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Adenosine (Ado) is a well-studied neurotransmitter, but it also exerts profound immune

regulatory functions. Ado can (i) actively be released by various cells into the tissue

environment and can (ii) be produced through the degradation of extracellular ATP by the

concerted action of CD39 and CD73. In this sequence of events, the ectoenzyme CD39

degrades ATP into ADP and AMP, respectively, and CD73 catalyzes the last step leading

to the production of Ado. Extracellular ATP acts as a “danger” signal and stimulates

immune responses, i.e. by inflammasome activation. Its degradation product Ado on

the other hand acts rather anti-inflammatory, as it down regulates functions of dendritic

cells (DCs) and dampens T cell activation and cytokine secretion. Thus, the balance

of proinflammatory ATP and anti-inflammatory Ado that is regulated by CD39+/CD73+

immune cells, is important for decision making on whether tolerance or immunity ensues.

DCs express both ectoenzymes, enabling them to produce Ado from extracellular ATP

by activity of CD73 and CD39 and thus allow dampening of the proinflammatory activity

of adjacent leukocytes in the tissue. On the other hand, as most DCs express at least

one out of four so far known Ado receptors (AdoR), DC derived Ado can also act back

onto the DCs in an autocrine manner. This leads to suppression of DC functions that are

normally involved in stimulating immune responses. Moreover, ATP and Ado production

thereof acts as “find me” signal that guides cellular interactions of leukocytes during

immune responses. In this review we will state the means by which Ado producing DCs

are able to suppress immune responses and how extracellular Ado conditions DCs for

their tolerizing properties.
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ADENOSINE TRIPHOSPHATE (ATP) IN PERIPHERAL TISSUES

The chemical family of purines comprises of heterocyclic aromatic organic compounds, consisting
of a pyrimidine ring fused to an imidazole ring. It comprehends biologically active molecules
such as Adenosine-triphosphate (ATP) and its degradation product adenosine (Ado). ATP is
widely known as an energy carrier within cells, but it can also be released from cells into
the environment by cell membrane channels (gap junctions, pannexin channels) or specialized
transporters (Figure 1) (1–4). Once located in the intercellular space, ATP transmits signals to
other cells by engaging P2 receptors. P2 receptors can be divided into P2X and P2Y subtypes, which
comprise different members as indicated by numbers, e.g., P2X1 to P2X7 and P2Y1, P2Y2, P2Y11.
While all P2X receptors bind ATP, only the P2Y1, P2Y2, and P2Y11 receptors are engaged by ATP.
The mode of action of P2X and P2Y receptors differs also and can be described as ionotropic for
P2X receptors, or metabotropic G-protein coupled in case of P2Y types. The P2X7 receptor is a
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well-studied example and serves as prototypic ATP receptor
in many investigations. P2X receptors often form multimeric
complexes that upon engagement open a pore for cations
such as Na+, Ca2+, or K+ (5). This ion flux will then
induce further intracellular signaling events. The most important
pathway triggered by P2X receptors involves activation of
the NLRP3 inflammasome, leading to caspase-1 activation,
which in turn activates interleukin (IL-) 1β and IL-18, two
important pro inflammatory cytokines. But this is only one
well studied example. In particular the transmembrane flux of
Ca2+ ions can trigger multiple signaling events in cells involving
mitogen activated kinases (MAPK), protein kinase C (PKC)
and calmodulin. Therefore, many more effects of ATP induced
signaling in leukocytes have been described These comprise
the activation of T cells, (6–8), the release of IL-6, TNF (9,
10), prostaglandin (11), CXCL8, CCL2, CCL3 (12, 13) and
metalloproteinase 9 (14), just to name a few [comprehensive list
in Zimmermann. (15)]. The P2Y1 receptor, which is binds ATP in
rodents and the P2Y2 receptor act via Gq coupled receptors and
phospholipase C. Downstream, the second messengers inositol
1,4,5-triphosphate (IP3) that signals further via intracellular
Ca2+ levels and diacylglycerol (DAC), which activates PKC, are
produced. This rather general activation scheme illustrates the
diverse groups of effects that can be induced by P2Y receptor
engagement. Indeed, involvement of P2Y receptors in regulating

FIGURE 1 | Pathways of ATP/Ado generation in DCs. Intracellular Ado can be produced by degradation of AMP by 5′ectonucleotidases. Nucleoside transporters (NT)

lead to extrusion of Ado. ATP can be released by cells via pannexin channels after injury and during inflammation, acting immune stimulatory by engagement of P2X

receptors (P2XR). It can be degraded by the ectoenzymes CD39 and CD73, resulting in increased levels of Ado in the extracellular environment. Ado can be degraded

by action of the enzyme Adenosine deaminase (ADA) intra- and extracellularly.

hormone release and CNS activity has been documented in
many instances. Beyond that, P2Y receptors are expressed by
neutrophils, monocytes and T cells, indicating a role for immune
regulation as well.

Due to the potent immune stimulatory actions of ATP, the
extracellular concentrations are kept in check by enzymatic
digestion of ATP. ATP is degraded fast within tissues, making
it difficult to investigate its controlled release in defined organs
in vivo. However, as skin is assessable for manipulation and
measurement of ATP (16) and harbors several phenotypically
distinct DC subtypes (17), it may be an organ of choice for
investigating purine mediated signaling in vivo. At first, under
non-inflammatory conditions the initial differentiation of skin
keratinocytes (KCs) is guided by ATP. Upon binding of ATP
the intracellular calcium levels rise gradually (as KCs express
different subsets of ATP-specific P2X receptors depending on
the layer), inducing the differentiation of the KCs (18, 19). Even
the terminal differentiation and subsequent apoptosis of KC in
the junction between stratum granulosum and stratum corneum
seems to be dependent on ATP. Here, extensive colocalization
of P2X7 receptors with caspase-3 is evident (20), suggesting
induction of cell death by ATP. This is corroborated by in vitro
data, showing that prolonged engagement of P2X7 receptors
leads to extended pore-opening enabling even macromolecules
of up to 900 Da to travel into cells, leading to induction of
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caspase-dependent cell death (21). Beyond serving as messenger
involved in skin differentiation, ATP has also clear functions as a
danger molecule. Due to its function as activator of the NLRP3
inflammasome, ATP is involved in triggering skin allograft
rejection. Here it has been shown that ATP is released by host
cells in response to transplantation leading to IL-18 production
and Th1 responses. Moreover, the skin may “use” ATP even
to alert the peripheral immune system, as monocytes during
acute rejection of transplants exhibited higher expression of P2X7

receptors (22). Skin, as opposed to most other organs, is exposed
to UV irradiation. This causes DNA damage, which produces
a special set of danger signals. In response to UV irradiation,
ATP is released by KCs triggering activation and release of IL-
17 by dendritic epidermal γδ T cells (23). Once activated, γδ

T cells can release ATP by themselves, leading to an autocrine
activation loop maintained by P2X4 receptors (24). Functionally
this sustained production of IL-17 is of importance for limiting
adverse effects of UV, as it upregulates genes necessary for DNA-
damage repair, such as TNF-related weak inducer of apoptosis
(TWEAK) and the growth arrest gene GADD45 (23). Therefore,
in case of UV induced cancers, therapeutic enhancement of
extracellular ATP may offer a way for treatment.

Also in chronically diseased skin the distribution of ATP and
its receptors change. For instance, in psoriatic plaques P2X7

receptors were found to be upregulated in the basal cell layer,
suggesting that activation of KCs is facilitated by ATP (25). ATP
is indeed elevated under pathological conditions, as it can be
released by IFNγ activated and/or dying leukocytes and KCs (26,
27). Moreover, early results demonstrated defective hydrolysis
of ATP in the psoriatic epidermis, leading to accumulation of
extracellular ATP in the diseased skin, which supports the notion
that ATP is profoundly involved in development of psoriasis
(28). These early studies were recently confirmed by Killeen et
al. (29), showing in the dermis of psoriatic lesions in a skin
explantmodel elevated expression of P2X7 receptors as compared
to healthy skin. This increased P2X7 signaling lead also to a
phenotype of skin-DCs that predominantly induced Th17 cells,
which are the main drivers of psoriasis. Finally, the elevated
ATP concentrations in skin can also activate neutrophils, which
in conjunction with IL-23, form a local inflammatory circuit
maintaining psoriasiform dermatitis in mice (30). Therefore,
increased levels of ATP together with enhanced expression
of ATP receptors seem to be involved in maintaining an
inflammatory environment in psoriatic skin.

On the other hand counter regulatory mechanisms directly
related to the degradation product of ATP, i.e., Ado, have been
described too. For instance, chronically stimulated epidermal
KCs have an altered expression pattern of different Ado receptor
(AdoR) types, with the rather pro-proliferative acting A2A
receptor upregulated and reduced expression of the inhibitory
A2B receptor (31). These and other observations led to
investigations that utilize topical application of AdoR agonists
for the treatment of psoriasis. Indeed, engagement of the AdoR
A3 leads to reduced production of IL-17 and IL-23 in KCs of
psoriatic patients, inducing amelioration of the disease (32, 33).
Therefore, several drugs acting as agonist for different types of
AdoR are currently used in clinical trials of skin- and other

inflammatory diseases (34, 35). But not only in inflammatory
diseases ATP plays a role, it is also important for induction
of acute inflammation in skin. Weber et al. have shown that
skin DCs without functioning P2X7 receptors are unable to
sensitize T cell responses, indicating a role for directed ATP
release as mediator of innate immune reactions (16). At the
same time it became clear that haptens only act as trigger for
hypersensitivity reactions when they induce release of ATP.
Therefore, even experimental attempts were made to predict the
“allergic potential” of chemicals by their ability to induce ATP
release in KC cultures (36).

ATP as Substrate for Adenosine Production
A major degradation product of ATP is Ado, which can be
generated intracellularly as well as extracellularly. Ado derives
from the dephosphorylation of ATP, catalyzed by different
enzymes: the ectonucleoside triphosphate diphosphohydrolase
1 (CD39) and the ecto-5’-nucleotidase (CD73) (37, 38). Both
enzymes act sequentially in degrading extracellular ATP to
adenosine. In a first step CD39 converts ATP to adenosine-
di-phosphate and adenosine-mono-phosphate. In a second step
the action of CD73 clips off the last remaining phosphate
group, producing Ado (39). Ado can be released by nucleoside
transporters from the cytoplasm of cells (4), however, the
extracellular degradation of ATP by CD39 and CD73 is thought
to provide the major pathway for regulating extracellular Ado
concentrations. Its degradation is accomplished by adenosine
deaminase (ADA), which exists in intra- as well as extracellular
forms (40, 41). Extracellular ADA can bind to CD26 (42). Thus,
similar to ATP and ADP, Ado can be degraded to inosine
by cell membrane bound enzymes. In summary, the regulated
destruction of extracellular ATP to Ado by enzymatic digestions
offers cells a possibility to shape the tissue environment from a
pro-inflammatory (high concentrations of free ATP) to a rather
immunosuppressive (elevated levels of Ado) ambiance (43). As
DCs express CD39 and/or CD73 as well as AdoR, they actively
participate in immune responses affected by Ado (Figure 1).

Regulation of Extracellular Ado and ATP
Concentrations
In light of the opposing functions of the two mutually
transformable signaling molecules ATP (activating) and Ado
(suppressing) on immune reactions, their temporal/spatial
distribution in tissues or along the plasma membranes of cells is
of importance. Cells will presumably integrate activating (ATP)
and suppressive (Ado) signaling pathways rendering a “final”
outcome. Therefore, the half live as well as the diffusion speed
through tissues is a critical factor determining the effects of
ATP/Ado signaling. Real “in tissue” data of the distribution
of extracellular ATP or Ado, respectively, are hardly available.
However, contents in body fluids or organ cultures can be
measured. For instance, in dog as well as human plasma Ado
is only stable for a few seconds (44), making it a “short range”
molecule. This rapid degradation may be useful to prevent a
generalized immune suppression and it further prevents Ado
from reaching the central nervous system, where it acts as
neurotransmitter (45) and elevated levels may therefore disturb
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nerve functions. Moreover, a short half-life makes Ado a more
defined tool for cellular communication. Because only cells that
harbor CD73 on their surfaces are able to produce sufficient
amounts of Ado that then acts locally by engaging AdoR of
adjacent cells. This mechanism may in particular of importance
for tolerance induction, as Ado production by CD73 expressing
DCs is required during the intimate DC:T cell priming process
in order to render T cells tolerant (own unpublished results).
Finally, to regulate Ado concentrations in relation to ATP not
only the half-life is important, also the regulation of expression
of the Ado producing ectoenzyme CD73 provides a means
to fine tune the extracellular Ado content. During ischemic
preconditioning expression of CD73 is induced within 30min
(46), greatly enhancing the extracellular Ado concentration in
tissues and thereby overcoming the degradation by ADA.

For ATP biosensors are available (47) making is more feasible
to monitor extracellular ATP content in cell culture settings. The
reported half live of ATP varies from up 2–20min depending on
the organ and the methods used (48–51). Of note, in the immune
system ATP actions are rather fast, as neutrophils show a burst
of ATP release for only 5 s after being stimulated with fMLP (52).
However, these data are once more obtained in in vitro culture
systems, which differ from the in situ situation, but after all these
data give an impression on the speed and range of ATP or Ado
signaling. It provides evidence that Ado may not act “cytokine-
like” with distribution via the blood stream and exerting action(s)
in tissues far from its origin.

EFFECTS OF Ado ON DCs

Expression of Ado Receptors by DCs
Four Ado Receptors (AdoR) are known so far (A1, A2A, A2B, and
A3). Structurally they all belong to G-protein-coupled-receptors
(GPCRs), but their intracellular signaling differs (Figure 2). In
general the A2 receptor types are Gαs-protein coupled receptors,
with the A2B receptor additionally signaling via Gαq. In cells
an activated G protein complex forms at the inner leaflet
of the cell membrane after Ado engagement, which leads to
activation of the adenylate cyclase (AC) and to rising cAMP
levels (in case of Gαs). As a consequence protein kinase A
(PKA) is activated as secondary effector. On a molecular level
this can directly be counteracted by engagement of A1 or
A3 AdoR, which signal via Gαi/Gαq complexes. Among them,
the Gαi/o complex inhibits AC activity and thus dampens
A2 mediated signaling. The main signal transduction of A1
and A3 receptors downstream of G proteins is mediated by
phospholipase C induced secondary messengers that ultimately
leads to increased Ca2+ levels and PKC activation. Thus, a
different secondary effector is induced by A1 and A3 AdoR,
resulting in activation of different sets of genes. But nevertheless,
even here a crosstalk with the A2B receptors is possible, as
A2B AdoR via its coupling to Gαq can feed into the PLC
mediated pathway and support A1 and A3 AdoR signaling (53,
54).

Many reports show expression of all four subtypes of AdoR
by DCs in varying degrees (55, 56). However, the levels of
expression and their distribution among defined subset of DC

remain uncertain. When analysing the available data on AdoR
expression by DCs at a glance it becomes clear that AdoR
expression correlates with the maturation status of DC. Human
immature DC express A1 and A3 AdoR, which after engagement
activate and recruit DCs to inflammatory sites (57). Upon
maturation A2 AdoR emerge in DCs, now triggering rather
inhibitory effects such as reduced secretion of IL-6, IL-12, and
IFNγ (58). Here, differential expression of AdoR by DCs serves
the purpose of regulating inflammatory processes. I.e., in the
beginning of an insult, immature DCs are rendered active and
are recruited to the inflammatory site whereas later A2-type
AdoR expression limits over boarding inflammatory reactions.
However, with several ways of cross talk between AdoR (as
described above), differential expression by different cell types
as well as varying affinities for purines, it is nearly impossible
to assign one defined effect on cell physiology to the sole action
of one AdoR or to one ligand in vivo. But in vitro studies
can at least give insight into general pathways modulated by
Ado.

Effects of Ado on Functions of DCs
Despite the fact that four different AdoR can activate different
pathways at the same time that may have opposite effects on
immune cell activation, many reports unequivocally demonstrate
immune suppressive actions of Ado on DCs. In particular cAMP
elevating AdoRA2A andA2Bmediate rather inhibitory functions
in DCs (53). For instance, after stimulation of respective AdoR in
vitro, human DCs downmodulate secretion of IL-12 and TNFα.
The cells expressed low amounts of MHC class II and were
functionally impaired in stimulating proliferation of allogenic
T cells. Further parameters of DC activation such as CXCL10,
CCL2 and CCL12 secretion were also downregulated by Ado
(56, 59–62). All of these features are indicators for a less mature
phenotype of DC, which can be regarded as a tolerogenic type of
DC (63).

In an even broader context a CD73+ cellular environment
may be important to keep DC in “steady state” condition. In vivo
genetic ablation of CD73 inmice leads to enhanced inflammatory
reactions in a contact hypersensitivity model that is driven by
increased migration of skin DCs to peripheral lymph nodes (64).
Moreover, when analyzing the expression of T cell costimulatory
molecules by different DC subsets after application of the hapten
TNCB, we found increased expression of CD86 in subsets of
skin DCs in CD73 deficient as compared to control mice. These
data are further corroborated by findings using stimulation or
blockade of Ado deaminase (ADA), an enzyme that is crucial
for degradation of extracellular Ado. ADA is expressed by DCs
during ongoing inflammation to degrade CD73 derived Ado and
to maintain their hyper-reactive state (65). In contrast, in absence
of ADA Ado levels in cellular environments are increased, as
a consequence tolerogenic functions of DCs are enhanced (60).
Moreover, addition of ADA to DC:T cell cultures, which leads
to depletion of Ado from the cellular environment, enhanced
priming of effector T cells and suppressed induction of Treg (66).
In aggregate, adequate levels of extracellular Ado in peripheral
tissues may be of importance to prevent overshooting DC activity
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FIGURE 2 | Scheme of major pathways and interconnections of AdoR and P2X7 ATP receptors. All receptors signal through G proteins. Different types of G proteins

determine the further outcome. Briefly, A2A and A2B AdoR elevate adenylyl cyclase (AC) leading to activation of protein kinase A (PKA) through elevated cAMP levels.

AC and thus cAMP is suppressed by A1 and A3 AdoR engagement, which themselves signal via phospholipase C (PLC) and proteinkinase C (PKC). However, raising

Ca2+ levels, which transmit a P2X7 derived signal are blocked by A1 AdoR. Finally, A2B AdoR can augment signals derived from A1 and A3 as it stimulates Ca2+

mediated PKC activation also.

and to maintain their “steady state,” which has been shown to be
crucial for the tolerogenic function of DCs (67).

But beyond the mere prevention of DC maturation by Ado,
the DC phenotype may be impacted in more fundamental ways.
For example engagement of A2 AdoR in DCs enables them to
actively suppress immune reactions. The mechanisms include
the stimulation of IL-10 secretion or the upregulation of T cell
inhibitory molecules such as B7H1, resulting in tolerant T cells as
their proper activation by DCs is impaired (62, 68, 69).

Even “imprinting” tolerogenic functions in DCs has been
attributed to AdoR engagement. Li et al. (70) were able
to attenuate acute kidney injury by infusing DCs pretreated
ex vivo with A2A AdoR agonists. This phenotype of Ado
tolerogenic DCs was stable for more than a week and its action
in vivo relies on impeding NKT cell activation by a so far
unknown mechanism. AdoR expression can also be intrinsically
upregulated by already immunosuppressive DC subtypes to
bolster their immunoregulatory functions. For instance, in a
tolerogenic pediatric DC subtype, IL-10 is upregulated after Fc
receptor mediated stimulation along with increased expression
of the A2A AdoR, which after Engagement further augments
their IL-10 production (71). Thus, A2A AdoR expression helps
to reinforce the immunosuppressive capacity of the DCs.

SIGNALING OF AdoR IN DCs

The Molecular Mechanisms of cAMP in
DCs
The main intracellular suppressive pathways triggered by A2

AdoR types involve cAMP as a second messenger. Roughly, both
A2-type AdoR elevate cAMP levels by activating Adenylyl Cylase
(AC). Further downstream cAMP signals via PKA that regulates
gene transcription via NF-κB, HIF-1α and CREB. In addition,
A2B AdoR also acts on PLC, inducing raising intracellular Ca2+

levels.
In a recent transcriptomic approach performed in bone

marrow derived DCs (72), elevated activity of AC was connected
to both, inhibition of AKT signaling and to activation of PKA
(Figure 3). PKA has relevance for host defense capacities, as
inhibition of Salt induced kinases (SIK) by cAMP-activated
and PKA-mediated phosphorylation was shown to suppress
secretion of the pro-inflammatory cytokines IL-6, IL-12, and
TNFα by DCs and macrophages (73–75). Moreover, one
of the SIK targets is the CREB-regulated transcription co-
activator 3 (CRTC3) that can be phosphorylated at several
serine residues. Phosphorylation of CRTC3 is inhibited by
the cAMP-activated PKA, leading to translocation of the
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follows. cAMP can suppress AKT activation leading to reduced mTORC activity either directly or via PRAS40. Without proper mTORC activity 4E-BP1 complex will

terminate translation of proteins widely necessary for activation of cells. Additionally cAMP can signal via PKA, leading to hyper phosphorylation of Salt induced kinase

(SIK) 2, allowing the phosphorylated transcription factor CRTC3 to cluster with CREB and to initiate translation of IL-10. Besides, further interaction of PKA with

transcription factors such as NF-κB, HIF and CREB can induce “inhibitory” gene expression. A PKA independent pathway is mediated by EPAC, an enzyme that

activates RAP via GTP binding, leading to profound changes in cytoskeleton and migration of DCs. As a result inhibitory DC:Treg clusters are formed and the

immunological synapse may be changed in a tolerogenic fashion.

non-phosphorylated CRTC3 into the nucleus, where interaction
with activated CREB upregulate IL-10 gene transcription
(74).

In parallel to PKA activation, AKT activity is downregulated
by elevated cAMP levels, promoting mTOR inhibition via
PRAS40 (76). As a result, the downstream effectors of
mTOR involved in the synthesis of cellular proteins, such
as 4E-BP1 are hypophosphorylated. In this state, 4E-BP1
forms complexes with eukaryotic translation initiation
factors and prevents translation (77). mTOR signaling
regulation by AdoR driven cAMP content in DC may act
as an important regulator of the antibacterial inflammatory
response in monocytes, macrophages and primary dendritic
cells (78, 79).

Effects of AdoR Triggered cAMP Levels on
Phenotype and Function
Despite that AdoR triggered cAMP elevation has multiple
molecular targets the overall effect is obvious, as several
reports show clear induction of an immunocompromised and
tolerogenic phenotype of DC by cAMP. This is indicated
by reduced secretion of proinflammatory cytokines, reduced
expression of MHC class-II but elevated secretion of IL-
10. Also the capacity of DCs to prime CD8+ T cells
in vitro was impaired in DCs with elevated intracellular
levels of cAMP after induction by Ado or defined AdoR
agonists such as 5′-N-Ethylcarboxamidoadenosine (62, 68, 80–
83). In turn, cAMP can feed back on AdoR expression.
For example, high levels of cAMP induced by agents that
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trigger Gs-protein coupled receptors, upregulates expression
of A2 AdoR in PC12 tumor cells (84). This cycle may
therefore vigorously enhance Ado mediated suppressive effects
in cells, as cAMP triggered upregulation of AdoR provides
a means that leads to an even more sustained cAMP
production.

To further delineate the possible cAMP effects that are
mediated by AdoR engagement, one can artificially raise the
cAMP content in DCs with Cholera toxin to mimic A2 AdoR
triggering. This leads yet to another subtype of tolerogenic
DCs, i.e., DCs that express both isoforms of the tolerogenic
molecule cytotoxic T lymphocyte antigen 2 (CTLA-2α and
CTLA-2β) (85). These DCs resembled a semi-mature state
and were able to promote TGFβ-dependent Foxp3+ “induced”
Treg conversion. Of note expression of CTLA-2 was critical
for this function as genetic downregulation by siRNA reduced
Treg conversion, while addition of recombinant CTLA-2α
increased Treg conversion in vitro. Finally, when Lee et al.
(81) investigated the role of DCs in priming of Th2 cells,
they showed that deletion of genes that encode the GTP
binding protein Gαs, leads to decreased cAMP signaling in
DCs and provokes Th2T cells with a prominent allergic
phenotype. In contrast, increases in cAMP levels inhibited
these responses. These findings imply that G protein-coupled
receptors in DCs, such as A2 AdoR, which are natural
regulators of cAMP formation, can prevent Th2-mediated
immunopathologies by rendering DCs unable to induce potent
Th2 answers.

Another major pathway induced by rising cAMP levels,
but independent from PKA, depends on the exchange
protein EPAC. Upon cAMP mediated activation, EPAC
catalyzes the GTP binding of RAP1, a major regulator of the

cytoskeleton. Via this axis cAMP seems to affect cell motility,
cell adhesion, chemotaxis and phagocytosis (86). For DCs
in particular it has been shown that Ado released by Treg
is responsible for attracting them (mediated by an EPAC-
RAP dependent pathway), leading to formation of DC:Treg
aggregates (87). In these aggregates DC undergo “tolerogenic
instruction,” as they start to produce IL-10, upregulate T
cell inhibitory molecules and simultaneously downregulate
expression of MHC class II molecules. Moreover, even the
directed induction of DC:Treg clusters themselves may serve
immunosuppressive functions, as Onishi et al. (88) have shown
that Treg insolate effector T cells from proper activation
by DCs by simply outcompeting them and keeping DCs in
clusters.

Priming of T Cells by DCs in Presence of
Ado Is Altered
Despite the many well documented and long lasting effects of
AdoR engagement on function of isolated DCs, the immediate
presence of Ado during initial DC:T cell contact is crucially
affecting the resulting immune response. For instance, in vitro
engagement of A2A AdoR during the cognate MHC:peptide (as
presented by DCs) T cell interaction leads to induction of T cell
anergy and not to activation of T cells that normally ensues after
DC:T cell interaction (89). This effect seems to be dependent
on altered signaling in T cells, as reduced activation of the
MAPK pathway was observed under these conditions. Ado:DC
induced anergic T cells are not only refractory to restimulation,
they also develop a CD25− LAG3+ “regulatory” phenotype that
actively prevents autoimmunity. Thus, the initial tolerogenic
effects of Ado during antigen presentation by DCs will further
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FIGURE 4 | ATP and Ado are involved in regulating tissue inflammation. Exemplary for skin it is shown that (A) during steady state only trace amounts of ATP, derived

from cellular detritus, are present. ATP will be degraded immediately by CD39/CD73high Langerhans cells. (B) After injury high amounts of ATP are set free, which

cannot be degraded effectively and overrule Ado production. This stimulates DCs via P2X7 receptors, leading to activation, to migration and to recruitment of different

subsets of leukocytes. (C) When infection goes on, more CD39/CD73 expressing leukocytes are entering the tissue and P2X7 signaling ceases due to receptor

desensitization and by counteraction of Ado. ATP is degraded to Ado which now prevails and terminates effector functions of various immune cells. Thus, immune

homeostasis is reestablished.
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be disseminated into tissues by these induced “regulatory”
T cells.

As DCs can express CD73 themselves, production of
extracellular Ado by DCs is conceivable and regulated expression
of CD73 by DC subsets may one way to tune DC function
for either tolerance (high CD73) or immunity (low CD73).
Indeed, in a skin model for contact hypersensitivity application
of the tolerogen 2,4-dinitrothiocyanobenzene (DNTB) rendered
mice tolerant toward sensitization with the hapten 2,4-
dinitrofluorobenzene (DNFB) (90). We found that induction
of tolerance with DNTB was accompanied by increased
expression of CD73 by skin migrating DCs and of note, in
CD73 deficient animals tolerance induction by DNTB ceased
(unpublished data). This underlines the importance of tissue
derived Ado in governing DC functions under inflammatory
conditions.

The Complex Regulation of ATP–Ado
Signaling During Inflammation
As DCs can express all four AdoR, the ectonucleotidases
CD39/CD73 as well as P2X7 receptors, disentangling the
ATP and Ado effects is very complex (91). It becomes even
more complicated, as the different receptors transmit either
stimulatory or suppressive signals, differ in their affinity for
the respective ligands and are expressed to different degrees.
The well investigated example of ATP induced chemotaxis of
neutrophils gives an example how important the actual physical
distribution of the different receptor molecules within a cell
membrane is for their function. In neutrophils the chemotactic
signal induced by fMLP is translated into ATP release by
panx1. It will autocrinely act back on P2Y2 receptors. At the
same time stimulatory A3 AdoR as well as CD39/CD73 are
recruited to this part of the membrane, creating a local excitation
circuit by activating PIP3, MAPK pathways and forming a
“leading edge” for migration. A2A AdoR are excluded from
this membrane site and are accumulating at the “trailing edge.”
At the same time Ado, produced at the “leading edge” by
activity of CD39/CD73, diffuses to the “back” of the cell and
engages A2A receptors. This signal is transmitted by means
of cAMP–PKA activation and suppresses the activation of the
cell locally. As a result neutrophils are polarized and find their
way along chemotactic gradients (92–94). Altogether this was
an elaborative effort of several research groups and similar
investigation can be done for DCs too. Here we are just
at the beginning, just investigating broad effects of ATP/Ado
on DC migration and DC activation, without knowing how
the individual pathways are interconnected at a molecular
level.

Nevertheless, in a simplified scheme one can consider ATP
as rather stimulatory and proinflammatory, and Ado (A2A and
A2B receptors elevating cAMP) as being immune suppressive.
In that sense CD39/CD73 expressing DCs are key cell for
modulating homeostasis and inflammation and both receptor
types (for ATP and Ado) are required to actually “measure”
the degree of immune suppression or activation, respectively

(Figure 4). Under non inflammatory conditions “steady state”
DCs are patrolling through different tissues (95, 96) and sense
only trace amounts of ATP, as tissues are intact and only
limited amounts of extracellular ATP are produced, for instance
by apoptotic cells. To maintain this homoeostatic status, high
expression of CD39/CD73 ensures efficient degradation of ATP,
preventing activation of the immune system. Examples are
Langerhans cells in the epidermis that are highly positive for
CD39 and degrade ATP effectively (37). Only when infection,
tumor growth or trauma lead to elevated levels of extracellular
ATP, the activating properties prevail, despite the fact that Ado
receptors are expressed also. ATP simply outnumbers Ado effects.
Subsets of immature peripheral DCs are recruited by ATP (58, 97)
and an immune response is initiated. But counter regulatory
mechanisms are initiated at the same time. For instance P2X7

receptors become refractory to repeated stimulation by high
ATP concentrations (37), making the DCs insensible to ATP
mediated activation (58). Moreover, recruitment of regulatory
T cells to inflammatory sites, which express high levels of
CD39 and CD73, accelerates the degradation of ATP to
Ado (98, 99). So the balance tips toward an Ado enriched
ambiance that progressively exerts anti-inflammatory functions.
More Ado means reduced proinflammatory functions of DCs
(69, 70, 81, 100, 101), less migration of DCs from tissue to
lymph nodes (64) and increased induction of regulatory T
cells (60, 63, 87, 89). Thus, slowly immune homeostasis is
reestablished.

CONCLUSION

The turnover of extracellular ATP to Ado by cell bound
CD39 and CD73 offers a possibility to shape the tissue
environment from an inflammatory (ATP high) to an immune
suppressive habitat. DCs participate in this process as they
(i) express ATP degrading enzymes CD39 and CD73 and (ii)
harbor AdoR. Therefore, immunosuppressive effects of Ado
can be mediated in two ways by DCs: First, DC derived Ado
suppresses activation of T cells and fosters the induction of
anergic and/or regulatory T cells during the cognate DC:T
cell interactions. Secondly, Ado derived from adjacent cells
act on DCs, preventing DC maturation and development
of effector functions. These steady state DCs are considered
tolerogenic. Thus, an Ado enriched tissue environment may be
of importance to maintain the “steady state” of DCs to prevent
autoimmunity.
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