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Abstract

There is currently much interest in developing general approaches for mapping forest

aboveground carbon density using structural information contained in airborne LiDAR data.

The most widely utilized model in tropical forests assumes that aboveground carbon density

is a compound power function of top of canopy height (a metric easily derived from LiDAR),

basal area and wood density. Here we derive the model in terms of the geometry of individ-

ual tree crowns within forest stands, showing how scaling exponents in the aboveground

carbon density model arise from the height−diameter (H−D) and projected crown

area−diameter (C−D) allometries of individual trees. We show that a power function relation-

ship emerges when the C−D scaling exponent is close to 2, or when tree diameters follow a

Weibull distribution (or other specific distributions) and are invariant across the landscape.

In addition, basal area must be closely correlated with canopy height for the approach to

work. The efficacy of the model was explored for a managed uneven−aged temperate forest

in Ontario, Canada within which stands dominated by sugar maple (Acer saccharum

Marsh.) and mixed stands were identified. A much poorer goodness−of−fit was obtained

than previously reported for tropical forests (R2 = 0.29 vs. about 0.83). Explanations for the

poor predictive power on the model include: (1) basal area was only weakly correlated with

top canopy height; (2) tree size distributions varied considerably across the landscape; (3)

the allometry exponents are affected by variation in species composition arising from timber

management and soil conditions; and (4) the C-D allometric power function was far from 2

(1.28). We conclude that landscape heterogeneity in forest structure and tree allometry

reduces the accuracy of general power-function models for predicting aboveground carbon

density in managed forests. More studies in different forest types are needed to understand

the situations in which power functions of LiDAR height are appropriate for modelling forest

carbon stocks.
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Introduction

Aboveground carbon density (ACD) is an important forest property to map in the context of

the global carbon cycle [1–3]. Classically, ACD has been estimated using tree size measure-

ments recorded from networks of forest plots, with generalised or species−specific allometries

used to convert field measures of diameter and height into tree biomass estimates, and then

into ACD estimates [4, 5]. More recently, methods using remote sensing technologies have

been developed to complement these plot networks: airborne or spaceborne LiDAR sensors

have proven to be particularly effective for estimating ACD because they provide detailed

information about forest structure, which is in turn closely related to ACD [6].

There is currently much interest in developing a general method for predicting ACD from

LiDAR [7, 8]. A common approach has been to estimate ACD in field plots and then use

regression to relate these measurements to various LiDAR metrics [9]. This approach can

deliver accurate estimation models within sampling regions, but the models lack physical

underpinnings because they are purely empirical. Consequently, they either need to be re-

parameterized for each new site, or generalised by estimating how parameters vary geographi-

cally. Asner and Mascaro [8] have developed a General Model (henceforth AM−GM) for pre-

dicting ACD, which uses measures of the top canopy height derived from LiDAR (HL), along

with local relationships predicting basal area (BP) and basal−area−weighted mean wood den-

sity ð�rPÞ:

ACD ¼ aHL
b1BP

b2 �rP
b3 ð1Þ

where a, b1, b2 and b3 are parameters estimated by regression using the log−transformed func-

tion. Note that subscript L denotes a LiDAR−based measurement, and subscript P a plot−based

measurement. Asner and Mascaro [8] argue that this model is analogous to the allometric for-

mula used to calculate an individual tree’s biomass from its height Hi, diameter Di and wood

density ρi measurements, namely aHb
i Dc

ir
d
i where a, b, c and d vary with forest type [10] and i

denotes measurements on an individual tree. Fitting the AM−GM to data from four contrast-

ing tropical forests, Asner et al. [7] found that a single, universally fitted relationship reduced

model accuracy by no more than 1% relative to regional−specific models. Furthermore, the

accuracy was only slightly diminished by replacing plot−level measurements of BP and �rP with

regional averages and, as a result, the major benefit of their approach is that it requires less

additional field data to calibrate than traditional regressions [11].

A key reason why the AM−GM has worked well, where it has, is that basal area and top-of-

canopy height were closely correlated in the forests investigated. Asner and Mascaro [8]

showed that–for the four tropical forests studied–the AM−GM could be calibrated simply by

generating a local relationship estimating BP from LiDAR and finding a regional �rP estimate.

Others have questioned the generality of the approach [12,13]. In some forest types the correla-

tion between forest height and basal area is weak, especially for mature stands. In these situa-

tions two stands can have the same top-of-canopy height, but quite different basal area [14,15].

The problem is that the carbon density of a plot is obtained by summing the biomass of

individual trees, but because a tree’s biomass is non-linearly related to its dimensions (height,

stem diameter), this summation is only exact under certain conditions that we explain below.

Although Asner et al. [7] did not claim that the AM−GM could be applied outside the tropics,

testing the accuracy of the model across different forest types is important to understanding

the applicability and limitations of the general model. For example, tropical and temperate for-

ests have contrasting size structures: rain forests contain shade-tolerant species that develop a

dense understory beneath the upper canopy (i.e. stands contain many small trees and few large

trees), while temperate forests often lack dense understories and can have unimodal size-
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frequency distributions [16]. Perhaps for this reason the AM−GM had low goodness−of−fit

when applied to broadleaf and coniferous forests in the USA [13], but this has yet to be evalu-

ated critically. Vincent et al. [12] suggest that forests should first be delineated into homoge-

nous regions with respect to the relationships between forest structure and LiDAR data to

improve model performance. Unfortunately, this requirement would severely limit the gener-

ality of the model.

The aim of this study is to derive the AM−GM from first principles using the geometry of

individual trees and, by doing so, to improve understanding of when the AM−GM is likely to

yield accurate predictions (i.e., have high goodness−of−fit when applied to data from the field

and from LiDAR scanners). Our individual−tree−based general model (ITB−GM) has the

same functional form as the AM−GM (1), but its parameters are derived from individual tree

allometries and other assumed scaling relationships. We fit the AM−GM to data from an

uneven−aged forest in central Ontario, Canada and compare the parameter estimates with

those obtained from tree−based measurements using the ITB−GM. By doing so, we explore

why the AM−GM has poor predictive ability in this temperate forest. We then examine

whether fitting separate models for two forest types within the Canadian dataset leads to signif-

icant improvements in goodness−of−fit. Finally, we outline forest conditions that determine

the accuracy of the AM−GM.

Theory: An individual−tree−based general model

Consider a tree with stem diameter Di (in cm), height Hi (in m), vertically projected crown

area Ci (in m2) and wood density ρi (in g/cm3) growing in a plot with an area AP (in ha). The

tree’s aboveground biomass can be modelled as a1pDi
2Hiri where a1 is a species−specific coef-

ficient that depends on crown and stem form. The total aboveground biomass of the plot is

found by summing the biomasses of all NP trees in the plot. ACD is calculated by dividing this

biomass value by AP and multiplying by carbon content a0 (typically 0.5):

ACD ¼ a2

XNp

i¼1
a0a1riDi

2Hi ð2Þ

where a2 = π/AP. For ease of presentation, the limits of summations are dropped in subsequent

equations, but remain the same throughout.

Assuming that a tree’s height is related to its diameter by a power function ðHi ¼ aHDi
kH Þ,

we get:

ACD ¼ a2

X
a0a1aHriDi

2þkH ð3Þ

We can use individual tree heights and crown areas to estimate the average top canopy

height HP: this is calculated by summing the crown top height of all trees in the plot, weighted

by their crown areas, HP = (∑a3CiHi)/CP where the canopy area of the plot is CP ¼
PNp

j¼1 Cj and

a3 is a multiplier that takes into account that the average height of each tree’s crown is some

fraction of that tree’s maximum height [15]. Assuming that crown area is also a power function

of stem diameter ðCi ¼ aCDkC
i Þ, and that Hi ¼ aHDkH

i as before, we get:

HP ¼
1

CP

X
a3aHaCDkCþkH

i ð4Þ

Our aim is to substitute (4) into (3) to remove the Di terms, so that ACD is expressed in

terms of HP, BP and �rP. However, this is not straightforward for two reasons. The first problem

is that a0, a1, a3, aH, aC and ρ are inside the summations, but cannot necessarily be moved out-

side the summations because they are species−specific variables. As an approximation, we
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represent them by tree−volume−weighted mean values and take them outside of the summa-

tion [12] to give ACD � a2�a0�a1�aH �rP

P
Di

2þkH and HP � �a3�aH�aCCP
� 1
P

DkCþkH
i . The second

problem is that Di is raised to different exponents inside the two summations (except when

kC = 2). In order to progress, we need to assume that the two summations are themselves

related by a scaling function:
P

D2þkH
i � aDð

P
DkCþkH

i Þ
kD ; we call this the volume summation

scaling relationship. The canopy area can be substituted with basal area by assuming a second

scaling function: CP � aBBP
kB ; we call this the canopy area scaling relationship. Making these

substitutions, we obtain an individual-tree-based general model (ITB−GM):

ACD � a4ðHPÞ
kDðBPÞ

kDkB �rP where a4 � �a0�a1�aHa2aD
aB

�a3�aH�aC

� �kD

ð5Þ

This equation is analogous to the AM−GM, given in (1), with a = a4, b1 = kD, b2 = kDkB and

b3 = 1, but it has more parameters and so is less powerful for predictions.

Our derivation based on tree allometries shows that certain parameters in the AM−GM

depend on the exponents of the volume scaling relationship and canopy area scaling relation-

ship. It is important to realise that it would be impossible to derive a function having the form

of the AM−GM unless these scaling relationships are valid. In the Supporting Information (S1

Text) we show that these relationships are mathematically valid when tree sizes are precisely

power-law or Weibull distributed. If the tree size distributions of all stands across a forest fol-

low one of these functions (with identical parameters), the summation can be replaced by an

integral that has an analytical solution. Specifically, if a large number of diameters (Di,. . .DN)

are drawn from p(D) = αD−β (where α is a normalising constant), then a given power function

summation can be approximated by:

XN

i¼1
Di

g � N
Z Dmax

Dmin

DgpðDÞdD ¼ aN
Z Dmax

Dmin

Dg� b dD ð6Þ

which can in turn be solved to give:

XN

i¼1
Di

g �
aN

g � bþ 1
Dmax

g� bþ1 � Dmin
g� bþ1

� �
ð7Þ

A similar property holds for a Weibull distribution of tree diameters [S1 Text]. If the power

or Weibull distribution is identical across stands, it can be shown that kD = kB = 1 and aD and

aB are both predictable.

We now compare the performance of the AM−GM and ITB−GM using data from a tem-

perate forest, to gain a better understanding of when these models are appropriate for estimat-

ing ACD from LiDAR data.

Materials and methods

Study area and inventory dataset

We used datasets from Haliburton Forest and Wildlife Reserve in central Ontario, Canada

(45˚13’N, 78˚35’W). The forest is managed using selection silviculture and consists mostly of

uneven−aged stands [17]. Sugar maple (Acer saccharum Marsh.) is the most prevalent species,

but a number of other species are common, including eastern hemlock (Tsuga canadensis (L.)

Carrière), balsam fir (Abies balsamea (L.) Mill.) and American beech (Fagus grandifolia Ehrh.).

There were 154 circular plots inventoried across the forest each with an area of 2500 m2. The

plot locations were chosen to stratify the variation across the forest. The stem diameters of all

trees with a stem diameter equal to or greater than 8 cm were recorded along with their species

LiDAR estimation of forest carbon density
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identity. The plots were randomly split into a calibration (114 plots) and a validation dataset

(40 plots). The calibration dataset was used for fitting the models and relationships, whilst the

validation dataset was reserved for assessing model performance.

ACD was estimated for each plot using species−specific allometric equations developed for

Canadian inventories, which relate stem diameter to aboveground tree biomass [18, 19]. Spe-

cies−specific equations were used for the seven most prevalent species and then generic conifer

and broadleaf equations were used for all remaining species (~ 17% of total trees). The individ-

ual tree aboveground biomasses were summed for each plot and converted to a per hectare

estimate; this aboveground biomass estimate was then multiplied by the carbon content of

wood (0.5; [20]) to estimate ACD. Wood density estimates were extracted from [21] and

represent the oven dry mass divided by green volume. To parameterise the LiDAR models

(AM−GM and ITB−GM), wood density was summarised as a volume−weighted average for

each plot ð�rPÞ. Finally, we succinctly described the tree size distribution of each plot by calcu-

lating the quadratic mean diameter (QMD) as 200
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
APBP=ðpNPÞ

p
, and by fitting a Weibull dis-

tribution to the list of stem diameters.

Airborne LiDAR

The LiDAR data were collected using an Optech ALTM 3100 four−pass system flown in

August 2009 (altitude = 1500 m; pass overlap = 30%; pulse density = 2 pulses/m2). The dataset

consisted of x, y and z coordinates (converted to the height above the ground by subtracting

the digital elevation model) with up to four returns recorded from a single pulse. We used dis-

crete−return airborne LiDAR data clipped in ArcGIS 10 to overlay the inventoried plots,

which had been georeferenced to sub−metre accuracy using a Trimble Geo XH 6000. The

LiDAR metrics used in the analyses were HL and gap fraction (GL) (Table 1). We split each

plot into 1 m by 1 m tiles and extracted the maximum recorded height of pulses in each of

those tiles. HL was calculated as the mean of the tile heights that were recorded at 2 m and

above, which excluded the tiles where LiDAR pulses were not intercepted by the canopy. GL

was calculated as the proportion of first returns recorded at a height less than 2 m above the

ground.

Forest types from aerial photography

The study area was classified into two forest types using aerial photographs (captured by an

ADS52 Leica camera). The photographs were manually delineated into 42 forest types using

standard methods developed by Ontario’s Forest Resources Inventory programme [22]. We

reduced the number of forest types to just two according to estimated species composition:

stands dominated by sugar maple, and mixed stands that contained a significant coniferous

component alongside sugar maple (see [23] for further details on the method used).

Fitting the AM−GM to the Canadian data

The log−transformed AM−GM was fitted using least squares regression to ACD measured in

the calibration plots:

ln ACD ¼ ln a þ b1 ln HL þ b2 ln BP þ b3 ln �rP ð8Þ

Predicted ACD values included a eMSE/2 multiplier (where MSE is the mean square error of

the regression) to correct for a bias introduced by the log transformation [24]. BP and �rP were

estimated from relationships with LiDAR so that the model could be used to predict ACD out-

side of the measured plots. We compared the accuracy of models based on LiDAR estimates of

LiDAR estimation of forest carbon density
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BP and �rP against models where BP and �rP were ground measurements, to quantify the loss in

accuracy as a result of this estimation approach.

We measured the accuracy of the 40 validation plot predictions of the ACD model and the

BP and �rP equations using the coefficient of determination (R2):

R2 ¼ 1 �

P40

j¼1
ðPj � OjÞ

2

P40

j¼1
ðOj �

�OÞ2
ð9Þ

where the observed and predicted value for each plot is denoted by Oj and Pj, respectively, and

the overall mean observed value is denoted by �O. We compared model support using the

Akaike information criterion (AIC) where k is the number of estimated parameters and L is

Table 1. Definitions of all terms and parameters in the AM−GM and ITB−GM.

Term Definition Units

Lidar metrics

HL Top canopy height m
GL Gap fraction No units

Tree level measurements

ρi Wood density Mg m−3� g
cm−3

Di Diameter cm
Bi Basal area m2

Hi Stem height m
Ci Crown area m2

Plot based measurements

ACD Aboveground carbon density Mg C ha−1

�rP Mean wood density (weight by relative abundances of species) Mg m−3� g
cm−3

CP Canopy area ðCP ¼
PN

j¼1
CjÞ m2

AP Plot area ha
NP Total number of stems in a plot No units

HP Average top canopy height m
BP Basal area m2 ha−1

QMD Quadratic mean diameter cm
Model parameters

a0 Carbon content of trees

a1 Coefficient related to crown and stem form

a2 Factor scaling stem diameter to plot level basal area

a3 Average crown height as a proportion of tree height

a4 Coefficient in final ACD equation which amalgamates other coefficients

�a0; �a1; �a3 Means of a0, a1, and a3, weighted by tree volumes

aH, kH Coefficient and exponent of scaling relationship between stem diameter and height (H

−D)

aC, kC Coefficient and exponent of scaling relationship between stem diameter and crown area

(C−D)

aD,kD Coefficient and exponent of scaling relationship between two summations of stem

diameter raised to different powers (volume scaling relationship)

aB, kB Coefficient and exponent of scaling relationship between canopy area and basal area

(canopy area scaling relationship)

https://doi.org/10.1371/journal.pone.0215238.t001
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the maximised likelihood function:

AIC ¼ 2k � 2lnðLÞ ð10Þ

We also calculated the percentage root mean square error (% RMSE) which is normalised

using the mean of the observed values:

% RMSE ¼
100

�O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P40

j¼1
ðPj � OjÞ

2

40

s

ð11Þ

Estimating the parameter values of the ITB−GM from tree level

information

Exponents kB and kD of the ITB−GM equation ðACD � a4HL
kD BP

kDkB �rPÞ are derived from the

volume summation and canopy area scaling relationships. To estimate these, we first estimated

allometric scaling exponents kH and kC from dimensional measurements of 5436 trees at a site

230 km from the study area [25]. We calculated the relative abundances of species within the

114 calibration plots [S1 Table], then drew 500 trees at random from the height and crown

radius dataset such that the species composition of the sample was the same as observed in the

plots. Power functions were then fitted to the height vs. diameter and crown area vs. diameter

relationships for these 500 trees. The fitted power functions gave values for kH and kC that

were representative of the species composition in our study area. Exponent kD (of the volume

scaling relationship) was estimated by calculating logð
P

D2þkH
i Þ and logð

P
DkCþkH

i Þ for each of

the 114 calibration plots, and then fitting a power function through these data. Similarly, expo-

nent kB of the canopy area scaling relationship was estimated by calculating log(CP) and log

(BP) for each of the 114 calibration plots, and then fitting a power function through these data.

Theoretically, a4 in the ITB−GM could be calculated as �a0�a1�aHa2aDaB
kDð�a3�aH�aCÞ

� kD but in

practice several of these variables are hard to determine. For this reason, a4 was estimated by

linear regression: we fit log(ACD) as a linear function of log(HL), log(BP) and logð�rPÞ with the

coefficients associated with these explanatory variables fixed at the values calculated from indi-

vidual−tree−based information, such that only a4 was estimated.

Testing whether forest type information improves model accuracy

To explore whether incorporating forest type information improved the predictive power of

the estimation model, we split the plots into sugar maple and mixed stands using the aerial

photographs and repeated the same procedures as above for fitting AM−GM and ITB−GM.

Forest type was incorporated into both of these models and into the equations estimating BP

and �rP from HL and GL.

Results

Predicting temperate forest biomass using general power-law models

A summary of the coefficients and goodness−of−fit estimates of the AM−GM (1) fitted to the

Canadian temperate forest dataset are provided in Table 2. The coefficient of the logð�rPÞ term

was not significantly different from zero, so we set the power (b3) to 1 to match the ITB−GM.

The resulting model performed relatively poorly, as the R2 of the fit to the validation plots was

only 0.18. Fitting the model with ground−measured BP and �rP increased the R2 to 0.41, but

unfortunately BP was poorly predicted from LiDAR estimates of HL and GL (R2 = 0.09;

LiDAR estimation of forest carbon density
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Table 3), and �rP was unrelated to the LiDAR metrics (Figs 1 and 2). As a result, we found that

ACD could be estimated using the AM−GM with relatively low accuracy (22.5% RMSE; equiv-

alent to a RMSE of 15.7 Mg C ha−1; Fig 3).

Including forest type into the BP and �rP estimation models led to increased goodness−of−fit

(R2 rose from 0.09 to 0.29 in the BP models and from −0.02 to 0.19 in the �rP equations; Table 3)

and was strongly supported by AIC (BP: Δ = 62.3; �rP: Δ = 57.3). The % RMSE of the BP estima-

tor fell from 23.3 to 20.7% and that of �rP from 11.7 to 10.4% (Fig 2b). The mixed−forest plots

had higher basal area and lower wood density than the sugar maple plots (Fig 1). Incorporating

forest type improved overall performance of the AM−GM with the R2 rising from 0.18 to 0.29

(RMSE: 20.9 vs. 22.5%), with moderate AIC support (Δ = 3.4).

Estimating the exponents of individual-tree-based generalised model

(ITB−GM)

The ITB−GM model, which fixed the values of model parameters based on the field-measured

allometries of individual trees, performed less well than the Asner-Mascaro model in which

the parameters were estimated by regression. The exponents of ITB−GM estimated from the

fitted allometric powers of the H−D and C−D relationships are presented in Table 4 and the

fitted relationships are presented in Fig 4. For all stands, height and crown area were fitted as

Table 2. Aboveground carbon density (ACD) estimation models fit to a Canadian temperate forest dataset containing sugar maple and mixed broadleaf-conifer

stands. Parameters shown in bold were estimated from individual tree data, while all other parameters were estimated using least-squares regression of calibration plot

data. The AIC gives the relative performance of the models and the R2 denotes the fit to the validation plots: 1) using ground measured BP and �rP and 2) using LiDAR esti-

mated BP and �rP.

Model type ACD estimation equation AIC 1) ground

BP and �ρP

2) LiDAR BP and �ρP

R2 R2

Asner and Mascaro’s General Model (AM−GM)
All stands 5:11HL

0:271BP
0:808 �rP 947.8 0.405 0.179

Sugar maple stands

Mixed stands

2:99HL
0:258BP

0:991 �rP

10:1HL
0:258BP

0:616 �rP

944.4 0.453 0.292

Individual Tree Based General Model (ITB−GM)
All stands 0:285 HP

1:24BP
0:870 �rP 1009.6 −0.111 −0.213

Sugar maple stands

Mixed stands

0:552 HP
1:15BP

0:729 �rP

0:314 HP
1:22BP

0:867 �rP

1002.5 −0.088 −0.330

https://doi.org/10.1371/journal.pone.0215238.t002

Table 3. Basal area and wood density estimation equations obtained by least squares regression. Explanatory vari-

ables were LiDAR metrics top canopy height (HL) and gap fraction (GL) and forest type derived from aerial photo-

graphs in the sugar maple and mixed stand specific equations. The AIC gives the relative performance of the models

and the R2 denotes the fit to the validation plots.

Response variable Estimation equations AIC R2

Basal area
BP (all stands) 14.2 + 0.871 HL − 29.4 GL 728.5 0.093

BP (sugar maple stands)

BP (mixed stands)

4.83 + 1.21 HL − 20.3 GL

12.5 + 1.21 HL − 20.3 GL

666.2 0.286

Volume−weighted mean wood density
�rP(all stands) 0.533 −307.0 −0.022

�rP (sugar maple stands)

�rP(mixed stands)

0.576

0.497

−364.3 0.188

https://doi.org/10.1371/journal.pone.0215238.t003

LiDAR estimation of forest carbon density

PLOS ONE | https://doi.org/10.1371/journal.pone.0215238 April 19, 2019 8 / 19

https://doi.org/10.1371/journal.pone.0215238.t002
https://doi.org/10.1371/journal.pone.0215238.t003
https://doi.org/10.1371/journal.pone.0215238


power functions of diameter, with exponents of 0.521 and 1.28 respectively. The log−log

regression relationship between summed stem volume ð
P

D2þkH
i Þ and the maximum canopy

volume ð
P

DkCþkH
i Þ had a higher goodness−of−fit (R2 = 0.814) than the log−log regression

relationship between canopy area (CP) and basal area (BP) (R2 = 0.654) indicating that the vol-

ume scaling relationship was better supported than the canopy area scaling relationship.

Both scaling relationships contained residual error and had exponent values different from

1 because our set of plots did not follow a single diameter distribution (Fig 5). Although the

Weibull distributions that we fit showed that stem diameters were monotonically decreasing

in most calibration plots, quadratic mean diameter ranged from 13 to 33 cm across the plots.

Plots with a higher QMD generally had a higher top canopy height as measured by LiDAR. In

the Supporting Information [S1 Text; S1, S2 and S3 Figs], we provide a comprehensive analysis

of how variation in tree diameter distributions affects model fit for a range of different H−D

and C−D scaling relationships.

The ITB−GM, with exponents fixed at their theoretical values and a4 fitted by linear regres-

sion is given in Table 2. The exponent associated with BP was similar in the two models

(AM−GM: 0.81 vs ITB−GM: 0.87), but the exponent associated with HL differed greatly (0.271

vs 1.24). The ITB−GM model had a RMSE of 27.3%, indicating it is less able to explain vari-

ance in biomass than the AM−GM (22.5%).

Fig 1. Relationships between field-measured biophysical properties (basal area BP and wood density �rP) and LIDAR metrics (top-of-canopy height HL and gap

fraction GL). The lines are predictions from multiple regression analyses of data from all sites (solid), mixed stands (dashed) and sugar maple (dotted). For panels (a)

and (c), the predicted lines are obtained by holding GL constant at its mean value, whilst for panels (b) and (d) the value of HL was held at its mean value.

https://doi.org/10.1371/journal.pone.0215238.g001
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The best predictions were obtained by using the AM−GM and including forest type infor-

mation (RMSE: sugar maple: 15.8%; mixture: 25.5%). The exponent of the HL term in the

AM−GM was unaffected by forest type, but the BP exponent of mixed stands was much lower

than the sugar maple exponent (0.616 vs 0.991; Table 2). Including forest type led to greater

improvements in the fit of the ITB−GM than that of the AM−GM (ΔAIC = 7.1 vs. ΔAIC =

3.4). However, the predictions to the validation plots of the ITB−GM were slightly less accurate

(RMSE: no forest types = 27.3%; forest type = 28.6%). In all versions of the model, the sugar

maple plots were predicted more accurately than the mixture plots.

Fig 2. Predictions made for the validation plots by multiple-regression models for basal area (left column) and volume

weighted wood density (right column) with: a) no species information and b) forest types.

https://doi.org/10.1371/journal.pone.0215238.g002
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Discussion

Deriving the AM−GM from individual tree measurements has revealed the origins of its

parameters, the assumptions behind the power function formula, and the situations in which

it is unlikely to make accurate predictions. Below, we explore specific explanations for low

goodness−of−fit, including that (1) the basal area and wood density of plots are not closely cor-

related with top canopy height or gap fraction as measured by LiDAR; (2) tree size distribu-

tions are not conserved across the landscape; and (3) the exponents of the allometries are

Fig 3. LiDAR vs ground estimated ACD in 40 validation plots, where LiDAR estimates are based on Asner and

Mascaro’s general model (AM−GM; first column) and the individual tree based general model (ITB−GM; second

column). The first row gives the fit of the AM−GM and ITB−GM to the 40 validation plots (AM−GMa and ITB−GMa)

and the second row gives the fit of the models fitted separately to 24 sugar maple and 16 mixed−species stands (AM−GMb

and ITB−GMb). The overall RMSE value for each model version is given in the bottom right corner of the plot and the

individual RMSE for the sugar maple (Mh) plots and mixture plots (Mix) are given above the plot.

https://doi.org/10.1371/journal.pone.0215238.g003
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Table 4. Estimates of power function parameters of relationships between (a) height vs diameter; (b) crown area vs diameter; (c) summed diameters raised to 2 dif-

ferent powers (see text; crown volume scaling relationship); (d) basal area vs canopy area (canopy area scaling relationship).

Model version (a) Hi vs Di (b) Ci vs Di (c)
P

D2þkH
i vs

P
DkCþkH

i (d) CP vs BP

aH kH R2 aC kC R2 kD R2 kB R2

All stands 3.26 0.521 0.593 0.465 1.28 0.419 1.24 0.814 0.701 0.654

Sugar maple stands 3.89 0.476 0.634 0.898 1.10 0.431 1.15 0.659 0.632 0.503

Mixed stands 3.73 0.466 0.503 0.397 1.29 0.378 1.22 0.813 0.711 0.676

https://doi.org/10.1371/journal.pone.0215238.t004

Fig 4. Height−diameter power relationships are given in the left panel whilst the crown area−diameter power

relationships are given in the right panel. The exponents from these fitted power functions are used to estimate the

powers in the ITB−GM model (Table 4): top row for all stands, middle row for sugar maple stands and the bottom row

for mixed stands.

https://doi.org/10.1371/journal.pone.0215238.g004
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affected by systematic changes in species composition, and the exponent of the crown area

allometry deviates from 2. Our findings suggest that among−stand variability in structure and

composition are key factors in determining the accuracy of the AM−GM.

Basal area is weakly correlated with height

Basal area is a key element of allometry-inspired models for estimating forest carbon. It is

not directly measured from LiDAR, but instead is inferred indirectly from other height met-

rics [23]. The goodness−of−fit of the AM−GM for this Canadian forest was substantially

reduced when ground−measured BP and �rP were replaced with LiDAR estimates (R2 = 0.41

vs 0.18) and therefore LiDAR offered a poor substitute for ground data on these quantities.

Predictions of BP from LiDAR metrics were weak in our study area (R2 = 0.09; Fig 1) com-

pared with that reported by Asner et al. [7] for tropical forests (R2� 0.55), although the fit

was improved by splitting the plots into two forest types (R2 = 0.29). Improving the accuracy

of the LiDAR−based models of BP may therefore require other metrics than HL and GL to be

included in regression relationships [9, 12] or the application of individual-based approaches

[14].

Fig 5. Weibull distributions of tree diameters in each calibration plot. The rug plot along the x-axis shows the quadratic mean diameter of each plot, coloured

according to top canopy height. The left panel represents sugar maple stands; the right panel represents mixed stands.

https://doi.org/10.1371/journal.pone.0215238.g005
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Tree size distributions vary across the landscape

Basal area is fundamentally linked with the stem diameter distribution, and variability in this

distribution weakens the correlation between canopy height and basal area. When the stem

diameter distribution follows either a power- or truncated-Weibull function and is conserved

across a landscape, then the volume summation and crown area scaling relationships are exact

and the exponents of the AM−GM all reduce to 1 [S1 Text; S1 Fig]. However, when the under-

lying diameter distributions vary among stands, the exponents relating these quantities will

deviate from 1 and the accuracy of the relationships will decrease [S3 Fig]. The AM−GM is

therefore likely to be less accurate in forests where there is large variability in tree size

distributions.

Why are size distributions more variable in temperate forests than in

natural tropical forests?

Size distributions of forests are linked to size−dependent growth and mortality [26], and can

be similar across forested landscapes if these demographic functions remain constant over

space and time [27, 16]. This may be a reasonable assumption in old-growth tropical forests

where size distributions are often close to power functions with exponents of roughly −2 [28]

(but see [27]). Temperate forests are often managed and comprise a patchwork of stands at

different stages of recovery following disturbance (natural or human). Temperate forest size

distributions tend to be more variable [29] and are often modelled by a Weibull distribution

with the flexibility to fit both unimodal and power function−type distributions [16]. The selec-

tion−managed forests considered here are uneven−aged, and exhibit varying tree size distribu-

tions as a legacy of their management history. Our analyses suggest that assumptions of the

AM−GM are compromised in structurally heterogeneous forests, and that this model is not

expected to produce high goodness−of−fits in such areas. In our particular study area, chang-

ing management practices over time have produced a wide range of diameter distributions,

which in turn have weakened the accuracy of the AM−GM.

Wood density is very weakly correlated with LiDAR-measured height

LiDAR and RADAR measure forest structure, but not wood density. Predictive models can

give rise to markedly different maps of ACD depending on the assumed spatial variation in

wood density [30]. Wood density ð�rPÞ was even less well predicted (R2 = -0.02) from LiDAR

than basal area, but was improved by separating the landscape into forest types (R2 = 0.19)

because conifer and broadleaf species vary in wood density. There is no evidence in our deriva-

tion, or from previous work [10], that �rP should have an associated power in the AM−GM,

even though the model has commonly been fitted with an �rP exponent included [7, 10]. Con-

sistent with theory, we found that including the �rP exponent (b3) did not lead to significant

improvements in model fit in our temperate data.

Influences of crown area allometry on goodness of fit

The exponent of the C−D relationship, kC, can also affect accuracy. When kC = 2, the powers

in the ITB−GM all reduce to 1, total stem volume is directly proportional to the maximum

canopy volume and canopy area is directly proportional to basal area. The AM−GM is there-

fore most accurate when kC = 2; conversely, the further kC departs from 2, the more inaccurate

the volume and crown area summation scaling relationships become [S1 Text; S1 Fig]. Even

with variable size distributions, the goodness−of−fit of the total stem volume vs canopy volume

relationship is high (R2 > 0.8) when kC is greater than 1.3. There is a sharp drop off in the
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accuracy of the volume scaling relationship if the C−D exponent is less than 1.3 [S1 Fig], and

the AM−GM is expected to perform poorly in forests with variable size distributions when the

C−D exponent has a lower value. Since kC was 1.28 for the Canadian temperate forest, the

crown area allometry also contributed to low model accuracy.

We lack a clear picture of how kC varies globally, but there is some evidence that values are

lower for temperate forests. Classical self−thinning theory was based on an assumption of an

exponent of 2 [31, 32], whereas metabolic scaling theory predicts an exponent of 4/3 [33], both

above the threshold of 1.3 below which accuracy deteriorates. An average value of kC = 1.36

was found for tropical forests [31], whereas a wide range of kC values have been reported for

temperate forests (0.85 for Virginia, USA, [34]; 1.19 for European beech, [35]; 2.16 for New

Zealand mountain beech, [32]). Competition amongst the trees becomes an important feature

determining crown shape and the C-D exponent [32] and that too varies at different scales.

The goodness−of−fits of the C−D power functions in our analyses were low (R2 < 0.45), sug-

gesting that uneven−aged stands may require a variable relationship between height and diam-

eter, which would consequently require an alternative formulation of the AM−GM. Dietze

et al. [36] found that the C−D scaling relationship was more variable than the H−D relation-

ship for two managed temperate forest sites in North Carolina, USA.

The H−D scaling exponent, kH, has less influence on the ITB−GM than kC, as it only con-

tributes to the volume scaling relationship and appears on both sides of this equation. The

magnitude of kH affects the accuracy of the power function by influencing the relative magni-

tude of the summations; increasing kH would mitigate the effects of kC deviating from 2

[S1 Fig].

Influences of forest composition on power-law exponents and goodness of

fit

Changes in forest composition within a landscape can have major effects on ACD estimates if

those changes are associated with systematic variation in crown geometry and wood density

[12, 30]. In our study area, the model was not substantially improved when forest type was

accounted for (Fig 3), but an examination of its assumptions highlighted some combinations

of H−D and C−D exponents where forest type could influence the generality of the model [S1

Fig]. Given that the AM−GM is based on scaling relationships of individual trees (H−D and

C−D), it is clear that species composition may be important if it results in changes to these allo-

metric functions across the landscape. Previous studies indicate that H−D and C−D power

functions vary with site and species, suggesting that AM−GM exponents will vary across het-

erogeneous landscapes. The inclusion of forest type improved the ACD predictions of the

sugar maple stands more than the mixed stands. Delineation of the sugar maple forest type,

which essentially represents a single species, may therefore have been beneficial because there

is expected to be more variation in allometry between species than within species. Lines et al.
[37] noted that the H−D relationships of Spanish conifer species had exponents close to 2/3

(the value predicted by biomechanical theory), but those of broadleaf species were much more

variable and often less than 2/3 [35]. Such differences between conifers and broadleaves could

result in different AM−GM exponents across forests with shifting species dominance.

Conclusion

The allometry-inspired AM-GM model appears to predict forest carbon more reliably in tropi-

cal forests than in temperate ones. Asner and Mascaro [8] achieved a goodness−of−fit of R2 =

0.83 compared with R2 = 0.18 in this study, even though the models were identical (Table 2).

Their RMSE was 9% of the mean ACD compares with 23% for our models (Fig 3). Duncanson
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et al. [14] also observed poor model performance when testing the AM−GM in two out of

three temperate forest sites in the USA (R2 = 0.13, 0.18 and 0.73).

A key issue is that stand basal area is weakly correlated with canopy height in temperate

landscapes comprised of patchworks of stands at various stages of succession/development

after disturbance. Selection management created a variety of structural conditions in the Cana-

dian forests studied here, whereas in natural temperate forests variation in stand structure is

induced by disturbance from wind, disease, fire and pests. Variability in regeneration, growth

and mortality among these stands leads to weak correlations between basal area and height–

whereas these are closely coupled in many tropical forests [7]. The allometry-inspired model is

reliant on predicting basal area from height, which is a particular problem in heterogeneous

landscapes.

Deriving the AM−GM from individual tree information further underscores the impor-

tance of variability in size distributions across landscapes. Given that a tree’s biomass is

obtained by multiplying its wood volume by its wood density (and assuming conical form),

the values of b, c and d in the individual biomass model function aHb
i Dc

i r
d
i should be close to

1, 2 and 1, respectively [10, 38]. By analogy we would expect b1, b2 and b3 to all be approxi-

mately 1 in the AM−GM if the summation had no effect on exponents; however, two of the

exponents are far from 1 for the tropical forests analysed by Asner and Mascaro [8] (b1 = 0.28,

b2 = 0.97 and b3 = 1.38). Non-linearities in the process of scaling from trees to stands are

clearly influential in determining these exponents. This also explains why our ITB-GM was

ineffective.

This paper has described the theoretical basis of the AM-GM, demonstrating that the reli-

ability of the approach is dependent on having invariant size distributions across landscapes

and on the crown area-diameter power relationship of individual trees. Landscape heterogene-

ity in these attributes resulted in the poor performance of the AM-GM in a managed temperate

system compared with species-rich tropical forests. Model performance is improved by stratifi-

cation into forest types, but this does not address the issue of varying size distributions. More

studies into the spatial variability of tree size distribution are needed to understand when

allometry-inspired general models can be reliably used to predict forest aboveground carbon

stocks.
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4. Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, et al. Improved allome-

tric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol. 2014; 20: 3177–

3190. https://doi.org/10.1111/gcb.12629 PMID: 24817483

5. Smith JE, Heath LS, Woodbury PB. How to estimate forest carbon for large areas from inventory data. J

Forest. 2004; 102(5): 25–31.

6. Wulder MA, White JC, Nelson RF, Næsset E,Ørka HO, Coops NC, et al. Lidar sampling for large-area

forest characterization: A review. Remote Sens Environ. 2012; 121: 196–209.

7. Asner GP, Mascaro J, Muller-Landau HC, Vieilledent G, Vaudry R, Rasamoelina M, et al. A universal

airborne LiDAR approach for tropical forest carbon mapping. Oecologia. 2012; 168: 1147–1160.

https://doi.org/10.1007/s00442-011-2165-z PMID: 22033763

8. Asner GP, Mascaro J. Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR met-

ric. Remote Sens Environ. 2014; 140: 614–624.

9. Bouvier M, Durrieu S, Fournier RA, Renaud J-P. Generalizing predictive models of forest inventory attri-

butes using an area-based approach with airborne LiDAR data. Remote Sens Environ. 2015; 156:

322–334.

10. Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, et al. Tree allometry and improved

estimation of carbon stocks and balance in tropical forests. Oecologia. 2005; 145: 87–99. https://doi.

org/10.1007/s00442-005-0100-x PMID: 15971085

11. Kalliovirta J, Laasasenaho J, Kangas A. Evaluation of the laser-relascope. Forest Ecol Manag. 2005;

204: 181–194.

12. Vincent G, Sabatier D, Rutishauser E. Revisiting a universal airborne light detection and ranging

approach for tropical forest carbon mapping: scaling-up from tree to stand to landscape. Oecologia.

2014; 175: 439–43. https://doi.org/10.1007/s00442-014-2913-y PMID: 24615493

13. Jucker T, Asner GP, Dalponte M, Brodrick PG, Philipson CD, Vaughn NR, et al. Estimating above-

ground carbon density and its uncertainty in Borneo–s structurally complex tropical forests using air-

borne laser scanning. Biogeosciences. 2018; 15: 3811–3830.

14. Duncanson LI, Dubayah RO, Cook BD, Rosette J, Parker G. The importance of spatial detail: Assessing

the utility of individual crown information and scaling approaches for lidar-based biomass density esti-

mation. Remote Sens Environ. 2015; 168: 102–112.

15. Kent R, Lindsell J, Laurin G, Valentini R, Coomes D. Airborne LiDAR detects selectively logged tropical

forest even in an advanced stage of recovery. Remote Sens. 2015; 7: 8348–8367.

16. Coomes DA, Allen RB. Mortality and tree-size distributions in natural mixed-age forests. J. Ecol. 2007;

95, 27–40.

17. Vanderwel MC, Thorpe HC, Shuter JL, Caspersen JP, Thomas SC. Contrasting downed woody debris

dynamics in managed and unmanaged northern hardwood stands. Can J For Res. 2008; 38: 2850–

2861.

18. Lambert M, Ung C, Raulier F. Canadian national tree aboveground biomass equations. Can J For Res.

2005; 35: 1996–2018.

19. Ung CH, Bernier P, Guo XJ. Canadian national biomass equations: new parameter estimates that

include British Columbia data. Can J For Res. 2008; 38: 1123–1132.

20. Intergovernmental Panel on Climate Change (IPCC). Vol. 4: Agriculture, forestry and other land use. In:

Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K. Guidelines for National Greenhouse Gas Invento-

ries. Institute for Global Environmental Strategies; 2006.

21. Gonzalez JS. Wood Density of Canadian Tree Species. Information Report–Northwest Region, For-

estry Canada. 1990; NOR-X-315.

22. Ontario Ministry of Natural Resources. Ontario Forest Resources inventory photo interpretation specifi-

cations. 2009. http://www.ontario.ca/environment-and-energy/forest-resources-inventory

LiDAR estimation of forest carbon density

PLOS ONE | https://doi.org/10.1371/journal.pone.0215238 April 19, 2019 18 / 19

https://doi.org/10.1111/gcb.13139
https://doi.org/10.1111/gcb.13139
http://www.ncbi.nlm.nih.gov/pubmed/26499288
https://doi.org/10.1038/s41586-018-0300-2
http://www.ncbi.nlm.nih.gov/pubmed/30046067
https://doi.org/10.1126/science.1201609
http://www.ncbi.nlm.nih.gov/pubmed/21764754
https://doi.org/10.1111/gcb.12629
http://www.ncbi.nlm.nih.gov/pubmed/24817483
https://doi.org/10.1007/s00442-011-2165-z
http://www.ncbi.nlm.nih.gov/pubmed/22033763
https://doi.org/10.1007/s00442-005-0100-x
https://doi.org/10.1007/s00442-005-0100-x
http://www.ncbi.nlm.nih.gov/pubmed/15971085
https://doi.org/10.1007/s00442-014-2913-y
http://www.ncbi.nlm.nih.gov/pubmed/24615493
http://www.ontario.ca/environment-and-energy/forest-resources-inventory
https://doi.org/10.1371/journal.pone.0215238


23. Spriggs RA, Vanderwel MC, Jones TA, Caspersen JP, Coomes DA. A simple area-based model for pre-

dicting airborne LiDAR first returns from stem diameter distributions: an example study in an uneven-

aged, mixed temperate forest. Can J For Res. 2015; 45: 1338–1350.

24. Baskerville GL. Use of logarithmic regression in the estimation of plant biomass. Can J For Res. 1972;

2: 49–53.

25. Caspersen JP, Vanderwel MC, Cole WG, Purves DW. How stand productivity results from size- and

competition-dependent growth and mortality. PLoS ONE. 2011; 6: e28660. https://doi.org/10.1371/

journal.pone.0028660 PMID: 22174861

26. Coomes DA, Duncan RP, Allen RB, Truscott J. Disturbances prevent stem size-density distributions in

natural forests from following scaling relationships. Ecol Lett. 2003; 6: 980–989.

27. Muller-Landau HC, Condit RS, Harms KE, Marks CO, Thomas SC, Bunyavejchewin S, et al. Comparing

tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models.

Ecol Lett. 2006; 9: 589–602. https://doi.org/10.1111/j.1461-0248.2006.00915.x PMID: 16643304

28. West GB, Enquist BJ, Brown JH. A general quantitative theory of forest structure and dynamics. Proc

Natl Acad Sci USA. 2009; 106: 7040–7045. https://doi.org/10.1073/pnas.0812294106 PMID:

19363160

29. Duncanson LI, Dubayah RO, Enquist BJ. Assessing the general patterns of forest structure: quantifying

tree and forest allometric scaling relationships in the United States. Glob Ecol Biogeogr.; 2015; 24:

1465–1475.

30. Mitchard ETA, Feldpausch TR, Brienen RJW, Lopez-Gonzalez G, Monteagudo A, Baker TR, et al.

Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob

Ecol Biogeogr. 2014; 23: 935–946. https://doi.org/10.1111/geb.12168 PMID: 26430387

31. Muller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, et al. Testing

metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol

Lett. 2006; 9: 575–588. https://doi.org/10.1111/j.1461-0248.2006.00904.x PMID: 16643303

32. Coomes DA, Holdaway RJ, Kobe RK, Lines ER, Allen RB. A general integrative framework for model-

ling woody biomass production and carbon sequestration rates in forests. J Ecol. 2012; 100: 42–64.

33. Enquist BJ, West GB, Brown JH. Extensions and evaluations of a general quantitative theory of forest

structure and dynamics. Proc Natl Acad Sci USA. 2009; 106: 7040–7045.

34. Anderson-Teixeira KJ, McGarvey JC, Muller-Landau HC, Park JY, Gonzalez-Akre EB, Herrmann V,

et al. Size-related scaling of tree form and function in a mixed-age forest. Funct Ecol. 2015; 29: 1587–

1602.

35. Pretzsch H, Dieler J. Evidence of variant intra- and interspecific scaling of tree crown structure and rele-

vance for allometric theory. Oecologia. 2012; 169: 637–649. https://doi.org/10.1007/s00442-011-2240-

5 PMID: 22237660

36. Dietze MC, Wolosin MS, Clark JS. Capturing diversity and interspecific variability in allometries: A hier-

archical approach. Forest Ecol Manag. 2008; 256: 1939–1948.

37. Lines ER, Zavala MA, Purves DW, Coomes DA. Predictable changes in aboveground allometry of trees

along gradients of temperature, aridity and competition. Glob Ecol Biogeogr. 2012; 21: 1017–1028.

38. Schumacher FX, Hall FDS. Logarithmic expression of timber-tree volume. J Agric Res. 1933; 47: 719–

734.

LiDAR estimation of forest carbon density

PLOS ONE | https://doi.org/10.1371/journal.pone.0215238 April 19, 2019 19 / 19

https://doi.org/10.1371/journal.pone.0028660
https://doi.org/10.1371/journal.pone.0028660
http://www.ncbi.nlm.nih.gov/pubmed/22174861
https://doi.org/10.1111/j.1461-0248.2006.00915.x
http://www.ncbi.nlm.nih.gov/pubmed/16643304
https://doi.org/10.1073/pnas.0812294106
http://www.ncbi.nlm.nih.gov/pubmed/19363160
https://doi.org/10.1111/geb.12168
http://www.ncbi.nlm.nih.gov/pubmed/26430387
https://doi.org/10.1111/j.1461-0248.2006.00904.x
http://www.ncbi.nlm.nih.gov/pubmed/16643303
https://doi.org/10.1007/s00442-011-2240-5
https://doi.org/10.1007/s00442-011-2240-5
http://www.ncbi.nlm.nih.gov/pubmed/22237660
https://doi.org/10.1371/journal.pone.0215238

