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Introduction
In diagnostic test development, one is concerned about whether 
a newly developed test is more accurate than traditional ones to 
correctly discriminate a subject with a certain condition (“the 
case”) from a subject without the condition (“the control”).1 
Early diagnosis of serious diseases plays an important role 
because late detection can have serious consequences. For 
example, a patient with lung cancer might have a higher chance 
of surviving if detected early and the lesion is surgically 
removed. But the person will die if the diagnosis is incorrect 
and necessary surgery is not performed.2

For diagnostic tests that generate binary results, their accu-
racy can be summarized in terms of the sensitivity (ie, probabil-
ity of identifying a case when the subject truly has the condition) 
and specificity (ie, probability of correctly identifying a control 
when the subject does not have the condition). The sensitivity 
is also called as the true-positive rate (TPR), and the false-
positive rate (FPR) is 1 − specificity. For tests that generate 
continuous or ordinal results, the receiver operating character-
istic (ROC) curve is a standard statistical tool to describe and 
compare the accuracy of diagnostic tests.1 The ROC curve, 
commonly used in medical diagnostic studies, is a plot of TPR 
versus FPR at different possible thresholds. It is widely used in 
radiology, psychophysical, and medical imaging research for 
detection performance, military monitoring, and industrial 
quality control. It is used to examine the trade-off between the 
TPR and FPR under different thresholds and overcomes the 
limitation of having to dichotomize the test results to use 

isolated measurements of TPR and FPR. The ROC curve is 
plotted by connecting all the points generated by possible 
thresholds.1 A test with 100% TPR and 0%  FPR is a perfect 
predictor, ie, all the case patients have positive test results and 
all the control patients have negative test results.

Most ROC curves are concave and above the chance diago-
nal which is the line segment between ( , )0 0  and ( , )1 1 . 
However, some of them are below the chance diagonal and are 
called improper curves.3 The closer the curve is to the upper 
left corner, the larger the area under ROC curve (AUC) is and 
the better distinguishing ability the diagnostic test has. The 
perfect test has an AUC of 1. Figure 1 provides the illustration 
of the ROC curves for 3 biomarkers with different diagnostic 
accuracies. The ROC curve for biomarker 1 is uniformly above 
the other 2 ROC curves. This means that biomarker 1 has the 
best performance in detecting the case and control among the 
3 biomarkers.

The ROC analysis of continuous data from a single test has 
been extensively investigated since the seminal work by 
Dorfman and Alf.4 Diagnostic test studies generate correlated 
results when the same subject undergoes 2 or more different 
tests.5 An important area in ROC research with multiple 
markers is the comparison of tests’ accuracy. Parametric and 
semiparametric methods have been proposed to estimate ROC 
curves from this type of correlated data in the literature. 
Parametric methods assume distributions for measurements,1 
but these methods may not perform well if the parametric 

Unified Least Squares Methods for the Evaluation of 
Diagnostic Tests With the Gold Standard

Liansheng Larry Tang1,2, Ao Yuan2,3, John Collins1,2, Xuan Che2  
and Leighton Chan2

1Department of Statistics, George Mason University, Fairfax, VA, USA. 2Rehabilitation Medicine 
Department, NIH Clinical Center, Bethesda, MD, USA. 3Department of Biostatistics, 
Bioinformatics and Biomathematics, Georgetown University, Washington, DC, USA.

ABSTRACT: The article proposes a unified least squares method to estimate the receiver operating characteristic (ROC) parameters for 
continuous and ordinal diagnostic tests, such as cancer biomarkers. The method is based on a linear model framework using the empirically 
estimated sensitivities and specificities as input “data.” It gives consistent estimates for regression and accuracy parameters when the 
underlying continuous test results are normally distributed after some monotonic transformation. The key difference between the proposed 
method and the method of Tang and Zhou lies in the response variable. The response variable in the latter is transformed empirical ROC curves 
at different thresholds. It takes on many values for continuous test results, but few values for ordinal test results. The limited number of values for 
the response variable makes it impractical for ordinal data. However, the response variable in the proposed method takes on many more distinct 
values so that the method yields valid estimates for ordinal data. Extensive simulation studies are conducted to investigate and compare the 
finite sample performance of the proposed method with an existing method, and the method is then used to analyze 2 real cancer diagnostic 
example as an illustration.

Keywords: ROC curve, least squares, sensitivity, specificity

RECEIVED: September 1, 2016. ACCEPTED: November 24, 2016.

Peer review: Four peer reviewers contributed to the peer review report. Reviewers’ 
reports totaled 687 words, excluding any confidential comments to the academic editor.

Type: Review

Funding: The author(s) disclosed receipt of the following financial support for the 
research, authorship, and/or publication of this article: This work is supported in part by  

the Intramural Research Program of the National Institutes of Health and the US Social 
Security Administration.

Declaration of conflicting interests: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this article.

CORRESPONDING AUTHOR: Liansheng Larry Tang, Rehabilitation Medicine 
Department, NIH Clinical Center, Bethesda, MD 20892, USA.  Email: ltang1@gmu.edu

686063 CIX0010.1177/1176935116686063Cancer InformaticsTang et al
research-article2016

https://uk.sagepub.com/en-gb/journals-permissions
mailto:ltang1@gmu.edu


2	 Cancer Informatics ﻿

assumptions are invalid. An intuitive parametric least squares 
(LS) ROC method proposed by Zhang and Pepe6 requires no 
iteration and thus takes much less computation time than the 
ROC methods using iterations. The asymptotic covariance of 
their LS estimator is derived by Tang and Zhou.7 An essential 
assumption of the procedure by Zhang and Pepe6 is that the 
basis function of the ROC curve is known. A recent paper by 
Tang and Zhou8 relaxes this assumption and estimates the 
basis function nonparametrically.

Besides continuous test data, ordinal data occur frequently 
in radiology when radiologists or computer algorithms are used 
to read subjects’ medical images and provide ordinal ratings 
regarding their belief in the severity of subjects’ disease status. 
Several methods for estimating a single ROC curve from ordi-
nal data have been proposed by various authors.4,9 Morris et 
al10 provide a detailed summary of these methods for ordinal 
data. The maximum likelihood estimation (MLE) method by 
Dorfman and Alf4 is the most widely used procedure for ordi-
nal data. Metz and colleagues11,12 consider 2 modalities. Hsieh 
and Turnbull9 develop a generalized LS approach. As the num-
ber of markers becomes larger than 2, the MLE method by 
Metz et al11 becomes inapplicable. It is also not trivial to extend 
the single ROC method by Hsieh and Turnbull9 to multiple 
binormal ROC curves because the correlation structure among 
empirical ROC curves is unknown.

In this article, we propose a unified linear regression method 
to estimate the ROC curve from pairs of consistent sensitivity 
and specificity estimates. The proposed method estimates a 
pair of sensitivity and specificity for a given cutoff point. For a 
set of chosen cutoff points on the continuous data, a number of 
pairs can be obtained, and the estimates in the pairs can be 

values for the response variable and covariate in the linear 
regression setting. The method provides valid ROC parameter 
estimates for both continuous data and ordinal data.

Notations and Methods
Suppose that multiple tests are applied to a case sample with 
m  subjects and a control sample with n  subjects. For test , 
the test result for the ith  case subject, X i , and test result for 
the jth  control subject, Y j , are available, where i m= 1, ,  
and j n= 1, ,  for � …= 1, , L . At some given thresholds c r  
( , , )r R= …1 , let Se r  and Sp r  be the sensitivity and specific-
ity of the 

th  test, respectively. The observed results X i  and 
Y j  may be continuous or ordinal. In the latter case, they are 
derived from some underlying variables ��Y i  and � �X j . At a 
threshold c, the TPR or the sensitivity is given by 
Se c P Y c Di� �

�( ) ( | )= > = 1  and the specificity or (1 − FPR) is 
given by Sp c P X c Dj� �

�( ) ( | )= = 0⩽ , where D  is the indicator 
for disease status with 1 being a case and 0 being a control. For 
the continuous diagnostic tests, the observed test results are 
identical to the underlying results.

For the ordinal diagnostic test, the observed ordinal ratings 
X i  and Y j  are considered to be obtained by applying deci-
sion thresholds to the latent variables. For the th  ordinal test, 
X i  and Y j  take on ordinal ratings, 1, ,… �R . These ratings are 
considered to be obtained by applying R



−1  decision thresh-
olds, −∞ = < < < < = +∞−c c c cR R0 1 1�

� �
, to the latent varia-

bles. Specifically, the rating X r Y ri j   

= =( )  is given to a case 
subject (or a control subject) if ��Y i  (or � �X j ) falls between cr−1  
and cr  ( r R= 1, , ).

The Hsieh method for one binormal ROC curve

We first consider one test with ordinal test results X i1  and Y j1  
for cancer and control subjects, respectively. Because the ROC 
curve is invariant to any monotonic transformation of the 
underlying test results, Y i1  and X j1  can be considered to have 
already been transformed by some unknown monotone func-
tion so that Y Ni1 1 1

2∼ ( , )α β  and X Nj1 0 1∼ ( , ). Let Pr1  be 
the probability of having the rating X ri1 =  for the ith  case 
subject, and let Pr 0  be the probability of having the rating 
Y rj1 =  for the jth  control subject. The sensitivity and speci-
ficity at a threshold c  are Se c c( ) (( ) / )= − −1 1 1Φ α β  and 
Sp c c( ) ( )= Φ , respectively. From this, we may write the proba-
bilities Pr1  and Pr 0  as P Se Ser r r1 1= −−  and P Sp Spr r r0 1= − − , 
where Se Se cr r= ( )  and Sp Sp cr r= ( ). The log-likelihood func-
tion is given as follows:

r

R
r r

r

R
r rf P f P

= =
∑ + ∑

1
1 1

1
0 0log log

where f r1  and f r 0  are the observed numbers of responses in 
the rth  category from the cancer and control subjects, respec-
tively. Dorfman and Alf4 solve the score equation of the 
log-likelihood function and obtain the MLE estimators of α1 , 
β1 , and c cR1 1, , − .

Figure 1.  ROC curves for 3 biomarkers: dotted curve—biomarker 1 

(AUC = 0.9), dashed curve—biomarker 2 (AUC = 0.7), and solid 

curve—biomarker 3 (AUC = 0.5). AUC indicates area under ROC curve; 

FPR, false-positive rate; ROC, receiver operating characteristic; TPR, 

true-positive rate.
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Hsieh and Turnbull9 developed a generalized LS approach. 
They estimated the empirical ROC curve at a fixed number of 
FPRs and applied the generalized LS method to the trans-
formed empirical ROC curve to obtain the parameter estima-
tors. The regression method by Hsieh and Turnbull9 for 
estimating 1 ROC curve is similar to the method of Dorfman 
and Alf4. The essential difference between them is that the for-
mer only requires the estimated sensitivities and specificities, 
whereas the latter requires the actual observations. For the 
result r , we have Se Pr k

r
k= −∑ =1 1 1  and Sp Pcr k

r
k= ∑ =1 0  for 

r R= 1 1, , . Hsieh and Turnbull9 observed that

Se
c

Sp cr
r

r r= −
−







 = ( )1 1

1
Φ Φ

α
β

,

for r R= 1, , . The equations above can be written as follows:

Φ Φ− −= + −1
1 1

1 1( ) ( )Sp Ser rα β

for r R= …1, , . Thus, by assuming a perfect gold standard, the 
authors use k

r
kf m=∑ 1 0 /  and k

r
kf n=∑ 1 1 /  to estimate Spr  and 

1− Ser , respectively, and obtained the following linear regres-
sion model with error terms:
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	 (1)

for r R= 1, , , where ( , , )ε ε01 0 R
T  and ( , , )ε ε11 1 R

T  are 
mean 0 random error vectors. These random vectors are inde-
pendent, but the error terms within each vector are correlated. 
Based on the regression model, Hsieh and Turnbull9 propose to 
obtain a generalized LS estimator for α1  and β1.

The proposed method for multiple binormal ROC curves

The least squares method of Hsieh and Turnbull9 only deals 
with 1 diagnostic test. It is possible to extend it to allow multi-
ple diagnostic tests. Our extension still builds on the intrinsic 
property of the ROC curve that the ROC curve is invariant to 
any monotonic transformation of the test results. We assume 
that after some unknown transformation, the latent test results 
follow normal distributions for the case and control subjects. 
Suppose that for test 1, after some monotone transformation, 
Y Nj1 1 1 1 1

2∼ ( , ), ,µ σ  in the cancer group and � �X Ni1 0 1 0
2∼ ( , ), ,µ σ  

in the control group:

	
P Y c
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P X c
c

j

i
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The equations above lead to Φ− − = −1
1 1 1 0 1 11( ) ( ), , ,Se µ µ

/ / ( ), , , ,σ σ σ1 1 1 0 1 1
1

1 1+ −Φ Sp . Let α µ µ σ1 1 0 1 1 1 1= − −( ) /, , ,  and 

β σ σ1 1 0 1 1= , ,/ . Denote Se Se c1 1 1 1, ,( )=  and Sp Sp c1 1 1 1, ,( )= . 
We have the following equation:

	 Φ Φ− −−( ) = − + ( )1
1 1 1 1

1
1 11 Se Sp, ,α β 	 (3)

The resulting ROC curve for test 1 can be written as 
ROC u u1 1 1

1( ) ( ( ))= + −Φ Φα β . Consider the test  , for 
� …= 2, , L . Suppose that after some monotone transforma-
tion, � � � �X Nj ∼ ( , ), ,µ σ1 1

2  and �� � �Y Ni ∼ ( , ), ,µ σ0 0
2 . Note that 

the transformation may vary among modalities, but it should 
be the same for the cancer and control subjects for the same 
modality. For test 


, the following equations give the relation-

ship between the rating categories and normal distribution 
parameters for the more general setting in which the nondis-
eased population can take on any normal distribution:
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Let α µ µ σ µ µ σ
   

= − − − +( ) / ( ) /, , , , , ,0 1 1 1 0 1 1 1 1  and 
β σ σ σ σ
  

= −, , , ,/ /0 1 1 0 1 1 . The relationship between the sen-
sitivities and specificities at varying cutoff points for multiple 
tests can be expressed as follows:

	

Φ Φ
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Here, the 
th  ROC curve is given by ROC u



( ) =  
Φ Φ(( ) ( ) ( ))α α β β1 1

1+ + + −
 

u .
Let u  be the FPR, which is 1 − specificity. The empirical 

functions of Se r


 and Sp r


 are defined by DeLong et al5 and 
Tang and Zhou7 as follows:

  Se
m

I X c S p
n

I Y cr
i

m
i r r

i

n
j r

� �
� � � � � � � � � �
= ∑ >( ) = ∑ ( )

= =

1 1
1 1

, ,and ⩽   (6)

We will substitute the estimated proportions in the above 
model. The regression equations with error terms can be writ-
ten as follows:

Φ Φ

Φ Φ

− −
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  (7)
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Our parametric procedure is based on the model (equation 
(7)). We outline our parametric LS procedure as follows:

•• Step 1. Obtain the empirical functions Se r
�
� 1

 and S p r
�
� 1

 
at the threshold c r



, , for r R� �…= 1, ,  and � …= 1, , L .
•• Step 2. Transform the sample proportions, 1−Se r

�
� �

, by 
Φ , and define the following vectors:

Y� � � � �

� �

…

� �

= −( ) −( ) −( )( )
−

− − −

−

Φ Φ Φ

Φ

1
1

1
2

1

1
1

1 1 1

= 1

Se Se Se

Se

R

T
, , ,

Y (( ) −( ) −( )( )− −, 1 , , 11
2

1Φ ΦSe Se R

T� … �
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•• Step 3. Combine Y Y Y1 2, , , L  to get the following lin-
ear regression equation:

	 Y X= +θθ εε0 	 (8)
where θθ = … …( , , , , , )α α β β1 1L L

Τ , Y Y Y= (( ) , ,( ) )1
Τ Τ Τ
 L  is 

a ( ) 1




∑ ×R  vector, and the ( ) ( )




∑ ×R L2  design matrix X  is 
as follows:

X

X

X X

X X

X X

=
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�
�
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�L L

with its R


× 2  submatrices

X�
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�

�
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− −

( ) ( )
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





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
− −

1 1
1

1
1Φ ΦSp Sp R

Τ

Also, the ( ) 1




∑ ×R  error vector e0  is given by εε0 1,1,0 ,= (ε
  , , , , , )1, 1,0 ,1,0 , ,0ε ε εR L L RL

Τ .

•• Step 4. Replace Sp R


 using the S p R
�
� �

 in X  to obtain 
X .

•• Step 5: Obtain the final ordinal LS estimator

	 θθ� � � � �= −( ) 1X X X Y
Τ Τ 	 (9)

The method by Tang and Zhou7 also first creates the 
response variable based on the test results and constructs a lin-
ear model so that the parameters are estimated using the LS 
method. However, the key difference between the proposed 
method and the LS method in a study by Tang and Zhou7 lies 
in the response variable. The response variable in the latter is 
transformed empirical ROC curves at different thresholds. It 
takes on many values for continuous test results, but few values 
for ordinal test results. The limited number of values for the 
response variable makes it impractical to use the method by 
Tang and Zhou7 for ordinal data. However, the response vari-
able in the proposed method takes on values for the specifici-
ties and sensitivities. The number of values is at least 2 times 
the number of distinct ordinal test results.

Asymptotic properties of the parameter estimates

We study the asymptotic properties of the LS parameter esti-
mates in the context of 2 tests for simplicity. Denote 
S p rSp r R L= = =( : , , , , , ),� � � �… � …1 1 Τ , Se rSe r= =( : ,,





1
… � …�, , , , )R L= 1 Τ , and S S S= ( , )p e

Τ Τ Τ  with components given 
by expression (6). Denote S0  the true value of S  generating the 
observed data, and S S� � … � …� � � �= = =( : 1, , , 1, , ),r r R L , with 
each S� � �,r  being the empirical estimators of S0 ,( )c r



 at the 
threshold c r



, . The formula is shown in equation (6). Let
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Recall E( )ε = 0  and Var( )ε σ= 2 .
Denote →

a s. .
 for convergence almost surely and →

D
 for con-

vergence in distribution. The following condition will be used:

(C1). Ω is positive definite.

Theorem 1
1.	 For fixed R L� � …( , , )= 1 , let η = +lim / ( )n m n . Then, 
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0 0, ( , ),

(1 )

S S 0

P 0
0 Q

and Λ

Λ
η

η

2.	 Assume (C1) and R R
 

/ > 0→λ , for all 1  L⩽ ⩽ , 
with L fixed. Let m n, →∞  first and then 
R L� � …→∞ =( 1, , ) , then,
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θθ θθ θθ θθ → −( )→ ( )−
a s D

R N
. .

,0 0
2 1and 0 σ Ω

Simulation Studies
Estimates from normal test results

We conduct simulation studies to investigate the finite sample 
performance of the proposed method. Two simulation settings 
are used to simulate data sets. The first setting is under the 
normal distributions for the cancer and control populations, 
and the second is under the lognormal distributions. Given the 
same parameter values, the true ROC curve should be the same 
for normal or lognormal data sets due to the monotonic invari-
ant property of the ROC curve. Because the proposed method 
only deals with the sensitivities and specificities, the estimated 
ROC curve should be valid for both distributions given the 
correctly specified link and baseline functions.

Under the normal setting, we simulate normal observations 
for 2 diagnostic tests. The bivariate normal data were simulated 
as outcomes from paired tests. Assume that the bivariate nor-
mal models had the forms ( , ) (( , ), )X X N1 2 11 1∼ Σ  and 
( , ) (( , ), )Y Y N1 2 10 0∼ Σ , where

Σ1

1 2
2 1

=














ρ

ρ

with ρ  denoting the correlation in bivariate outcomes.
We simulate 1000 replications with all combinations of 

m = ( , , )40 100 200  and n = ( , , )50 150 300  under ρ = (0.1, 0.2, 
0.4, 0.5). For each replication, the threshold points are chosen 
to be normal quantiles of 100 equally spaced points ranging 
from 0.001 to 0.999. The threshold points are used to dichoto-
mize the continuous observations. The dichotomized data are 
used to obtain empirical sensitivities and specificities which are 
the proportions of the test results greater than the threshold 
point for the cancer group and the proportions of the test results 
less than the threshold points for the noncancer group, respec-
tively. Model (7) is then fit to the estimated sensitivities and 
specificities to obtain the estimates for α1, β1, α2, and β2 .  
The LS method by Tang and Zhou7 is also fit to the simulated 
data sets for comparison with the proposed method. The  
difference in the Tang and Zhou (TZ) LS method is that it 
estimates the empirical ROC curve at 100 equally spaced 
points ranging from 0.001 to 0.999. The transformed empiri-
cal ROC curves at these points are the observations for the 
response variable in the linear model. Table 1 presents the 
biases and root-mean-square errors (RMSEs) of these ROC 
parameter estimates by the proposed method and the TZ 
method. The biases are generally small for the proposed 
method. As the sample sizes become larger, the biases do not 
change much. The RMSEs tend to become smaller when both 
sample sizes for the cancer and noncancer groups become 
larger. We can also see that the correlation between the 2 tests 
does not affect the biases and RMSEs. Table 2 presents the 
biases and square RMSEs of these ROC parameter estimates 

by the TZ method. The biases and RMSEs are close to those 
by the proposed method.

Estimates from lognormal test results

We use the same setting as in the previous section to simulate 
the bivariate normal results first. We then take the exponential 
of the normal results to generate bivariate lognormal results. 
We again apply the proposed method and TZ method to the 
simulated data sets. Table 3 shows the biases and RMSEs of 
the ROC parameter estimates for the simulated lognormal 
data under all combinations of the sample sizes and correlation 
values for the proposed method. The simulation results show 
that the proposed approach has nice finite sample property as 
the biases and RMSEs are small even for small sample sizes. 
The results are similar as those for normal test results. This 
indicates that the proposed method is robust to monotonic 
transformation of the test results. As the sample sizes for both 
cancer and control groups become larger, the RMSEs tend to 
decrease. Table 4 shows the biases and RMSEs of the ROC 
parameter estimates for the simulated lognormal data under all 
the combinations of the sample sizes and correlation values for 
the TZ method. The biases and RMSEs are close to those by 
the proposed method.

Applications to Cancer Diagnostic Biomarkers
We apply our method to 2 real data sets. The first example 
investigates the diagnostic accuracy of serum biomarkers on 
pancreatic cancer, and the second example investigates the 
accuracy of gene expression biomarkers on ovarian cancer.

Pancreatic cancer tests

We use the cancer diagnostic example in Wieand et al13 to 
illustrate the proposed method. The example is popular for the 
illustration of methodologies on estimating ROC curves from 
correlated data. Two pancreatic cancer tests, CA 19-9 and CA 
125, were measured on 51 patients with pancreatitis and 90 
patients with pancreatic cancer. It is of interest to estimate the 
ROC curves for these 2 tests. The test results approximately 
follow normal distributions after some monotonical transfor-
mation. We can assume a bivariate binormal ROC model for 
these tests. The estimation procedure follows the steps in sec-
tion “Simulation Studies.” We first define R R1 2 100= =  cut-
points for 2 tests. For each test, we take the minimum and 
maximum of the combined results from both cancer and con-
trol groups as the lower and upper bounds and then obtain 100 
equally spaced points within the bounds. The sets of cutpoints, 
c r



, , are different for 2 tests. The sensitivity at a cutpoint for a 
test, Se r
�
� 1

, is calculated as the proportions that the test results 
are greater than the cutpoint, and the specificity, S p r

�
� 1

, is cal-
culated as the proportion that the test results are less than or 
equal to the cutpoint. The pairs of sensitivities and specificities 
are then obtained for each test. The response vector in the lin-
ear model is given as follows:
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Figure 2.  ROC curves for CA 19-9 and CA 125: solid lines, the proposed method; dashed and dotted lines, empirical ROC curves. ROC indicates 

receiver operating characteristic.

The final LS estimates are obtain through the following 
equation:

	 θθ� � � �= −(( ) ) ( )1X X XT TY 	 (11)

The parameter estimates are ( , , , )α β α β   

1 1 2 2 = (1.0550,
0 3748 0 3252 0 7710. , . , . )− . Based on these estimates, the esti-
mated ROC curves are given by ROC1(u) = Φ(1.0550 +  
0 3748 1. ( ))Φ− u  for CA19-9 and ROC2(u) = Φ(0.7298 + 
1 1457 1. ( ))Φ− u  for CA 125. Figure 2 shows the fitted ROC 
curves for 2 tests. Both fitted curves are close to the empirical 
ROC curves. Unlike the rough empirical curves, the fitted 
curves are much smoother.

Ovarian cancer tests

We also illustrate our method using a gene expression data set 
previously analyzed using a suite of traditional ROC methods 
in a study by Pepe et al.14 Briefly, these data report messenger 
RNA (mRNA) expression levels for 1536 gene clones in 30 
subjects with ovarian cancer and 23 without cancer. We will 
focus our example on 2 gene clones, SPINT2 and TACSTD1, 

among the top 10 ranking clones identified in this prior work. 
SPINT2 is associated with ovarian cancer15 and fallopian tube 
carcinomas specifically.16 Elevated expression levels of 
TACSTD1, also called EPCAM, have been associated with 
local and metastatic prostate cancer17 and colorectal cancer18 
while potentially being protective against ovarian cancer.19

We follow the same approach from the first example to 
define R R1 2= = 100  cutpoints for 2 biomarkers and obtain 
100 equally spaced points within the bounds. The parameter 
estimates based on the proposed method are 
( , , , ) ( . , . , . , . )α β α β   

1 1 2 2 2 0940 0 6561 0 3417 1 0591= − . Based 
on these estimates, the estimated ROC curves are given by 
ROC u u1

1( ) (2.0940 0.6561 ( ))= + −Φ Φ  for SPINT2 and 
ROC u u2

11 7523 1 7152( ) ( . . ( ))= + −Φ Φ  for TACSTD1. The 
TZ method7 is also applied to the data set to show the differ-
ence in the fitted ROC curves. The parameter estimates based 
on the proposed method are ( , , , )

* * * *
α β α β   

1 1 2 2 =(1.7078,0.3242,
−0 2759 0 7907. , . ) . Based on these estimates, the estimated 
ROC curves are given by ROC u u1

11 7078 0 3242* ( ) ( . . ( )),= + −Φ Φ  
for SPINT2 and ROC u u2

11 4319 1 149* ( ) ( . . ( ))= + −Φ Φ1  for 
TACSTD1. Figure 3 shows the fitted ROC curves from the 
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proposed method and the TZ method for 2 tests. The fitted 
curves are close to the empirical ROC curves. Unlike the rough 
empirical curves, the fitted curves are much smoother.

Discussion
This article proposes an LS method to estimate the ROC 
parameters. The method builds on the estimated sensitivities 
and specificities. This method differs from that of Tang and 
Zhou7 by handling the case of continuous response data and 
ordinal response data. The key difference between the 2 meth-
ods lies in the response variable. The response variable in the 
latter is transformed empirical ROC curves at different thresh-
olds. It takes on many values for continuous test results, but few 
values for ordinal test results. The limited number of values for 
the response variable makes it impractical for ordinal data. 
However, the response variable in the proposed method takes 
on many more distinct values so that the method yields valid 
estimates for ordinal data. The simulation studies show that 
the proposed method has good finite sample performance for 
both simulated normal and lognormal data. The method also 
shows satisfactory results in cancer diagnostic examples.

As demonstrated by Hanley,20 the binormal ROC curve 
tends to fit data to other distributions reasonably well. However, 
the assumption of the binormal ROC curve may seem quite 
strong because the data need to be normal after some unknown 
transformation. As a future research topic, more simulation 
studies need to be conducted for other distributions and for 
ordinal data to investigate the finite sample performance of the 
proposed method.

The method proposed here assumes that the gold standard is 
known. Future topics include the estimation of the ROC curves 
without the presence of the gold standard or when the gold 
standard is imperfect. It is challenging to do so because our 
method requires valid estimates for sensitivities and specifici-
ties. The method of Hui and Walter21 may be applied, but 2 or 
more populations are required for the estimation. If 2 binary 
tests are to be evaluated from the samples in 1 population, the 
sensitivity and specificity cannot be estimated with the absence 
of a gold standard. Under this situation, the 5 parameters to be 

estimated involve the prevalence, sensitivities, and specificities 
for 2 tests. However, only 3 degrees of freedom are allowed with 
testing within 1 population and are not sufficient for estimat-
ing 5 parameters. Testing on the samples from 2 populations 
increases the degree of freedom to 6. Hui and Walter21 con-
sider the setting in which multiple tests are applied to several 
populations and discuss the approaches to estimate the sensi-
tivities and specificities. The estimated sensitivities and specifi-
cities can potentially be used as response variables in our method 
to generate valid ROC curve estimators for continuous data.
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Appendix 1
Proof of Theorem 1

1.	 Because each component of S  is an empirical version 
of the corresponding component in S0, S → S0  (a.s.) 
is a direct consequence of the strong law of large 
numbers.

Note that S p  and S e  are independent; by central limit the-
orem, m N Pe e

D
( ) ( , ),0S − →S 0  and n N Qp p

D
( ) ( , ),0S − →S 0 . 

This gives the desired result.

2.	 For fixed L  and R L� � …( , , )= 1 , as n →∞, 
( , ) ( , ), , , ,S S� �
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e p Se Spr r r r→  ( , , ;r R
 

= …1  l=1,..., L). 
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Recall Y X= +θθ εε0 , we have the following equation:

θθ θθ εε

θθ εε θθ

 = ( ) = ( ) +( )
= + ( ) →

− −

− −

X X X Y X X X X

X X

Τ Τ Τ Τ

Τ

1 1
0

0
1 1 . .

0
1R
R

a s

Note that (Ω is a 2 2L L×  matrix)
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Also, as εr  is iid with E r( )ε = 0  and Var r( )ε σ= 2, by  
central limit theorem and the Slutsky theorem, 
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