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The gastrointestinal (GI) tract is a complex and well-balanced milieu of anatomic and

immunological barriers. The epithelial surface of the GI tract is colonized by trillions

of microorganisms, known as the gut microbiota, which is considered an “organ”

with distinctive endocrine and immunoregulatory functions. Dysregulation of the gut

microbiota composition, termed dysbiosis, has been associated with epithelial damage

and translocation of microbial products into the circulating blood. Dysbiosis, increased

gut permeability and chronic inflammation play a major role on the clinical outcome

of inflammatory bowel diseases, graft-vs.-host disease (GVHD) and HIV infection. In

this review, we focus on GVHD and HIV infection, conditions sharing gut immune

damage leading to dysbiosis. The degree of dysbiosis and level of epithelial gut

damage predict poor clinical outcome in both conditions. Emerging interventions are

therefore warranted to promote gut microbiota homeostasis and improve intestinal

barrier function. Interventions such as anti-inflammatory medications, and probiotics

have toxicity and/or limited transitory effects, justifying innovative approaches. Fecal

microbiota transplantation (FMT) is one such approach where fecal microorganisms are

transferred from healthy donors into the GI tract of the recipient to restore microbiota

composition in patients with Clostridium difficile-induced colitis or inflammatory bowel

diseases. Preliminary findings point toward a beneficial effect of FMT to improve GVHD

and HIV-related outcomes through the engraftment of beneficial donor bacteria, notably
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those producing anti-inflammatory metabolites. Herein, we critically review the potential

for FMT in alleviating dysbiosis and gut damage in patients with GVHD or HIV-infection.

Understanding the underlying mechanism by which FMT restores gut function will pave

the way toward novel scalable and targeted interventions.

Keywords: fecal microbiota transplantation, graft-vs.-host disease, HIV infection, gut epithelial damage, dysbiosis

INTRODUCTION

Trillions of microorganisms reside in the human gut,
encompassing not only bacteria but also fungi, archaea,
viruses, and eukaryotic microbes, collectively termed microbiota.
The gut microbiota was recently considered as an essential
organ, playing a critical role in various host functions such as
maintenance of the gut barrier and modulation of systemic
immune response (1). Furthermore, the endocrine function of
the gut microbiota was demonstrated through the production of
vitamins and immunoregulatory short chain fatty acids (SCFA)
(2). Dysregulation of gut microbiota composition, also known as
dysbiosis, can lead to barrier dysfunction and translocation of
microbial products leading to systemic inflammation (3). Recent
evidence has shown that patients with diabetes, inflammatory
bowel diseases (IBD), cancer, graft-vs.-host disease (GVHD)
or HIV infection present with gut dysbiosis, gut damage, and
microbial translocation (4–7).

Allo-hematopoietic stem cell transplantation (HSCT) is used
in the treatment of hematological cancers where donor derived
T-cells and natural killer cells target cancer cells in the
recipient (4). Occurring after chemotherapy conditioning and
HSCT, GVHD may develop as a serious complication when
donor immune cells recognize the recipient as foreign and
attack healthy cells in host’s tissues. GVHD mostly occurs in
the gut through the disruption of epithelial tight junctions,
destruction of epithelial cells and inflammation in association
with dysbiosis (5–8). A large multicenter study showed that gut
microbiota composition independently predicted mortality in
1,362 HSCT patients with GVHD (9–11). Similarly, immune
damage observed in the gut of people living with HIV (PLWH)
was associated with gut dysbiosis, inflammation and clinical
outcome (12–15). Despite long-term antiretroviral therapy
(ART), damage to the gut mucosa and dysbiosis persist in PLWH,
leading to systemic inflammation (8, 10, 11, 15). Like for people
with GVHD, PLWH present with a disrupted gut epithelial
barrier, immune-mediated intestinal damage, and increased gut
permeability (15–22).

Given the association between microbiota composition and
clinical outcome in both GVHD and HIV infection (5–11),
strategies to modify the gut microbiota have come to light
through dietary interventions, the antidiabetic drug metformin,
selective antibiotics, probiotics, prebiotics, and fecal microbiota
transplantation (FMT) (5, 23, 24). FMT refers to the transfer
of fecal microorganisms from healthy donors into the GI tract
of patients. It has shown to be effective in Clostridium difficile
colitis (CDC), IBDs or obesity (25–28). As FMT has been
recently shown to improve intestinal barrier function through
promotion of gut microbiota homeostasis in GVHD and HIV

infection, we discuss its relevance in both conditions in this
review (29).

DYSBIOSIS AND INCREASED GUT
PERMEABILITY ARE COMMON FEATURES
IN PATIENTS WITH GVHD OR
HIV-INFECTION

In GVHD or HIV infection, a decrease of gut microbiota
diversity is observed and associated with poor clinical outcome
(30–33). Compared to patients undergoing allogeneic HSCT
without GVHD, patients experiencing GVHD had decreased
stool microbial diversity (32). Taur et al. reported that lower
bacterial diversity was associated with increased transplant-
related mortality in HSCT recipients (33). Nowak et al. also
reported that the bacterial diversity of the gut microbiota was
correlated with CD4 T-cell counts and inversely correlated with
markers of microbial translocation and monocyte activation in
PLWH (30).

The gut barrier is organized as a multi-layered and complex
system which allows nutrient absorption while preventing the
translocation of microbes and their products. Epithelial gut
damage occurs in patients with GVHD and PLWH, with
damaged enterocytes (basal barrier), non-functional Paneth cells
(antimicrobial peptide production) and less mucosal-associated
invariant T (MAIT) cells (5, 34–37). Several proteins have
been used as gut damage markers. Plasma concentrations of
regenerating islet-derived 3-alpha (REG3α), secreted by Paneth
cells, were 3-fold higher in patients with gut GVHD at the
onset of the disease compared to other HSCT patients (36, 37).
Lower levels of REG3α at GVHD onset are correlated with
higher 1 year survival (37). In PLWH, we observed that REG3α
but not intestinal fatty acid binding protein (I-FABP) plasma
levels were correlated with HIV disease progression, microbial
translocation and immune activation (36). Similarly, soluble
suppression of tumorigenicity (sST2) was also used to predict
gut damage and clinical outcomes in patients with GVHD and
PLWH (38–42).

Epithelial gut damage allows microbial translocation of
microbial products from the lumen to the bloodstream, inducing
local and systemic inflammation (43). Circulating levels of
lipopolysaccharide (LPS), a pro-inflammatory bacterial cell
wall component, is a clinically significant marker to assess
the level of microbial translocation (44). LPS leakage in
the circulation could induce innate immune activation, in
association with mortality in GVHD (45–47). In PLWH, we
and others have shown that LPS translocation is correlated
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with immune dysfunction and increased risk of non-AIDS
comorbidities (48–51). Additionally, cytomegalovirus (CMV)
primarily replicates in mucosal epithelial cells, decreasing gut
barrier integrity. In patients with GVHD and PLWH, CMV latent
infection or reactivation is associated with poor clinical outcomes
(52–57). These findings suggest that patients with GVHD and
HIV infection share similar features in gut damage and related
microbial translocation.

Moreover, the gut microbiota can influence host cell
physiology via production of metabolites such as SCFAs and bile
acids. SCFAs, especially butyrate, constitute the primary energy
source for colon epithelial cells. SCFAs play an important role
in protecting intestinal barrier function, preventing microbial
translocation and reducing inflammation through regulation of
host epigenetics (58–60). GVHD patients or PLWH present with
a lower abundance of SCFA-producing bacteria and a lower level
of SCFAs, compared to non-GVHD HSCT patients or HIV-
negative individuals, respectively (61–64). In both conditions,
lower levels of SCFAs have been associated with gut damage and
inflammation (62, 64–66). Conflicting results exist on the role of
butyrate in GVHD as one report shows that patients developing
GVHD had higher butyrate production (67). Furthermore,
microbiota modulation leading to poor bile acids reabsorption
could also be associated with gut damage in both patients with
GVHD or PLWH (68–72).

Globally, gut dysbiosis, increased gut permeability,
inflammation and systemic immune activation are common
features of patients with GVHD or PLWH.

FMT IN PATIENTS WITH GUT GVHD

Given the dysbiosis and gut permeability in patients with GVHD,
and regarding the vital role of gut microbiota in intestinal
barrier and homeostasis, strategies targeting the microbiota
offer one promising avenue for preventing or treating this
condition. In the 1990s, investigators attempted to prevent
the development of acute GVHD by drastically reducing the
gut microbiota mass with antibiotics, removing the triggers of
inflammation (73–75). However, newer studies have proven that
gut microbiota-depleted patients had a higher risk of developing
acute GVHD following HSCT than non-depleted patients (76,
77). Therefore, strategies promoting a “healthy” microbiota
including FMT have attracted recent attention. Kakihana et al.
(78) conducted a pilot study on four patients with steroid-
resistant or steroid-dependent gut GVHD to observe the effects
of FMT from spouses or relatives via nasoduodenal tube. All
patients responded to FMT with three complete responses,
one partial response, all in absence of severe adverse events.
Spindelboeck et al. (79) reported successful FMT in three patients
with severe acute GVHD. After one to six FMTs delivered via
colonoscopy, all three patients showed increased diversity of
the gut microbiota, with two complete remissions of GVHD
and one partial remission. Qi et al. (80) reported eight patients
with steroid-refractory gut GVHD receiving FMT through a
nasoduodenal tube, from a stool bank. After FMT, all patients’
clinical symptoms were relieved, bacteria diversity was enriched,

and the gut microbiota diversity was restored. Compared to
those who did not receive FMT, these eight patients achieved
a longer progression-free survival. These case studies suggest
that FMT can serve as a promising therapeutic option for gut
GVHD, however larger controlled studies are required to confirm
these effects.

FMT IN PLWH

In PLWH, the mucosal immune system is disturbed by HIV
infection. Th17 and Th22 cells, important components of
mucosal immunity, are rapidly depleted following HIV or
simian immunodeficiency virus (SIV) infection, contributing to
a reduced barrier integrity, microbial translocation, and systemic
immune activation (81–83). In a pilot study, Hensley-McBain
et al. (84) reported that FMT significantly increases the number
of peripheral Th17 and Th22 cells and reduced CD4 T-cell
activation in the gut in SIV-infected macaques receiving ART.
Moreover, the transplant was well-tolerated and no side effects
were observed (84).

A pilot study in ART-suppressed individuals who received
one-time FMT from stool bank via colonoscopy reported no
serious adverse effects during the 24 weeks of follow-up.
Microbial engraftment occurred but was partial, and limited to
specific bacterial taxa including an increase of Faecalibacterium
(85), which has been shown to exert anti-inflammatory effects
in murine experimental colitis (86, 87). The authors considered
that the limited effects of FMT might be related to the
single dose of FMT given and the absence of antibiotic pre-
treatment to “provide space” before FMT (85). Serrano-Villar
et al. reported that repeated oral capsular FMT was one way to
safely introduce incremental compositional changes into the gut
microbiota in ART-treated PLWH (88). Compared to placebo,
FMT significantly decreased the gut damage marker I-FABP 4
weeks after initiating FMT. Furthermore, mild engraftment of the
donor’s microbiota persisted until week 36 after initiating FMT
and greater engraftment was observed among the four subjects
who had received antibiotics in the 12 week period before FMT
(88) (Figure 1).

Safety should be the primary focus of any intervention.
Concern persists on the safety of FMT administration, even
more so in immunosuppressed recipients. However, PLWH
with low CD4 T-cell count were shown to have the most
profound modification of their gut microbiota and therefore
would benefit greatly from FMT (89). As reviewed by Shogbesan
et al. (27), FMT is successful in the treatment of recurrent CDC
in immunocompromised patients including organ transplant
recipients and PLWH. Encouragingly, FMT showed similar
rates of adverse events in immunocompromised participants
compared to immunocompetent ones including PLWH with
CD4 counts lower than 200 cells/mm3 (90–93). Additionally,
Schunemann et al. showed that FMT increased CD4 counts in
an individual with HIV (94). To better assess the efficacy and
safety of FMT, well-designed RCT clinical trials are ongoing
and presented in Table 1. However, large studies assessing the
influence of FMT in PLWH are still needed.
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FIGURE 1 | Potential of FMT in GVHD or HIV infection-related gut damage.

CHALLENGES OF FMT FOR PATIENTS
WITH GVHD AND PLWH

FMT needs further confirmation of its efficacy in decreasing
gut damage in patient with GVHD or PLWH since studies
assessing FMT with GVHD or PLWH involved a small number
of participants. Moreover, safety needs to be validated as rare side
effects may not have been observed in small studies. Therefore,
challenges in designing formulations, preventing potential risks
and implementing application in clinic for patients with GVHD
and PLWH still remain.

Firstly, both healthy donors and patients have a microbiota
composition with a high inter-person variability, and the
key factors causing microbiota composition variation over
time are not fully characterized. The precise influence of
different microbiota composition and metabolites on epithelial
barrier and clinical outcomes remain poorly understood and
need further studies to define their distinctive role on the

development of GVHD and HIV infection. Therefore, it
remains difficult to select donors and special products for FMT
formulation. Moreover, FMT treatment may carry pathogens
for digestive and bloodstream infection, as DeFilipp et al.
recently reported two cases of drug-resistant Escherichia coli
bacteremia transmitted by FMT (95). Therefore, despite the
absence of a uniform standard for “qualified” microbial
communities, donors have to be thoroughly screened for
transmissible diseases (e.g., HIV and hepatitis) and other non-
infectious conditions (e.g., obesity and diabetes) that may be
influenced by changes in the microbiome. In the light of
Coronavirus Disease 2019, efforts to screen for novel infectious
diseases should be implemented in the future. SARS-CoV-
2, the virus that causes this disease, was found in stools
even after diminution of respiratory symptoms and could
be transmitted through a fecal-oral route (96, 97). Donors
who may transfer undesirable agents (e.g., antibiotics, anti-acid
proton pump inhibitors, systemic immunosuppressive agents,
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TABLE 1 | Ongoing clinical trials using FMT as a treatment for GVHD and HIV.

Condition and Aim Design Intervention Number of

participants

Country Clinical trial number

Patients with GVHD

GVHD prevention RCT ARM I: total gut decontamination + FMT

via enema

ARM II: FMT via enema

Arm III: standard therapy

120 US NCT03862079

GVHD prevention RCT ARM I: Oral FMT Capsule

ARM II: Oral placebo Capsule

120 US NCT03678493

GVHD prevention RCT ARM I: FMT capsules

ARM II: placebo capsules

48 US NCT03720392

Acute GVHD treatment Single arm Autologous FMT via nasogastric tube 70 Israel NCT03492502

Steroid refractory acute GI GVHD

treatment

Single arm FMT 32 France NCT03359980

Acute GI GVHD treatment Single arm FMT under colonoscopy or gastroscopy 30 China NCT03812705

Refractory GVHD treatment Single arm FMT via nasojejunal tube 15 China NCT03549676

Acute GVHD treatment Single arm FMT instilled into caecum or terminal ileum 15 Austria NCT03819803

Gut acute GVHD treatment Single arm Oral FMT capsules 4 Israel NCT03214289

Severe acute gut GVHD treatment Single arm Oral FMT capsules 20 US NCT04280471

Severe acute intestinal GVHD

treatment

Single arm FMT capsules +ruxolitinib+steroids 20 Russia NCT04269850

GI acute GVHD treatment Single arm Oral FMT capsules 17 US NCT04059757

High-risk acute GVHD treatment Single arm Oral FMT capsules 11 US NCT04139577

Steroid resistant gut acute GVHD

treatment

Single arm FMT via colonoscopy or duodenal tube 30 China NCT04285424

PLWH

HIV infections treatment RCT ARM I: FMT capsules and ART

ARM II: placebo capsules and ART

22 Mexico NCT04165200

Safety of FMT in PLWH Single arm FMT capsules 6 US NCT03329560

Microbiota restoration in PLWH RCT ARM I: FMT capsules

ARM II: Placebo capsules

30 Spain NCT03008941

FMT, Fecal microbiota transplantation; GVHD, Graft-vs.-host disease; PLWH, People living with HIV; ART, Antiretroviral therapy; RCT, Randomized Controlled Trial.

antineoplastic agents, and glucocorticoids) which can affect the
safety or efficacy of FMT should also be excluded (98). Hence,
screening for potential donors is costly and time consuming (99).
Fortunately, new techniques allow freezing and storage of donor
stools for extended periods of time, possibly facilitating FMT
implementation (100).

As donor selection is a difficult process, and in order
to favor clinical improvement, engraftment of the donor’s
microbiota should be optimal. Antibiotic conditioning given
to the recipient just before FMT seems to improve microbiota
engraftment (88). This procedure may destabilize the existing
microbial community and promote engraftment of another
community. By preventing niche competition in the mucosa
between the xenomicrobiota and indigenous microbiota,
preparing the gut with antibiotics was shown to facilitate
xenomicrobiota colonization, thus enhancing the overall gut
microbiota modification efficiency (101). Preliminary results by
Serrano-villar et al. showed greater engraftment in four PLWH
who had received antibiotics before FMT (88). Pre-therapy with
antibiotics before FMT to alleviate GVHD is currently under
study (NCT03862079, Table 1).

Encouragingly, multiple clinical trials studying the potential
of FMT as a treatment for GVHD or HIV-related gut damage are
ongoing (Table 1). In these trials, several routes of administration
for FMT are under investigations, including oral capsules, nasal
tube, colonoscopy, or enema. The optimal administration route
may depend on the characteristics of the disease, and general
condition of the patient. Compared with enema, colonoscopy
could deliver the FMT to deep cecum, and increase engraftment
while the donor stools are expelled less rapidly. However,
colonoscopy remains a relatively invasive procedure (102): Kelly
et al. reported one case of death from lung-aspiration injury
during sedation for FMT administered via colonoscopy (103).
Furthermore, nasal administration is considered inconvenient as
some cases of intestinal bleeding and rare peritonitis have been
reported (104). However, oral capsules have been developed to
pass through the acidic environment of the stomach and ensure a
delayed delivery of live microbial communities into the intestine
(105). By using questionnaires, this route is considered to bemost
convenient for patients. Kao et al. compared oral capsule and
colonoscopy delivered FMT on recurrent CDC showed similar
efficacy, with less adverse events (106). Further studies should
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analyze the preferential route of FMT to alleviate gut damage
patients in GVHD and PLWH.

CONCLUSION

Both gut GVHD and HIV infection have been associated
with dysbiosis and increased gut permeability, contributing
to microbial translocation, inflammation, and poor clinical
outcomes. Progress has been made in discerning the role of the
microbiota in GVHD patients and PLWH. Manipulating the
gut microbiota with FMT has been successfully used to treat
CDC through microbiota restoration and has paved the way as
a novel strategy to improve the outcomes of GVHD patients and
PLWH. Several clinical trials are ongoing to assess the efficacy
and safety of treating GVHD and HIV-induced gut damage
with FMT. However, most trials and published studies are pilot
or case series, thus making it difficult to confirm its efficacy
and safety. Only large multicentre RCT studies will address
the merit of such intervention. Moreover, a standard FMT
procedure needs to be implemented and described, including
pre-treatment with antibiotics and delivery with oral capsules
to favor engraftment. Overall, collaborative efforts encompassing
microbiology, clinical care, and pharmacy will define the optimal
procedure and number of FMT to obtain a significant and lasting
benefit from FMT for individuals with GVHD and HIV. In
the future, FMT will pave avenues toward the characterization
of important species and their metabolites in modulation of

gut damage in patient with GVHD or PLWH, leading to more
effective interventions.
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