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SUMMARY

Sleep spindles are major transient oscillations of the
mammalian brain. Spindles are generated in the thal-
amus; however, what determines their duration is
presently unclear. Here, we measured somatic activ-
ity of excitatory thalamocortical (TC) cells together
with axonal activity of reciprocally coupled inhibitory
reticular thalamic cells (nRTs) and quantified cycle-
by-cycle alterations in their firing in vivo. We found
that spindles with different durations were paralleled
by distinct nRT activity, and nRT firing sharply drop-
ped before the termination of all spindles. Both initial
nRT and TC activity was correlated with spindle
length, but nRT correlation was more robust. Anal-
ysis of spindles evoked by optogenetic activation
of nRT showed that spindle probability, but not
spindle length, was determined by the strength of
the light stimulus. Our data indicate that during natu-
ral sleep a dynamically fluctuating thalamocortical
network controls the duration of sleep spindles via
the major inhibitory element of the circuits, the nRT.

INTRODUCTION

The large-scale activity of the brain is organized by a great vari-

ety of network oscillations, which temporally bind the activity of

distinct cell populations. Although a wealth of data indicates a

role of inhibitory GABAergic cells in pacing the frequency of

oscillations (Buzsáki, 2006), the mechanisms controlling the

duration and termination of oscillatory events are still mysterious.

A major brain oscillation with variable length is the sleep spindle.

These 1- to 3-s-long transient events have a frequency of

7–15 Hz and are most prevalent during stage II sleep. Appro-

priate regulation of spindle density and duration is critical to

proper brain function. Spindle density shows strong correlation

with memory performance (Fogel et al., 2007), problem-solving

ability, and the general intelligence of an individual (Bódizs
et al., 2005). Both the incidence and duration of spindles

increase following learning (Morin et al., 2008) and decrease

with age (Nicolas et al., 2001). Aberrant spindle-like activity is

believed to underlie absence epilepsy (Avanzini et al., 2000;

Huguenard and McCormick, 2007; Kostopoulos, 2000; Picard

et al., 2007). Extremely long spindles characterize mental retar-

dation in childhood (Gibbs and Gibbs, 1962; Shibagaki et al.,

1982). Schizophrenia on the other hand is associated with a

marked reduction of spindle length (Ferrarelli et al., 2007).

Previous studies (von Krosigk et al., 1993; Steriade and De-

schenes, 1984; Steriade et al., 1985) have suggested that

spindles are generated in the thalamus, through a rhythmic inter-

action of excitatory thalamocortical (TC) neurons and inhibitory

neurons of the nucleus reticularis thalami (nRT), that in turn

entrains cortical activity. In this model, synchronized bursts of

nRT neurons cause prolonged inhibition in TC cells, which dein-

activate low-threshold Ca2+ (It) channels and induce TC cells to

fire a rebound burst upon IPSP termination. This drives a new

nRT burst and the next oscillation cycle begins.

Several candidate mechanisms have been proposed to con-

trol the termination of sleep spindles. These data indicated a pro-

gressive change of the intrinsic properties of either TC (Bal and

McCormick, 1996; Lüthi and McCormick, 1998; Lüthi et al.,

1998) or nRT cells (Bal et al., 1995a; Kim and McCormick,

1998) during the spindles leading to stop burst generation and

the initiation of a next cycle. According to another proposal, spin-

dles terminate due to disruption of the synchronization of

TC-nRT network activity, caused by an increase of poorly timed

cortical input as the spindle progresses (Bonjean et al., 2011;

Timofeev et al., 2001). These proposals make testable predic-

tions for how TC and nRT cells alter their firing activity during

the progression of a spindle. However, testing these alternative

scenarios experimentally has so far remained elusive, due to

the challenge of simultaneously recording topographically

coupled populations of TC and nRT cells in freely sleeping ani-

mals. As a consequence the factors controlling the duration of

spindles in vivo—critically correlated with several neuropsychi-

atric disorders—remained unclear.

In the present study, we performed simultaneous recording of

topographically coupled TC and nRT cells in freely sleeping rats

and quantified their activity on a cycle-to-cycle basis during
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Figure 1. Sleep Spindles in Ventrobasal Thalamus

(A) Simultaneous cortical and thalamic recordings of a sleep spindle in a freely sleeping rat. The raw data show local field potentials in one cortical electrode and

multiunit activity (MUA) in eight thalamic channels on one shank of a four shank electrode in the ventrobasal thalamus (VB) Inset: electrode tracks (white arrows) of

the thalamic electrode. Note that all four tracks avoid nRT.

(B) Smoothed MUA recorded by each of the four electrode shanks (shank distance: 200 mm) in natural sleep (B1) and under urethane anesthesia (B2). Spindles

(blue lines) appear as rhythmic elevations of MUA synchronously on all shanks in natural sleep but as a spatially restricted signal under urethane.

(C) Histogram of the spindle lengths from all unanesthetized (C1) and urethane anesthetized (C2) animals. Note the relative paucity of short spindles (five to six

cycles) under urethane anesthesia.

(D) Changes in cycle length during spindles with different durations. Under natural sleep cycle lengths first increase, followed by a decrease before the end in all

spindles (D1). Under urethane spindles accelerate throughout the spindle (D2).
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spindles with different duration. We found that the synchrony of

the two cell types remains unaltered during spindles, but

nRT cells displayed robust duration specific activity. Optoge-

netic activation of spindles demonstrated that their duration is

strongly constrained by the concurrent state of the thalamocort-

ical network.

RESULTS

We performed multichannel silicon-probe recordings from the

ventrobasal complex (VB) of urethane-anesthetized (n = 11)

and naturally sleeping rats (n = 5) using silicon probes with four
1368 Neuron 82, 1367–1379, June 18, 2014 ª2014 The Authors
shanks, separated by 200 mm (Figure 1). Each shank was equip-

ped with eight recording sites in an octrode configuration. In the

majority of experiments, in addition to multiunit activity, a large

number of single units were isolated by spike sorting (see below).

Sleep spindles were defined using thalamic multiunit record-

ings as an elevation of rhythmic multiunit firing above the back-

ground activity in the spindle frequency range (Figure 1A; see

Experimental Procedures and Figure S1A available online). In

naturally sleeping animals, sleep spindles (n = 3,190) appeared

during slow-wave sleep as described before (Gaillard and Blois,

1981; Loomis et al., 1935; Silverstein and Levy, 1976; Steriade,

1999). Under urethane anesthesia, spindles (n = 2,975) were



A

B

C1 C2

C3 C4

Figure 2. Two Types of Spike Waveforms in the Somatosensory

Thalamus

(A) Raw data from six channels of a single octrode in VB showing wide (black

circle) and narrow spikes (magenta circle).

(B) Bimodal distribution of action potential widths reveals two populations

(black-wide spikes, magenta-narrow spikes).

(C) (C1 and C2) Autocorrelograms of a wide spike unit (C1) measured by silicon

probe in VB compared to a TC cell (C2) recorded and labeled by juxtacellular

recording in VB. (C3 and C4) The same two histogram for and a narrow spike

unit (C3) recorded in VB, compared to a nRT cell (C4) measured by juxtacellular

recording in nRT. Note wider base (longer burst) and spindle modulation

(insets) in case of the narrow spike unit and the nRT cell. The figures are based

on recordings made under urethane anesthesia.
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present during the entire duration of the recordings albeit with

variable rate of occurrence. In natural sleep, spindles were highly

synchronous among the electrode shanks whereas under ure-
thane the majority of spindles remained localized to one or two

electrode shanks (Figure 1B). The mean spindle coherence be-

tween two shanks at 400 mmdistancewas 0.2 ± 0.06 for naturally

sleeping and 0.09 ± 0.07 under urethane.

The mean duration of the spindles in both conditions agreed

with previous reports (Azumi and Shirakawa, 1982; Gaillard

and Blois, 1981; Silverstein and Levy, 1976) (10.7 ± 6.0 cycles/

spindle in natural sleep, 9.5 ± 5.3 cycles/spindle under urethane).

The number of short spindles (five to six cycles) was somewhat

higher in natural sleep than under urethane (Figure 1C). The

mean frequency of spindles was also similar in the two condi-

tions (natural sleep 12.65 ± 1.89 Hz, urethane 12.91 ± 1.63 Hz).

Both in natural sleep and under anesthesia, spindles showed

an initially accelerating pattern, irrespective of their length (Fig-

ure 1D), as shown by Gardner et al. (2013). Spindles under natu-

ral sleep showed a deceleration toward the end, which was not

present under urethane anesthesia.

Thus, we conclude that under our recording conditions sleep

spindles can be reliable detected in the thalamus with compara-

ble parameters (duration, frequency) to earlier results. The basic

features of spindles under urethane and in freely sleeping

conditions were largely similar, with the most prominent differ-

ence being that under anesthesia spindles were more spatially

restricted.

Two Types of Spikes in Ventrobasal Thalamus
After spike sorting (seeExperimental Procedures andFigureS1B),

a single octrode yielded on average 12.9 well-separated single

units (554 units all together from all animals). The action potential

widths of single units clustered from VB showed a marked bimo-

dality (Figures 2A and 2B), with the narrow-spike mode centered

at 100 ms and awide spikemode centered at 275 ms. The values of

narrow spikes were actually briefer than the extracellular wave-

forms of cortical fast-spiking interneurons (Barthó et al., 2004).

Units corresponding to both modes were usually recorded on a

single shank. Wide-spike units (>150 ms) displayed burst firing

typical of TC cells (Domich et al., 1986) (3.19 ± 1.52 spikes/burst,

149.0 ± 177.7 Hz for natural sleep, n = 102 units; 2.82 ± 1.11

spikes/burst, 287.0 ± 196 Hz under urethane, n = 320 units). Nar-

row-spike units (<150 ms) produced longer and slower bursts

(5.17 ± 2.63 spikes/burst, 48.8 ± 81.5 Hz for natural sleep,

n = 17 units, 3.57 ± 1.81 spikes/burst, 90.8 ± 119 Hz under ure-

thane, n = 115 units) and were usually modulated in the spindle

frequency range (Figure 2C). Cross-correlation analysis revealed

that most narrow spike units fired on average 15–20 ms after

wide spike units (Figure S1B4) both in natural sleep and under

urethane anesthesia. These data suggested that beside TC cells

(wide spikes) our electrodes sampled another neuronal popula-

tion (narrow spikes). However, the origin of narrow spikes re-

mained unclear because the rodent VB thalamus contains only

one type of neuron, the TC cell (Barbaresi et al., 1986).

Narrow Spikes Belong to nRT Axon Terminals
The narrow spikes picked up by our electrodes in VB resembled

axonal spikes that havebeendescribed in several neural systems

(Goldberg and Fee, 2012; Khaliq and Raman, 2005; Meeks et al.,

2005). Based on their waveform, bursting characteristics and

the asymmetry of the cross-correlogramm with wide spikes, we
Neuron 82, 1367–1379, June 18, 2014 ª2014 The Authors 1369
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Figure 3. nRT Axonal Activity Recorded as Extracellular Signals in VB

(A) Camera lucida drawing of a juxtacellularly recorded and labeled nRT cell with simultaneous somatic recording in the nRT axonal recording in the VB. Note the

axonal arbor around the octrode.

(B) Juxtacellular (bottom red) and silicon octrode (top black) traces of the recorded cell. Each somatic action potential is recorded as spikes in six out of the eight

recording sites of the octrode, located 1 mm from the somatic electrode.

(C) Spike triggered averages (STA) and cross correlogram (CCG) of the octrode recordings triggered by the somatic nRT action potentials (red dashed line 0 ms).

(D) Photomicrograph of the recorded and labeled nRT cell.
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hypothesized that narrow spikes represent axonal action poten-

tials of nRT neurons. To test this, we first performed juxtacellular

single unit recording and labeling from both the nRT (n = 21) and

the VB (n = 10) under urethane anesthesia and compared the

activity of identified cells with wide and narrow spikes. Under

the same conditions, the activity of identified TC (Figure 2C2)

and nRT (Figure 2C4) cells displayed identical features with

wide (Figure 2C1) and narrow (Figure 2C3) spikes, respectively.

Additionally, nRT neurons—like narrow spike units—showed

pronounced spindle modulation (Figure 2C, insets).

To gain more direct evidence, we performed lesion experi-

ments with the axon-sparing neurotoxin, kainic acid (KA)

(n = 3). First, we selectively lesioned the TC cell bodies by

iontophoresis of KA into VB, leaving the recording electrode in

the same position. Before lesion, both wide and narrow spikes

could be recorded in VB, whereas 4 hr after the lesion only

narrow spikes remained in the same recording site (Figure S2).

Spindle modulation of narrow spikes disappeared after VB
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lesion. When KA was injected into nRT, only narrow spikes

were affected in VB.

Finally, in one case we were able to perform simultaneous so-

matic and axonal recording of the same nRT cell by combining

silicon probe recording in VB with juxtacellular recording and

labeling in nRT using neurobiotin-filled pipettes. The two elec-

trodes were aligned according to the receptive field properties

of the recorded units. Figure 3 shows a juxtacellularly recorded

and labeled nRT neuron (Figure 3A), whose somatic action po-

tentials were time-locked (<0.5 ms delay) to extracellular narrow

spikes recorded in VB (Figures 3B and 3C). The silicon probe that

recorded the narrow spikes was located approximately 1 mm

caudomedially from the juxtacellular pipette. Morphological

reconstruction of the juxtacellularly recorded neuron demon-

strated a cell body located in nRT and axonal segments in close

vicinity of the silicon probe (Figures 3A and 3D). Based on this

direct evidence and the data listed above, we concluded that

narrow spikes indeed represent axonal activity of nRT cells.
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Figure 4. Local Interactions between TC and nRT Cells during Spindles

(A) A single spindle event displayed as smoothed multiunit activity in VB (red) together with TC cells (black) and nRT terminals (magenta) recorded by the same

electrode shank under urethane anesthesia. The firing of both TC cells (black) and nRT axons (magenta) are locked to the local multiunit spindles. Note different

firing frequency and burst length of the TC and nRT cells.

(B) Polar plots showing the phase vectors of individual TC and nRT cells recorded on the same shank relative to the multiunit spindle collected during several

recordings. Top: natural sleep, bottom: urethane anesthesia. One spindle cycle is 360�. TC cells consistently fire at an earlier phase of the oscillation compared to

nRT cells in both conditions.

(C) Cross correlograms between TC and nRT cells on the same electrode shank and between different shanks (200, 400, 600 mm apart) under urethane anes-

thesia. Robust correlation is evident only on the same shank (red), but modulation in the neighboring shank (green) also reaches significance. No correlation is

apparent, however, on more distant shanks (blue, magenta).
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We next asked whether the narrow spikes reflected nRT axon

terminals, which synaptically interact with local TC cells, or pass-

ing axons, which do not. To do this, we took advantage of the

localized nature of spindles under urethane. Connectivity be-

tween nRT and TC is strictly topographic and reciprocal, with a

single nRT neuron typically restricting its entire axonal arbor to

the same thalamic compartment it receives its major TC input

from (Desı̂lets-Roy et al., 2002). The spatial scale of the axons

arbor is typically of order 200 mm, similar to the shank separation

distance of ourmultisite electrodes. Under urethane, themajority

of spindles are restricted to one shank (Figure 1B). We therefore

reasoned that if narrow spikes reflected the activity of nRT termi-

nals, interactions between TC and nRT firing should occur within,

but not between distant shanks during spindles. By contrast, if

narrow spikes reflected passing axons, no significant correlation

is expected because passing nRT axons cannot interact with TC

cells. The data showed that both under urethane anesthesia

and drug-free conditions, the activity of TC cells and nRT axon

was not random. The two cell types fired phase-locked to the

thalamic spindles within a shank at characteristically different

phases (Figures 4A and 4B). When considering local spindles

only (from urethane anesthetized recordings), cross-correlo-

grams revealed strong correlation between TC cells and nRT

axons recorded on the same shank (Figure 4C). This correlation

was weaker at 200 mm and was not present between shanks

400 mm apart (Mann-Whitney test). Because the spatial extent

of TC-nRT correlation was compatible with the size of nRT

axon terminal arbor in VB (Pinault and Deschênes, 1998), we

conclude that narrow spikes are generated by the axon termi-

nals, not by passing fibers of nRT cells. The fact that axon

terminals produced signals large enough to detect extracellu-

larly, most probably resulted from the occurrence of strings of

extremely closely spaced nRT boutons (Figure S3).
Constant Timing and Jitter during Spindles
Simultaneous recording of the somata of TC cells and the axon

terminals of reciprocally connected nRT neurons allowed us to

quantitatively investigate the structure of population activity dur-

ing sleep spindles in a cycle-by-cycle basis in freely sleeping

animals (Figures 5A and S4).

According to one hypothesis (see Introduction), spindles

terminate due to disruption of thalamic synchrony by cortical

input (Bonjean et al., 2011; Timofeev et al., 2001). This model

predicts that the precision of TC-nRT interaction should be

degraded as the spindle progresses. To test this, we computed

cross-correlograms between the two cell populations for short

(six cycles, n = 5,579) and long (14 cycles, n = 3,159) spindles

for each consecutive cycles (Figure 5B). The cross-correlograms

showed no marked difference in timing between spindles of

different lengths and no change from cycle to cycle, indicating

a constant latency of nRT activation by TC cells in every cycle

of the spindles. We next assessed the jitter of TC-nRT synchrony

by computing the SD of spike times relative to spindle peaks for

every cycle in the same data set. This measure also showed no

change with spindle progression (Figure 5C). Repeating the

same two analyses for each cycle of every spindle length, in

both freely sleeping and anesthetized animals, yielded identical

results (Figure S5). None of the groups showed significant slope

(Spearman’s rank correlation p > 0.1). We therefore conclude

that decreased TC-nRT efficacy and increased jitter among

thalamic cells is not a major factor in spindle termination.

Decrease of nRT Activity before the Termination
of Spindles
To study the alteration of TC and nRT activity during a spindle,

we computed the cycle-by-cycle dynamics of excitatory and

inhibitory activity for short (six cycles) and long (14 cycles)
Neuron 82, 1367–1379, June 18, 2014 ª2014 The Authors 1371



Figure 5. Cycle-by-Cycle Dynamics of Excit-

atory and Inhibitory Activity during Spindles

of Different Lengths during Natural Sleep

(A) Perievent time histograms (top) and rasterplots

(bottom) of TC (black) and nRT (magenta) units

during spindles consisting of 6 (left) and 14 (right)

cycles assembled from several representative

sessions of three freely sleeping rats. Spindle peaks

are aligned for better visibility.

(B) Cycle-by-cycle cross-correlograms of TC and

nRT units shows unchanged peak latency during

spindles of six and 14 cycles.

(C) Jitter (SD of spike distances from spindle peak)

also remains stable during spindles. Each dot

represents the mean data of a given cycle pooled

across sessions and animals.

(D) Cycle-by-cycle alteration in the mean number

of spikes per cycle for nRT (magenta) and TC

cells (black) for short (six cycles, left) and long

(14 cycles right) long. Note different trajectories

of nRT but similar trajectories of TC cells. Shading

indicates SEM.
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Figure 6. Probability of nRT Firing Displays

Duration Specific Pattern during Natural

Sleep

(A) Cycle-by-cycle changes in themean number of

spikes/bursts for TC (black) and nRT (magenta)

cells during spindles of six to 14 cycles. nRT units

display a steady decrease in spike per burst during

spindles for all spindle lengths, whereas values of

TC cells remain stable.

(B) Cycle-by-cycle changes in the probability of TC

and nRT firing during spindles of different length.

nRT cells display duration specific patterns. Each

dot represents the mean data of a given cycle

pooled across sessions and animals. Shading

indicates SEM.
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spindles (Figure 5D) in freely sleeping animals. During short

spindles animals, nRT activity was highest in the first cycle

(3.5 spikes/cycle) then decreasedmonotonically, dropping�50%

by the end of the spindle (1.55 spikes/cycle); by contrast, TC cell

activity was lowest in the first cycle and increased steadily. For

long spindles, nRT activity displayed a different, nonmonotonic

pattern, first increasing from a moderate value (2.1 spikes/cycle)

to reach a peak of 3.15 spikes/cycle by cycle 3 and then decreas-

ing strongly to �30% of the peak value (0.83 spikes/cycle)

by spindle termination. During long spindles, TC activity again dis-

played a slow recruitment, in most cases with a slight decrease

one to two cycles before the spindle ended.

Examining similar plots for spindles of all lengths (Figure S6A)

indicated that in all cases nRT activity started to decrease

several cycles before spindle termination, but this was not

observed in case of TC cells in either natural sleep or urethane

anesthesia. Based on these data, we conclude that nRT, but

not TC activity starts to decay several cycles before the termina-

tion of all spindles.

Distinct nRT Activity Trajectories for Spindles
with Different Length
The analysis above indicated that nRT cells may display spindle

duration specific activity. To demonstrate this, we analyzed

cycle-by-cycle TC and nRT activity for all spindle length. During

spindles thalamic neurons fire exclusively in low-threshold Ca2+

bursts. Each neuron can produce one burst per spindle cycle but

neither nRT nor TC cells fire at every cycle. As a consequence,

changes in the number of spikes during consecutive cycles

(as analyzed above) could reflect either a change in the number

of spikes fired per burst, and/or a change in the probability the

cell will fire a burst in the cycle (participation probability). It

should be noted that participation probability is equivalent to

the percentage of cells participating in a given spindle cycle,

which indicates the level of recruitment within the TC or nRT pop-

ulation. To examine the cycle-by-cycle alterations in these mea-

sures, we calculated spike/burst and participation probability
Neuron 82, 1367–137
separately for all TC and nRT cells for all

spindle length (five to 14 cycles) during

natural sleep (Figure 6).

For nRT cells, the number of spikes per

burst started at a uniformly high level
(approximately five) for all spindle lengths and showed a mono-

tonic decrease to approximately three to four spikes per burst

by the end of the spindle. TC cells, on the other hand did not

display significant alteration in burst size during the spindles

(Figure 6A). For participation probability, nRT cells displayed pro-

nounceddifferences between short and long spindles (Figure 6B).

The shortest spindles were characterized by high initial nRT

participation probability (60%), which dropped throughout the

spindle to a moderate level (46%–49%) by termination. Longer

spindles, however, started from a progressively lower probability

levels (<40%) followed by an increase (reaching a plateau similar

to the initial state of short spindles), then a decrease to a low level

again. The endpoint of nRT participation probability was progres-

sively lower with increasing spindle length. In contrast, the partic-

ipation probability of TC cells displayed continuous increase

during both long and short spindles until one to two cycles before

spindle termination (from35%–40% to 40%–45%). During natural

sleep and under urethane anesthesia the spike per burst and

probability trajectories were similar (Figure S6) confirming rela-

tively intact spindle genesis under this anesthetic (for statistical

analysis of the trajectories under both conditions see Figure S7).

We conclude that spindles are characterized by a progressive

decrease in the burst size of nRT neurons. TC cells show a

steady increase in participation probability irrespective of spin-

dle length with no change in burst size. In addition nRT but not

TC cells display distinct activity trajectories during short and

long spindles.

Network State Controls Spindle Length
The large difference in duration-specific nRT activity prompted

us to investigate how the measured variables at the first cycle

correlate with the duration of spindles. The probability of nRT

participation in the first cycle was strongly correlated with spin-

dle duration (r = �0.91; p < 0.001; Figure 7A), whereas same

measure of TC cells displayed only weakly significant correlation

(r = 0.63; p = 0.047). In addition the number of spikes per burst in

the first cycle also showed significant correlation with spindle
9, June 18, 2014 ª2014 The Authors 1373
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Figure 7. Initial Network State Correlates

with Spindle Length during Natural Sleep

(A) Participation probability of nRT cells (magenta)

in the in the first cycle strongly correlates with

length of the spindle, TC cells (black) display

weaker but still significant interaction.

(B) The initial number of spikes per burst in TC cells

also correlates with the forthcoming spindle

length.

(C) Correlation between the participation proba-

bility in the first and last cycle for TC (black dots)

and nRT (magenta dots) cells. Between the initial

and final state, only the nRT participation proba-

bility shows significant correlation.

(D) There is no correlation between the spikes/

bursts in the initial and last cycle. In (A)–(D), each

dot represents the mean value of spindles with

given number of cycles pooled across sessions

and animals. Only significant interactions are

shown with numbers.
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length in TC cells (Figure 7B). We also correlated the values of all

variables between the first and last cycles. Only the probability of

nRT participation between the first and last cycle displayed

significant correlation (r = 0.88, p < 0.001; Figure 7C). Similar

pattern was observed under urethane anesthesia (Figure S8).

These data show that the length of the spindle was correlated

with the pattern of neuronal activity measured on the first cycle

and in case of nRT cells the activity follows a fixed trajectory to

a well-determined endpoint.

These data allow two alternative scenarios about the control of

spindle length. First, spindle lengthmight be causally determined

by nRT activity on the first cycle alone. Alternatively, the correla-

tion might occur because first-cycle nRT activity is under the

control of the ongoing network state.

To explore these possibilities we induced sleep spindles opto-

genetically (Halassa et al., 2011) in parvalbumin-channelrhodop-

sin (PV-ChR) (three animals, eight sessions) and vesicular-GABA

transporter-channelrhodopsin (vGAT-ChR) mice (nine animals,

17 sessions). These strains express channelrhodopsin in both

somata and axon terminals of nRT cells. Laser stimuli were

delivered either to the nRT somata (n = 10), or to nRT axon termi-

nals in VB (n = 15) with identical results. The experiments were

performed under urethane anesthesia to gain large enough

sample in a homogeneous state using the same multishank
1374 Neuron 82, 1367–1379, June 18, 2014 ª2014 The Authors
silicon probes as above. Under urethane

anesthesia in mice, brain state showed

cyclic fluctuations between patterns re-

sembling slow-wave sleep, light sleep

with sleep spindles (Figure 8A), and

desynchronized EEG states, mimicking

natural sleep on a shorter timescale

(10–30 min). Spindles in mice had similar

duration and frequency as in rats (12.9 ±

1.3 Hz, 914 ± 369 ms, n = 5,127 spindles).

Spindles were evoked by short stimuli

of laser pulses with variable length and

intensity (0.1–10 mW, 2–40 ms). Spindles

could not be induced during desynchron-
ized states or slow-wave activity, but only in the intermediate

states in which spindles also occurred spontaneously (Figure 8A).

During spindling epochs the length of both spontaneous

and evoked spindles displayed large variability (Figure 8B),

and there was a comodulation between the two (R = 0.21,

p < 0.001). The density of spindles showed a weak correlation

with the length of both spontaneous (R = 0.09, p < 0.001, 10 swin-

dow) and evoked spindles (R = 0.11, p < 0.001, 10 swindow), indi-

cating a slow background modulation. We found no significant

correlation though, between the length of adjacent spindles.

We tested the effect of nRT population recruitment by varying

either stimulus intensity (n = 14) or duration (n = 11) using stimu-

lation parameters from subthreshold to maximal strength. The

probability of evoking spindles increased both with stimulus

intensity (Figure 8C, top), and duration (Figure 8D, top), ranging

from0%to56%.This shows that themagnitudeof nRTactivation

could be changed profoundly under these experimental condi-

tions using the stimulus intensity range we applied. Still, in 20

out of 24 sessions, there was no correlation between stimulus

intensity or duration and spindle length (Figures 8C and 8D,

bottom; p>0.05, Kruskal-Wallis test). The remaining four showed

inconsistent and weak correlations in multiple directions. In four

animals (six sessions), we kept the stimulus parameters and

recording locations constant and summed the data across
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animals. In this pooled data set also no significant difference

was found between spindle length evoked by the three different

stimulus intensities (0.14 mW, 4.4 mW, 10.5 mW, 1,200 repeti-

tions each; Kruskal-Wallis test, p = 0.11). These results together

indicate that the magnitude of of nRT cell activation does not

directly correlate with spindle length. Rather, a constantly fluctu-

ating network state controlls spindle duration probably via

determining the size of recruitable nRT population.

Interestingly, the length distribution of spontaneous and

evoked spindles differed significantly in 41.6% (10/24) of the

experiments (Figure 8E; Mann-Whitney test), due to the absence

of both the longest and shortest spindles in the evoked data.

We suggest that these exceptional spindles arise from precisely

calibrated population activity patterns that cannot be mimicked

by laser stimulation.

DISCUSSION

We quantitatively characterized the dynamics of mutually con-

nected excitatory TC and inhibitory nRT populations during

sleep spindles in vivo. We found that nRT activity drops during

the later phases of spindles irrespective of its length. In contrast,

TC activity rose steadily throughout spindle duration. Activity

trajectories in nRT cells, but not TC cells, were different between

long and short spindles and the ongoing network activity strongly

influenced spindle length.

Technical Considerations
The somatic activity of TC cells and the axonal activity of nRT

cells were distinguished by nonoverlapping spike width, different

firing and burst patterns, and different phase preference relative

to the local spindle oscillation (Figures 2, 4, and S1B). Although

extracellular axonal recordings of nRT cells have to our knowl-

edge not been demonstrated before in freely sleeping animals,

extracellular axonal recordings have previously been reported

in other structures, and our spike width data are consistent

with these earlier findings (Goldberg and Fee, 2012; Khaliq and

Raman, 2005; Meeks et al., 2005; Robbins et al., 2013). In the

present case, direct evidence for axonal recording has also

been obtained by simultaneous recording of the soma and

the axon of the same nRT cell (Figure 3). These anatomical and

physiological data unambiguously demonstrate that when we

measure TC somatic and nRT axonal activity via the same

electrode shank we measure reciprocally coupled excitatory

and inhibitory cell populations.

In every spindle cycle, TC cell activity preceded nRT activity by

15–20 ms (Figures 5B, S1B, and S5), followed by a longer delay

(60–90 ms) before the next cycle started with the TC activity

again. This pattern is fully consistent with the ‘‘ping-pong’’ mech-

anism of spindle genesis whereby TC firing induces an nRT

burst, which in return evokes a prolonged inhibition in TC cells,

enabling TC cells to fire a rebound burst and initiate the next

cycle (von Krosigk et al., 1993).

Theoverall spindledynamicsweresimilarbetweennatural sleep

and urethane anesthesia, and the cycle-by-cycle trajectories of

firing parameters in both TCand nRT cells displayed a surprisingly

similar pattern (Figures S4, S5, and S6) despite the fact that ure-

thane has been shown to have a depressing effect on neuronal
excitability (Sceniak and Maciver, 2006). The most striking differ-

ence between freely sleeping and anesthetized spindles was in

their spatial distribution: natural sleep was characterized by

large-scale global spindle synchrony, whereas under urethane

most spindles were restricted to a 200–400 mm volume (Figures

1B and 4C). Intriguingly, a similarly localized spindle pattern has

been demonstrated in decorticated animals (Contreras et al.,

1996, 1997). We therefore hypothesize that the localized nature

of spindles under urethane anesthesia may reflect decreased

corticothalamic activity relative to the naturally sleeping state.

Decrease of Inhibition and the Termination of Spindles
Three major theories have been put forward to explain the termi-

nation of spindles: that corticothalamic input desynchronizes

the thalamic network during the waning of spindles (Bonjean

et al., 2011); that progressive depolarization of TC cells unables

them to fire rebound bursts toward the end of the spindle

(Bal and McCormick, 1996; Lüthi and McCormick, 1998; Lüthi

et al., 1998); or that spindles terminate due to progressive

hyperpolarization of nRT cells (Bal et al., 1995b; Kim andMcCor-

mick, 1998). However, to date no cycle-by-cycle analysis of

neuronal activity has been performed in freely sleeping animals.

Our data do not directly support the desynchronization hypoth-

esis, because we did not find increased jitter before the termina-

tion of the spindles (Figures 5 and S5). Some aspects of our data

are consistentwith the TCcell depolarization hypothesis because

the percentage of active TC cells progressively increased during

each spindle. Nevertheless, we found no decrease in the number

of TC spikes/burst toward the end of the spindles (Figures 5D, 6A,

6B, and S6), which would be expected if TC cells had become

depolarized. Although recent data suggest that under the right

conditions TC cells can still fire bursts even when depolarized,

(Dreyfus et al., 2010), the fact that TC cells do not show reduced

bursting at spindle termination argues against an exclusive role of

TC depolarization in ending spindles.

The model of spindle termination most strongly supported by

our data is instead progressive hyperpolarization of nRT cells

(Bal et al., 1995a; Kim and McCormick, 1998). According to

this hypothesis, inhibitory activity gradually decreases during

the spindle, and once inhibitory input has decreased below a

minimal value required for evoking rebound bursts in TC cells

the oscillation will be terminated. Consistent with this possibility,

we found that nRT burst size fell continuously throughout spin-

dles of all durations, whereas the fraction of nRT cells active

initially rose, before falling precipitously three to four cycles

before spindle termination (Figures 5D, 6A, 6B, and S6). The

mechanisms leading to the decreased nRT activity toward the

end of the spindle remain to be established: whereas it may

reflect conductances intrinsic to nRT neurons (Bal and McCor-

mick, 1993; Cueni et al., 2008; Kim and McCormick, 1998), it

could also result from alteration in corticothalamic input as

suggested by Bonjean et al. (2011). Future modeling and ex-

perimental studies are thus required to elucidate the exact

intracellular events underlying spindle termination.

Initial Network State and the Duration of Spindles
Two models can be put forward to control the duration of a tran-

sient neural oscillation. Length could be predetermined by the
Neuron 82, 1367–1379, June 18, 2014 ª2014 The Authors 1375
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network state at the onset of the oscillation; alternatively, the

oscillation could be stopped by a signal (extrinsic or intrinsic to

the network) that emerges at a random time point once the

transient is under way. In the first case, the oscillations are

predicted to follow rigid activity trajectories, correlated with the

initial state. In the latter case, no correlation is expected between

initial state, end state, and duration.

Our data support the first hypothesis in the case of sleep spin-

dles. We found a robust correlation between the participation

probability of nRT cells in the first cycle and the length of the

spindle (Figure 7A). A similar, though weaker relationship existed

between spindle duration and both the participation probability

and spike/burst of TC cells. We also observed a strong correla-

tion between the participation probability of nRT cells in the first

and the last cycles (Figure 7C). These data indicate that the initial

state of the network has strong influence on spindle duration,

and, once a spindle is launched, it does not evolve randomly

but follows a rigid trajectory between fixed start and end points.

The optogenetic experiments, however, indicated that there is

no fixed correlation between the magnitude of nRT activation

and the evoked spindle length. This suggests that spindle

duration is determined by more complex variables, such as the

precise state of neuromodulators and/or degree of cortical drive

present at spindle initiation. Such variables would affect both

the nRT firing pattern seen on the first cycle, and phenomena

controlling spindle duration, such as the speed at which nRT

cells become hyperpolarized as the spindle progresses.

Our data indicate that quantitative cycle-by-cycle analysis of

excitatory and inhibitory activity can be used to test hypotheses

regarding what determines the duration of transient network

events. Because short, transient oscillations with widely different

frequencies are abundant in the brain (e.g., type II theta activity,

alpha waves, transient gamma oscillations, sharp wave ripples,

etc.), similar analyses may help to determine the mechanisms

of these oscillations. The duration of transient oscillatory events

is plastic, changing both under healthy conditions (e.g., following

learning) and also in case of neurological diseases. Thus,

defining the mechanism underlying the duration of these tran-

sients can lead to better understanding of the temporal organi-

zation of neuronal activity in both healthy and diseased states.

EXPERIMENTAL PROCEDURES

Surgery and Recording

All animal procedures were approved by the Institute of Experimental Med-

icine Protection of Research Subjects Committee as well as the Food-Safety
Figure 8. Durations of Optogenetically Induced Spindles Do Not Corre

(A) (A1) Vertically oriented traces of smoothed multiunit activity recorded by one

channelrhodopsin-2 under parvalbumin promoter. Spindles were evoked by lase

(0.12 mW, 1.6 mW, 10.6 mW) every 5 s. Note the state fluctuations between de

chronized (red arrows) states with spontaneous spindles. Spindles can only be ev

MUA activity on the rightmost traces in A1. Warm colors represent spindle frequ

(B) Duration of spontaneous (black) and evoked spindles (colored according to

co-occur in epochs. One of the epochs (blue dotted line) is shown in expanded

(C) Probability of evoking a spindle increasedwith stimulus intensity (upper panel),

of evoked spindles (lower panel).

(D) Same as (C), but, instead of stimulus intensity, stimulus duration was varied.

(E) Distribution of all spontaneous and evoked spindle lengths summed from all an

(below 600 ms) spindles in spontaneous cases.
and Animal-Health Office of the Pest District Government Bureau, which is

in line with the EuropeanUnion regulation of animal experimentations. For gen-

eral surgical procedures, see Barthó et al. (2004). Briefly, 41 male Wistar rats

were used in the study. For anesthetized experiments (n = 36), rats were

administered 1.5 g/kg urethane, the skull was opened over somatosensory

cortex and thalamus (�3.0 AP, 2.8 ML from Bregma), dura was removed,

and silicon microelectrodes (Neuronexus Technologies) were lowered into

the brain. The probes used were mostly 32 site, four shank octrodes, in five

thalamic experiments and most of cortical recordings 32 site linear probes.

In anesthetic-free, chronic experiments (n = 5), for the surgery the animals

were anesthetized with a mixture (4 ml/kg) of ketamine (25 mg/ml), xylazine

(1.3 mg/ml). Silicon probes were implanted above the thalamus attached to

a custom-manufactured microdrive. After 1 week of recovery, the probes

were moved gradually, and recordings were made at several depth locations.

Tungsten wires (50 mm) were implanted to both primary somatosensory of

motor cortices, also in hippocampus in three cases. Three of the five chronic

animals yielded narrow spike units of clusterable quality.

For juxtacellular recording and labeling, glass micropipettes (20–70 MU)

filled with 1.5% Neurobiotin (Vector Laboratories) were used. After perfusion,

60-mm-thick coronal brain sections were cut on a Vibratome and incubated

with avidin-biotin-peroxidase complex (Vector Laboratories). The labeled cells

were visualized using nickel-intensified diaminobenzidine (DAB) reaction.

Labeled neurons and axonal trees were reconstructed using Camera Lucida.

In case of dual nRT-VB recording experiments first a silicon probe was lowered

into VB, and the receptive field of themultiunit was determined. Next, nRT units

with a matching receptive field were then sought with several penetrations of

a juxtacellular recording pipette.

Lesion experiments were performed by recording a baseline session from

VB, followed by iotophoresis of 1% kainic acid (�2 mA, 7 s on/off cycle) for

20 min without moving the electrodes. Several (3–4) hours later postlesion

session was recorded from the same electrode.

Optogenetics

Parvalbumin-channelrhodopsin and vesicular GABA-transporter-channelr-

hodopsin mouse strains were generated by crossing PV-cre or vGAT-cre

(The Jackson Laboratory) mice with -129S-Gt(ROSA)26Sortm32(CAG-COP4*

H134R/EYFP-Hze (The Jackson Laboratory) reporter strains. For optical stim-

ulation a 473 nm DPSS laser (LaserGlow) was used via a fiberport (Thorlabs)

and a patch cord (Thorlabs) to the brain-implanted optic fiber. The optic fiber

was either attached to the silicon probe in close proximity (<200 mm) of the

recording site (axonal stimulation), or inserted directly into the nRT (soma-

dendritic stimulation). Light intensity was modulated through the DPSS power

supply, with a MATLAB-controlled DAQ-board (National Instruments). Stim-

ulus strength was adjusted to span a range from near-threshold (�0.1 mW)

to maximal effect (�10 mW).

Data Analysis

Extracellular signals were high-passed filtered (0.3 Hz), amplified (2,000 times)

by a 64-channel amplifier, and digitized at 20 kHz with two National Instru-

ments PCI-6259 cards. After detection, units were grouped by the semiauto-

matic ‘‘cluster cutting’’ algorithm (‘‘KlustaKwik’’; available at http://github.

com/klusta-team) followed by manual clustering (Csicsvari et al., 2003).
late with Stimulus Intensity

electrode shank under urethane anesthesia in the VB of a mouse expressing

r activation of nRT cells (red vertical lines) using three different laser intensities

synchronized (blue arrows), slow-wave sleep (green arrows), and lightly syn-

oked (red ellipses) in the latter state. (A2) Dominant frequencies of the thalamic

encies.

laser intensity) during a long recording. Evoked and spontaneous spindles

time scale (bottom). The length of neighboring spindles show great variability.

but no significant difference (Kruskal-Wallis test) was found between the length

Data in (A)–(D) are from the same animal.

imals and sessions. Note larger percentage of long (above 1,100 ms) and short
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Auto- and cross-correlograms were inspected to verify the clustering proce-

dure. The quality of spike clusters was estimated with the ‘‘isolation distance’’

measure (Schmitzer-Torbert et al., 2005) (Figure S1). Spike width was

measured as the width of the extracellular spike waveform at half-amplitude

(Barthó et al., 2004).

All data analysis was performed inMATLAB (MathWorks). Spindles were de-

tected semiautomatically from the thalamic multiunit activity (MUA) separately

for each shank (for details, see Figure S1). After automatic detection, spindles

were verified visually, and false detections were deleted.

Spindle phases were estimated at the maximal amplitude of Morlet wavelet

transform using scales between 7 and 20 Hz.

Jitter was defined as the SD of spike distances from spindle peak during a

given cycle. For cycle-by-cycle cross-correlograms, only the reference spikes

contained within the given cycle were considered. Number of spikes per burst

in a cycle was estimated as the number of spikes fired, given the cell partici-

pated in a given cycle. Spike numbers per cycle, participation probability,

and spikes per burst (Figures 5D, 6, and S6) were calculated for each spindle

length category averaged across all cells in all animals.

Histological Analysis

Following the neurophysiological recordings, animals were transcardially

perfused first with saline, and then with 400–500 ml of fixative containing

4% paraformaldehyde, 0.05% glutaraldehyde in 0.1 M phosphate buffer. Tis-

sue blocks were cut on a Vibratome into 50 mm coronal sections. Electrode

tracks were reconstructed from Nissl-stained slices (chronic experiments) or

fluorescently counterstained for parvalbumin (acute experiments, the silicon

probe was dipped in DII solution beforehand).

After lesion experiments, the fixed brain was cut into 50-mm-thick sections

and or fluorescently counterstained for the neuronal marker NeuN to visualize

the spread of lesion. The immunofluorescence stainings were performed

according to the following protocol. Sections were intensively washed with

PB and then treated with a blocking solution containing 5% normal goat serum

(NGS) and 1% Triton-X for 45 min at room temperature. The primary antibody

against PV (rabbit 1:3,000; Swant) and/or NeuN (mouse 1:300; Millipore) was

diluted in PB containing 0.1% NGS and 0.2% Triton-X. After primary antibody

incubation (overnight at room temperature), sections were treated with the

secondary antibody Alexa-488-conjugated goat anti-rabbit or goat anti-

mouse immunoglobulin (Ig)G and/or Alexa-594-conjugated goat anti-rabbit

or goat anti-mouse IgG for 2 hr at room temperature. After further PB washes,

sections were mounted in vectashield (Vector) and imaged using epifluores-

cent microscopy (Zeiss).
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