (2.0 ±

0.4 mm/s), suggesting that enzymatic function of dynein is not

perturbed by LPG. We next measured cooperative force gener-

ation by dynein on LPs in presence of LPG. Infrequent stalls at

lower force (<8 pN) were observed, with the plateau-like region

typical of untreated LPs absent (Figure 5B; compare stalls of

�7 pN for LPG-treated and untreated LPs). This was also evident

from the significantly lower values of TSTALL after LPG treatment

(Figure 5C). Motility and cooperative force generation of LPs was

therefore inhibited by LPG in a manner similar to MbCD (Figures

5A–5C). Similar to the experiments with MbCD, LPG had no ef-

fect on motile fraction (Figure 5A) and velocity of beads coated

with dynein. This suggests that LPGdoes not inhibit dynein’s sin-

gle-molecule function.

Figure 5D (top, right) shows filipin staining of LPG-treated LPs,

and Figure 5E plots the mean filipin intensity measured along
circumference of untreated and LPG-treated LPs (49 and 31 LPs

used, respectively). No reduction in filipin staining was seen, sug-

gesting that LPG does not remove cholesterol from the phago-

some membrane. This observation agrees with reports that LPG

doesnot removeflotillin (a cholesterol-bindingprotein) fromphag-

osomes (Dermine et al., 2005). If cholesterol is not removed,

cholesterol-associated proteins may also not be removed after

LPG treatment. This was indeed suggested by the unchanged

total intensity of dynein and Rab7 staining on LPs after LPG

treatment (Figure 5D). Quantification of dynein and Rab7 fluo-

rescence intensity along circumference of LPs also confirmed

that dynein (Figure 5F) and Rab7 (Figure 5G) are not removed

after LPG treatment. While LPG did not remove dynein and

Rab7, the punctate staining of these proteins changed to a

more uniform distribution after LPG treatment (compare un-

treated versus LPG-treated LPs in Figure 5D). Analysis of the

fluctuations in fluorescence intensity also suggested a more

diffuse distribution of dynein after LPG treatment of LPs (Fig-

ure S4G, S4I, and S4J). A cross-correlation analysis suggested

that dynein and Rab7 still continue to colocalize on the LP mem-

brane after LPG treatment (Figures S3C and S3D). These exper-

iments suggest that LPG does not remove but merely

redistributes microdomain-associated proteins (like dynein and

Rab7) from clustered to more uniform organization on phago-

somes. We therefore conclude that robust long-distance trans-

port of LPs by dyneins is primarily caused by the cholesterol-

dependent geometrical clustering of dynein into microdomains.

DISCUSSION

Dynein-driven transport promotes physical interactions between

phagosomes and endolysosomes. This likely enables pathogen

clearance by allowing phagosomes to acquire microbicidal

properties and low pH. We show here that an increase

in cholesterol and cholesterol-associated proteins (e.g., Rab7

and flotillin) clusters dynein within cholesterol-richmicrodomains

to assemble dynein teams on the phagosome membrane. Once

clustered, many dyneins within a microdomain can simulta-

neously engage a single MT to bias the transport of LPs in the

minus direction (toward lysosomes). This mechanism of geomet-

rical clustering is very different from the widely discussed single-

molecule regulation of motors by regulatory proteins (Vallee

et al., 2012; Verhey and Hammond, 2009). The proposed clus-

tering mechanism is schematized in Figure 6 and appears pri-

marily responsible for the bidirectional-to-retrograde switch in

motion during phagosome maturation. Because micron-sized

cellular cargoes are common, clustering of motors may have

general relevance in regulating intracellular transport. However,

themechanism of clustering could be cargo specific. Cholesterol

also enhances transport of artificial liposomes by kinesin-3

(Klopfenstein et al., 2002), which is a monomeric motor in mam-

mals (Soppina et al., 2014) and binds to the phospholipid

PtdIns(4,5)P2. Cholesterol induces clustering of PtdIns(4,5)P2,

and therefore of kinesin-3, whereupon the monomers assemble

into a dimeric kinesin-3 that is highly processive. Thus, a coop-

erative increase in kinesin-3-driven transport is observed. Unlike

monomeric mammalian kinesin-3, native cytoplasmic dynein ex-

ists as a homodimer of heavy chains in all known organisms
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Figure 6. Model for the Bidirectional to

Retrograde Switch in Phagosome Transport

An early phagosome with dynein and kinesin

motors is shown. Motors are randomly distrib-

uted on the surface. Some dyneins are shown

engaged to a MT at the bottom through Rab5.

A kinesin is also engaged to the MT. This

situation results in force balanced bidirectional

motion interspersed by a tug of war between

kinesin and dynein (opposing red and green

arrows of equal size). Phagosomes acquire

membrane cholesterol as they mature because

of physical interactions with cholesterol-rich

late endosomes (red spheres). Late phagosomes

now develop stable cholesterol-rich micro-

domains (three microdomains are shown).

Microdomain formation is likely facilitated by

Rab7-GTP. Dynein, along with Rab7, clusters

into microdomains to form ‘‘force-generating

platforms’’ where multiple dyneins are in close

proximity and ordered orientation. This gener-

ates large persistent force to drive minus-

end-directed transport of the phagosome (large green arrow). Kinesin may possibly be excluded from such microdomains (remains to be investigated).

Note that the total number of motors (dynein or kinesin) remains almost unchanged between EPs and LPs.
(Vallee et al., 2012). A monomer-dimer transition (like kinesin-3)

is therefore ruled out for dynein, and the improved minus-end-

directed LP motion must arise from clustering of inherently

dimeric dyneins into microdomains.

What are the advantages of clustering dynein on a cellular

cargo? Clustering should favor directed linear motion along

a single MT by preventing simultaneous engagement of dynein

present all over the cargo with multiple randomly oriented

MTs. Membrane microdomains are also suggested to support,

confine, and redirect force within the lipid membrane by

behaving as a mechanically stiff platform (Anishkin and Kung,

2013). It is therefore possible that phagosomal microdomains

behave as force-generating platforms, on which force from mul-

tiple dyneins can be oriented and directed more effectively.

Earlier reports show a gear-like behavior in dynein (Mallik et al.,

2004) and a large collective force by dynein teams on LPs inside

cells (Rai et al., 2013), perhaps facilitated by this gear-like

behavior. Here, we show that geometrical clustering into micro-

domains assembles dynein teams to facilitate such large forces

(Figure 6). A hierarchy of cellular mechanisms therefore appears

to harness dynein function for a crucial biological process,

namely endophagosome maturation and degradation of patho-

gens. There exists a vast literature on the mechanisms of mem-

brane microdomain (lipid raft) formation in cells and implications

thereof. However, the downstream biological consequences of

such microdomain formation have remained elusive. Our work

brings out an experimentally observable, direct functional

consequence of lipid microdomain formation to intracellular

transport and phagosome/pathogen biology.
EXPERIMENTAL PROCEDURES

Phagosomes created by phagocytosing 759-nm-diameter latex beads were

observed using differential interference contrast microscopy (Barak et al.,

2013, 2014). For further details, see sections 3 and 4 of Supplemental Experi-

mental Procedures. Phagosome motion was visualized inside agar-flattened
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Dictyostelium cells (section 5, Supplemental Experimental Procedures). Purifi-

cation and in vitro motility of latex bead phagosomes has been described

(Barak et al., 2014). Further details can be found in Supplemental Experimental

Procedures (section 6). Phagosomes were prepared using silica beads or latex

beads from J774, RAW264.7, or Dictyostelium cells. Purity of latex bead phag-

osomeswas confirmedusingmarkers against endosomal, cytosolic, andmem-

brane proteins (Supplemental Experimental Procedures, section 6; Figure S2).

Confocal imaging was used to detect proteins on the phagosome membrane.

EPs/LPs were treated with filipin and imaged under epifluorescence illumina-

tion. Further details can be found in Supplemental Experimental Procedures,

section 7 (for phagosomes from J774 and RAW cells) and section 9 (for phag-

osomes from Dictyostelium). Measurement of fluorescence intensity on phag-

osomes is described in Supplemental Experimental Procedures, section 8. Sta-

tistical hypothesis testing was done using Student’s t test. Two-tailed p values

(95% confidence) were calculated. Error bars are SD or SEM, as indicated.

DRM isolation from purified phagosomes was done as described previously

(Goyette et al., 2012). Further details can be found in in section 11 of Supple-

mental Experimental Procedures. Lipids were extracted from phagosomes

using a methanol-chloroform mixture for thin-layer chromatography (TLC)

experiments. Silica TLC plates were used to separate the lipids with an appro-

priate solvent system, followed by visualization on a Bio-Rad instrument.

Further details can be found in section 12 of Supplemental Experimental Pro-

cedures. MbCD prepared in buffer (30 mM Tris and 4 mM EGTA [pH 8.0]) was

incubated with LPs (22�C, 15 min) at final concentrations ranging from 10 mM

to 30 mM. Further details can be found in section 13 of Supplemental Exper-

imental Procedures. LPG purified from Leishmania donovani (Turco et al.,

1987) was obtained as a gift. The stock solution (in ddH2O) was diluted appro-

priately. LPs were incubated with LPG (22�C, 15 min) before observation (Der-

mine et al., 2005). Further details can be found in section 13 of Supplemental

Experimental Procedures. Bead motility with dynein using an ATP releasate

from Dictyostelium cells has been described elsewhere (Soppina et al.,

2009b). Further details can be found in section 14 of Supplemental Experi-

mental Procedures. See Supplemental Experimental Procedures, section 12

for details of lipidomicsmeasurements. PC and free cholesterol wasmeasured

on lipids obtained from EPs and LPs purified from RAW264.7 cells.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and three movies and can be found with this article online at

http://dx.doi.org/10.1016/j.cell.2015.12.054.
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