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Objectives. Epithelial mesenchymal transition (EMT) is important for peritoneal deterioration. We evaluated the association
between peritoneal solute transport rate (PSTR) and effluent markers related to EMT with adjusted values for effluent cancer
antigen 125 (CA125). Methods. One hundred five incident peritoneal dialysis (PD) patients on PD for 25 (12-68) months
with biocompatible solutions were included in the study. Fast peritoneal equilibration test was used to evaluate PSTR. Effluent
hepatocyte growth factor (HGF), bone morphogenic protein-7 (BMP-7), vascular endothelial growth factor (VEGF), interleukin-
6 (IL-6), and CA125 at 4 h were measured. Results. Patients with dialysate/plasma creatinine =0.82 showed significantly higher
effluent HGF (240 versus 133 pg/mL, P < .001), VEGF, IL-6, and IL6/CA125 levels than the others but no significant differences in
effluent HGF/CA125, BMP-7, and BMP7/CA125 were observed. Conclusion. Increase in the effluent HGF levels as a compensatory

mechanism is a marker of peritoneal deterioration, but controversy remains regarding adjusted value for CA125.

1. Introduction

Resident fibroblasts and infiltrating inflammatory cells are
considered to be the main entities responsible for structural
and functional alterations in the peritoneum, but recent find-
ings have demonstrated that new fibroblastic cells can arise
from the local conversion of mesothelial cells by epithelial-
to-mesenchymal transition (EMT) during the inflamma-
tory and repair responses that are induced by peritoneal
dialysis (PD) [1]. EMT of peritoneal mesothelial cells is
associated with angiogenic stimuli and altered transport
through common initiating growth factors and inflamma-
tory cytokines [2, 3]. Hepatocyte growth factor (HGF)
and bone morphogenic protein-7 (BMP-7) ameliorate high-
glucose-induced EMT of the peritoneal mesothelium [4, 5].
As it is not possible to perform repeated peritoneal biop-
sies, the search for effluent markers of peritoneal damage and
EMT is clinically important. However, the clinical signifi-
cance of HGF and BMP-7 effluent levels with regard to these

conditions remains unclear. It has also been reported that
dialysate growth factor levels should be measured relative
to the mesothelial cell mass, for example, relative to the
level of cancer antigen 125 (CA125) [6, 7]. We evaluated
the association between peritoneal membrane transport rate
and the expression of effluent markers related to epithelial
mesenchymal transition (HGF, BMP-7, vascular endothelial
growth factor (VEGF), and interleukin-6 (IL-6)) with adjust-
ing the levels of these markers relative to the effluent CA125
concentration in patients on PD.

2. Subjects and Methods

2.1. Patient Selection. From December 2007 to December
2010, all incident PD patients, aged between 20 and 69, who
were being treated at our unit were enrolled in the study
(n = 116). The patients had been on continuous ambulatory
peritoneal dialysis (CAPD) with dual-chamber bags, neutral-
pH, and low-GDP glucose-based solutions for more than
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6 months and had been clinically stable and peritonitis-
free for at least 3 months before the study. Patients on
automated peritoneal dialysis (APD) and patients who had
received glucose polymer-based peritoneal dialysis solution
were also included the study, but they were switched to
CAPD with dual-chamber bags, neutral-pH, and low-GDP
glucose-based solutions the day before the study. None of the
subjects were on PD with conventional acidic PD solutions.
The exclusion criteria included severe systemic disease,
malignancy, and patients with elevated serum CRP levels.
All eligible 105 incident PD subjects were included for this
study, and 11 patients were excluded. The ethics committee
of Toho University School of Medicine approved this study,
and informed consent was obtained from all subjects.

2.2. Study of Peritoneal Transport Kinetics and Effluent
Markers. The study was performed cross-sectionally, and on
the night before the study, all patients were asked to undergo
PD using 2.5% glucose PD solution with a 10 h dwell time.
After the dialysis fluid had drained completely, a standard fast
peritoneal equilibration test (fast PET) was performed. The
drainage volume and ultrafiltration volume were recorded
at 4 h.Dialysate to plasma creatinine values (D/P creatinine)
and effluent glucose were measured at 4h, and effluent
samples were taken at 4 h and immediately stored at —70°C
until they were used to measure HGF, BMP-7,VEGF, IL-6,
and CA125.

2.3. Measurement of Effluent Markers. The concentrations
of CA125 and IL-6 in the effluent were measured using a
chemiluminescent enzyme immunoassay with appropriate
kits (Fujirebio, Tokyo, Japan) [8, 9]. The concentrations
of VEGE HGE and BMP-7 were measured with commer-
cially available immunoenzymometric assays according to
the manufacturer’s instructions (VEGF and HGF were
measured with ELISA kits from Quantikine R & D Systems,
Minneapolis, Minn, USA and BMP-7 was measured with an
ELISA kit from RayBiotech Inc., Peterborough, UK).

2.4. Statistical Analysis. The data were not in the normal dis-
tribution, and nonparametric tests were performed in all
analyses. The data are expressed as median values and
25% to 75% interquartile ranges (IQR). Differences between
two groups were assessed by the Mann-Whitney U test.
Differences considered to be associated with diabetes were
assessed using the chi-square test. A P value less than .05
denoted the presence of significant difference.

3. Results

The clinical characteristics and the results of the fast PET in
the subjects are shown in Table 1. The median (IQR) age was
55 (44—64) years old, and the median (IQR) PD duration was
25 (12-68) months for all patients. The patients were subdi-
vided into two groups according to their peritoneal transport
characteristics to allow statistical evaluations to be per-
formed: the patients with high peritoneal transport rate (D/P
creatinine = 0.82) and the “others” (D/P creatinine < 0.82).
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TasLE 1: Clinical characteristics and the results of the fast peritoneal
equilibration test.

Patients with high

Group transport rate Others

n 14 91

Age (years old) 58 (44-68) 55 (46-64)
Diabetics 8/14 22/91
Duration of PD »

(months) 10 (7-11) 32 (15-75)
Urine volume

(mL/day) 400 (175-624) 100 (0-875)
(rainage YOIUME 9150 (1963-2260)** 2370 (2265-2450)

D/P creatinine 0.90 (0.87-0.96)** 0.71 (0.60-0.75)

Dialysate glucose
(mg/dL)
Serum albumin

(g/dL)

Data are medians with 25 and 75% interquartile ranges in parentheses.
PD: peritoneal dialysis; D/P creatinine: dialysate to plasma creatinine level.
*P < .05 compared with others; ** P < .001 compared with others.

596 (469-668)** 834 (718-948)

2.70 (2.69-2.98)** 3.40 (3.03-3.78)

There were significant differences between the two groups
with regard to the duration of PD (P < .05) and serum
albumin levels (P < .001). Furthermore, prevalence of
diabetes was higher in the patients with high transport rate
than the others, although the difference was not statistically
significant (P = .08).

Effluent markers and effluent markers-to-effluent CA125
ratio in patients with high transport rate and others are
shown in Table 2. Significantly higher effluent HGF, VEGEF,
and IL-6 levels were found in the patients with high transport
rate compared to the others. No differences were observed
in the effluent BMP-7 or CA125 levels between the two
groups. With regard to effluent markers-to-effluent CA125
ratio, there was a significant difference only in effluent IL-
6/CA125 levels between two groups. No significant differ-
ences were observed in effluent HGF/CA125, BMP-7/CA125,
and VEGF/CA125 levels between two groups.

4. Discussion

It was reported that solute transfer increases and ultrafiltra-
tion declines with time during peritoneal dialysis treatment
[10] and that a high transport status is observed after 6 years
dialysis treatment and subsequently develops into encapsu-
lating peritoneal sclerosis [11-13]. In contrast with previous
reports [10-13], the patients with high transport rate in our
study had not undergone PD treatment for a longer period
than the other group. Differences between the PD solutions
might partly explain the different results since all our patients
were treated with new biocompatible solutions whereas the
patients in previous reports were treated with conventional
nonbiocompatible solutions. However, the patients with high
peritoneal transport rate in our study showed a higher
prevalence of diabetes and hypoalbuminemia, as reported
previously [14-16].
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TaBLE 2: Effluent markers and effluent markers-to-effluent cancer
antigen 125 ratio in patients with high transport rate and others.

Group Patients with high Others
transport rate
n 14 91
Effluent HGF 240.0
(pg/mL) (197.5-319.3)%** 133.0 (107.0-216.0)
Effluent
HGF/CA125 19.0 (10.8-33.2) 13.7 (8.0-25.9)
(pg/U)
Effluent BMP-7
8.3(7.4-94 7.5 (4.8-9.1

(pg/mL) ( ) ( )
Effluent
BMP-7/CA125 0.6 (0.5-0.8) 0.6 (0.3-1.2)
(pg/U)
Effluent VEGF

33.0 (29.0-34.0)** 25.0 (20.0-31.0
(pg/mL) ( ) ( )
Effluent
VEGF/CA125 2.5 (1.7-3.7) 2.3 (1.4-3.7)
(pg/U)
Effluent IL-6

23.8 (13.9-35.1)* 11.6 (6.7-24.0
(pg/mL) ( ) ( )
Effluent N
IL-6/CA12S (pgU) (1.3-2.2) 1.1 (0.6-1.8)
Effluent CA125
(U/mL) 13.3 (7.6-18.9) 11.1 (6.3-20.0)

Data are medians with 25 and 75% interquartile ranges in parentheses.
HGF: hepatocyte growth factor, BMP-7: bone morphogenic protein-7,
VEGF: vascular endothelial growth factor, IL-6: interleukin-6, CA125:
cancer antigen 125.

*P < .05 compared with others, **P < .01 compared with others, ***P <
.001 compared with others.

EMT of mesothelial cells is associated with high peri-
toneal transport [17]. There is emerging evidence that the
mesenchymal conversion of mesothelial cells is an important
mechanism for the failure of peritoneal membrane function
[18-20]. High levels of glucose, glucose degradation prod-
ucts, a low-PD solution pH, inflammation, and angiotensin
II are responsible for the production of transforming
growth factor  (TGF-f) and VEGE, which induce EMT, by
mesothelial cells [1]. TGF-p is a key regulator of EMT [1, 20];
however, the measurement of TGF-f3 is not easy because of its
low concentration in dialysis effluent fluids [6]. In addition,
it is not clear whether measuring the amount of TGEF-f
protein in peritoneal fluid, in which it is mostly found in an
inactive state, that is, bound to a latency-associated protein,
is reflective of the tissue levels of active TGF-$ [6, 21] and
a previous study found no differences in TGF-f at any time
in a comparison of patients treated with low-GDP solution
and patients treated with high-GDP solutions [6]. VEGF
was found to be locally produced in the peritoneal tissue of
patients undergoing peritoneal dialysis, and effluent VEGF
was found to be correlated with solute transport but not the
TGF-f1 level [22, 23].

IL—6 is a cytokine involved in the acute-phase inflam-
matory reaction, and dialysate IL-6 levels and VEGF con-
centrations are associated with a high peritoneal solute
transport rate [24]. It has also been reported that HGF

and BMP-7 ameliorate high-glucose-induced EMT in the
peritoneal mesothelium [4]. Furthermore, it was reported
that measuring the dialysate VEGE, level relative to the
effluent CA125 level revealed a significant association with
EMT, whereas unadjusted levels of the growth factor did not
[6]. Thus, we studied the relationship between peritoneal
transport characteristics and effluent HGF, BMP-7, VEGF
and IL-6 levels and their values relative to the effluent CA125
concentration, focusing on EMT in patients being treated
with PD using new, biocompatible PD solutions.

Consistent with previous reports, VEGF and IL-6 levels
were significantly different between patients with high
transport rate and others [24]; however, effluent HGF levels
showed bigger difference in these two groups in our study.
We considered that using a low-GDP, neutral-pH, dual-
chamber bag PD solution also causes EMT since high glucose
itself induces EMT in cultured human peritoneal mesothelial
cells [4]. According to previous studies, it is conceivable that
the mesothelial cells of patients with high transport rate
undergo EMT and display decreased production of HGF and
BMP-7. However, in our study, the high transport rate group
showed increased effluent HGF concentrations. HGF is a
heterodimeric molecule composed of a 69 kDa alpha subunit
and a 34 kDa beta subunit (Entrez Gene ID: 3082). Its peri-
toneal permeability is expected to be poor, and so the HGF
protein detected in the effluent may be produced locally.
Yu et al. demonstrated that human peritoneal mesothelial
cells constitutively synthesized HGF [4]. In a previous study,
high-glucose-induced EMT in the peritoneal mesothelium
was reversed by HGF treatment, suggesting a link between
decreased HGF expression and EMT in human peritoneal
mesothelial cells [4]. HGF also prevented peritoneal fibrosis
in a rat model of EPS [25]. However, Rampino et al.
showed that treatment with high-dosage HGF (50 pg/mL)
and the HGF released during peritonitis in humans may
facilitate repair through mesothelial cell growth, but may also
contribute to peritoneal fibrosis including cell detachment,
fibroblast-like phenotype changes, and collagen synthesis
[26]. These findings suggest that an antifibrotic effect of HGF
may be dosage dependent with variable therapeutic dosages
that depend on experimental conditions and types of animal
model. We considered that unexpected increase in the HGF
levels has been proposed as a compensatory mechanism in
patients with high peritoneal transport rate. High effluent
HGF may be a marker of peritoneal deterioration since high
HGF levels coexist with high peritoneal transport rate.

In contrast with Szeto et al’s report [27], no difference in
BMP-7 was demonstrated by the difference in D/P creatinine
in our study. Their results showed that the PD effluent BMP-
7 level displayed a significant correlation with the change in
the D/P creatinine level but was not significantly correlated
with the D/P creatinine level at 4 or 52 weeks in new PD
patients. However, we only studied the D/P creatinine level
in incident CAPD patients at one time point, which may
account for our different results. We consider that it is
difficult to interpret EMT using measurements of effluent
BMP-7 concentrations taken at one time point alone.

The number or mass of mesothelial cells could affect the
levels of intraperitoneal growth factors in CAPD patients.



It was reported that the CA125 levels in peritoneal effluent
were higher in patients treated with low-GDP solution
than in those treated with conventional solution [28]. Do
et al. observed differences in dialysate-VEGF/CA125 levels
between the low- and high-GDP groups during the initial
12 months, but did not observe any difference in the
unadjusted VEGF concentration [6]. From our data, patients
with high transport rate displayed higher HGE, VEGE, and
IL-6 levels. While, effluent HGF/CA125, and VEGF/CA125
levels were not significantly different between patients with
high transport rate and others. Furthermore, IL-6/CA125
effluent level did not show a stronger relation with D/P
creatinine than unadjusted IL-6. Breborowicz reported that
CA 125 does not a good index of the number of mesothelial
cells or their functional properties, because the amount of
CA125 released from mesothelial cells is not only depend
on the number of cells, but also on their properties, age
of cell donor, and environmental factors [29]. We consider
that the effluent concentrations of growth factors should be
measured relative to mesothelial mass integrity and that the
CA125 effluent level may not be a suitable surrogate marker
for this purpose.

Our study has certain limitation. The small number of
the patients in the high transport group and shorter duration
of the PD in this group may affect the results. In conclusion,
increase in the effluent HGF levels as a compensatory mecha-
nism is a marker of peritoneal deterioration, but controversy
remains regarding the adjustment of markers for CA125.
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