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ABSTRACT
Microbes growing in animal host environments face fluctuations that have elements
of both randomness and predictability. In the mammalian gut, fluctuations in nutri-
ent levels and other physiological parameters are structured by the host’s behavior,
diet, health and microbiota composition. Microbial cells that can anticipate environ-
mental fluctuations by exploiting this structure would likely gain a fitness advantage
(by adapting their internal state in advance). We propose that the problem of adap-
tive growth in structured changing environments, such as the gut, can be viewed as
probabilistic inference. We analyze environments that are ‘‘meta-changing’’: where
there are changes in the way the environment fluctuates, governed by a mechanism
unobservable to cells. We develop a dynamic Bayesian model of these environments
and show that a real-time inference algorithm (particle filtering) for this model can be
used as a microbial growth strategy implementable in molecular circuits. The growth
strategy suggested by our model outperforms heuristic strategies, and points to a class
of algorithms that could support real-time probabilistic inference in natural or syn-
thetic cellular circuits.

Subjects Computational Biology, Ecology, Mathematical Biology, Microbiology, Synthetic
Biology
Keywords Systems biology, Microbiology, Microbiota, Gut microbiome, Bayesian inference,
Microbial adaptation, Bet-hedging, Cellular circuits, Evolution, Epigenetics

INTRODUCTION
Outside the laboratory, microbes are faced with rich and changing environments. To
improve their chances of survival, single microbial cells must adapt to fluctuations in
nutrients and other environmental conditions. The mammalian gut, home to prokaryotic
and eukaryotic microbes (Walter & Ley, 2011; Parfrey, Walters & Knight, 2011), is a
striking example of a changing environment with elements of both randomness and
order. Nutrients and metabolites may fluctuate stochastically in the gut, but these changes
are structured by the host’s physiology, diet and behavior (Thaiss et al., 2014; David et al.,
2014a; David et al., 2014b). Cells that exploit this noisy structure and anticipate changes in
their environment would likely gain a fitness advantage.

It remains unclear what the information processing capabilities of microbial pop-
ulations are in such changing environments. To what extent are cells able to learn
from their environment’s history and use this information to predict future changes?
How sophisticated are the resulting computations, and in what environments will they
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lead to increased fitness? Insight into these questions would shed light on the type of
environments cells were selected for and may guide the search for molecular mechanisms
that implement adaptive computation. This direction could also inform how microbes
become pathogenic. The yeast C. albicans, for example, can turn from a harmless human
gut commensal to a pathogen depending on the host environment and its nutrient
composition (Brown et al., 2014; Kumamoto & Vinces, 2005; Cottier & Muhlschlegel,
2009). A better understanding of how microbes like C. albicans perceive and adapt to their
environment may suggest ways of manipulating the environment to control pathogenic
growth.

Progress on these questions requires analysis at multiple levels of abstraction, as
outlined byMarr (1982) for information-processing in the nervous system. First, the
computational task solved by cells has to specified. For microbial adaptation, this would
mean characterizing the space of possible changing environments and identifying the
cellular strategies that would result in optimal growth in each environment. Second, the
algorithms and representations that cells need to execute the growth strategy would have
to be described. Finally, at the implementation level, we have to give an account of how
molecular interactions give rise to the algorithm and the necessary representations. A
complete account of microbial adaptation would ultimately integrate the three levels.

There has been much work on understanding the molecular and genetic determinants
of microbial growth in changing environments (e.g., using experimental evolution Poel-
wijk, De Vos & Tans, 2011; New et al., 2014), but less on defining the abstract computa-
tional problem that microbes face when adapting to such environments. In this work,
we focus on the computational and algorithmic aspects of adaptive growth in changing
environments. We computationally characterize a set of structured dynamic environ-
ments, where fluctuations are driven by an unobservable mechanism (‘‘meta-changing’’
environments), and derive an adaptive strategy for optimal growth in these environments.
Our focus is on changing nutrient environments, since nutrient metabolism can serve as a
model for microbial information-processing more broadly.

Nutrient metabolism as a system for studying microbial
information-processing
A natural context in which to study the microbial response to changing environments is
metabolic adaptation to nutrients. Because of its strong effect on growth, the way cells
adapt to nutrients is a highly selectable trait, either genetically in long-term changing en-
vironments (as shown by experimental evolution studiesMitchell et al., 2009; Tagkopoulos,
Liu & Tavazoie, 2008) or epigenetically in environments that change on shorter time
scales (Stockwell, Landry & Rifkin, 2015; Jarosz et al., 2014).

While the control of nutrient and carbon source metabolism has been studied exten-
sively in yeast and other microbes (Broach, 2012), there is generally no simple mapping
between the environment’s nutrient composition and microbial cell state (such as the
choice of which metabolic pathway to upregulate, or the rate at which to grow). The
elaborate molecular machinery for nutrient sensing and uptake suggests that the mapping
may be quite complex.
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Some of the complexity arises from the fact that microbes prefer to consume some
nutrients over others, and that distinct nutrients require different and sometimes
mutually exclusive pathways to be expressed. Glucose is generally the preferred sugar and
its presence inhibits the expression of pathways required to metabolize alternative sugars
like galactose (Gancedo, 1992). In yeast, distinct glucose transporters are upregulated
depending on glucose levels in the environment, which are sensed by dedicated glucose
sensors Snf3 and Rgt2 (Santangelo, 2006; Busti et al., 2010; Ozcan, Dover & Johnston,
1998). Additionally, many promoters in diverse yeast species were shown to be responsive
to the presence of different carbon sources in the environment (Weinhandl et al., 2014).
It has also recently been shown that in environments containing multiple nutrients, cells
might be sensitive to complex functions of nutrient levels. Yeast cells decide to turn on the
machinery necessary to metabolize galactose (GAL pathway) based on the ratio of glucose
to galactose levels in their environment (Escalante-Chong et al., 2015).

In addition to molecular complexity of nutrient signaling, there are also memory
effects at play in the nutrient response. For example, prior exposure to galactose in yeast
alters the rate at which the GAL pathway will be induced upon subsequent galactose
exposures (Stockwell, Landry & Rifkin, 2015), and a similar memory phenotype has also
been observed for lactose in glucose-lactose switching environments in bacteria (Lambert
& Kussell, 2014). (It has also been suggested that some bacteria retain memory of their
environment’s history more broadly, both on short and long timescalesWolf et al., 2008.)
The environment’s nutrient history can also affect single-cell variation in gene expression.
Biggar and Crabtree showed that depending on whether previously grown in glucose
or raffinose, populations can exhibit single-cell variation in GAL pathway levels when
switched to an environment containing a mixture of glucose and galactose (Biggar &
Crabtree, 2001). Other lines of theoretical and experimental work showed that single-
cell variation can be a form of ‘‘bet-hedging’’ that leads to increased fitness under certain
conditions (Jablonka et al., 1995; Veening, Smits & Kuipers, 2008).

Taken together, the intricate molecular machinery underlying nutrient signaling, the
effects of nutrient memory, and single-cell variability in response to fluctuations suggest
that microbes process information about their environment (Bowsher & Swain, 2014),
and take into account both the environment’s history and their internal cell state in
making a decision.

Changing discrete environments and inference-based adaptation
To ask how the environment’s history influences microbial decision-making, a number of
theoretical and experimental studies have used changing discrete environments (Jablonka
et al., 1995; Lambert & Kussell, 2014; Stockwell, Landry & Rifkin, 2015). A discrete envi-
ronment is shown in Fig. 1A (top), where there are two alternating nutrients. Although
natural environments are far more complex, discrete switches have been experimentally
useful for uncovering mechanisms of nutrient memory (Lambert & Kussell, 2014;
Stockwell, Landry & Rifkin, 2015). Also, in interacting with a host environment, microbes
may sense some fluctuations as effectively discrete. For example, en route from the
external environment to the gastrointestinal tract, microbes experience sharp shifts in
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Figure 1 Discrete changing environments and cellular adaptation to change as inference. (A) Exam-
ples of discrete changing environments (time in arbitrary units). Top plot indicates sharp fluctuations in
two nutrients. Remaining plots show changes thought to be experienced by microbes when interacting
with host gut (unrelated to top nutrient panel), which include changes in temperature (25 ◦C in external
environment, 27 ◦C on human skin, 37 ◦C in gut), pH and oxygen levels (see main text). (B) Schematic of
interaction between cell and changing environment in our framework. Cells sense dynamic environment
over time, make inferences about the future state of the environment and use these predictions to take ac-
tion (e.g., upregulate genes required to metabolize a nutrient).

temperature (Fig. 1A). Once in the gastrointestinal tract, microbes can face distinct pH
regimes, ranging from acidic environment of the stomach (pH 1.5–5) to the intestinal
duodendum (pH 5–7), jejunum (pH 7–9) and ileum (pH 7–8) to the colon (pH 5–7)
(Walter & Ley, 2011)—these fluctuations are shown schematically in Fig. 1A. The gut
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lumen also contains an oxygen gradient (Albenberg et al., 2014), and experimentally
induced oxygenation or oxygenation as part of medical procedures (such as ileostomies)
result in sharp shifts in oxygen levels that reversibly alter microbiota composition
(Hartman et al., 2009; Albenberg et al., 2014). Thus, both discrete and continuous features
contribute to the gut environment, and discrete environments are a useful approximation
for studying the response to environmental change.

In early theoretical work on changing environments (Levins, 1968), Richard Levins
argued that the statistical relations between signals in the fluctuating environment are
central to adaptation. While distinct cell populations or strains may have different
costs associated with each environmental state—e.g., distinct yeast strains exhibit
different ‘‘preparation times’’ when switched from a glucose to a galactose environment
(Wang et al., 2015)—the statistical properties of the environment remain informative for
adaptation regardless of these costs.

Here, we develop a computational framework for characterizing the statistical structure
of changing discrete environments and the adaptive strategies that support optimal
growth in these environments. We focus on environments that are characterized by a
blend of randomness and order, of the sort one would expect in the gut or other rich
microbial ecosystems. We propose that adaptation to changing environments can be
framed as inference under uncertainty (Jaynes, 2003). We begin with highly simplified
formulation of growth in changing environments, but progressively build up to an
inference-based adaptation strategy that is: (1) suited for growth in complex multi-
nutrient environments, and (2) can be implemented in principle using a simple cellular
circuit. Although we illustrate our results in terms of glucose-galactose adaptation in
yeast, our framework applies broadly to microbial adaptation in other types of fluctuating
environments.

MATERIALS & METHODS
Growth rate measurements
Growth rates for 61 yeast strains were measured as described inWang et al. (2015). Briefly,
OD600 growth measurements were log-transformed, fit by splines and the region with
maximal derivative in the spline fit (‘‘exponential phase’’) was used to calculate the
growth rate (defined as doublings per hour). Each strain was measured in duplicate and
the average growth rate was used in Fig. S1.

Optimal policies in Markov environments with two nutrients
In Fig. 2, the ratio of the expected growth rate obtained by following a posterior predictive
policy (where the most probable nutrient under the posterior is chosen in the next step)
to expected growth rate using a glucose-only policy is shown. Below, we describe in detail
how this ratio was calculated.

To compare the growth rate differences between a glucose-only policy and the pos-
terior predictive policy in two-nutrient Markov environments, we assumed an idealized
case where the transition probabilities θGlu→Glu and θGal→Glu are known. The ‘‘optimal’’
policy relative to an environment is one that maximizes the expected growth rate.
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Figure 2 Fitness benefit of exploiting the probabilistic structure of Markov nutrient environments. A(i)–(vi) Discrete Markov nutrient environ-
ments, characterized by two parameters: the transition probability from a glucose state back to glucose state (θGlu→Glu) and from galactose state to
glucose state (θGal→Glu). Environment assumed to switch from fixed levels of glucose to galactose, visualized as rectangles (collapsing the y-axis from
nutrient environment such as one shown in Fig. 1A where glucose environmental state is shown in green, galactose state in blue). B(i)–(iii) Com-
parison of expected growth rates using the posterior predictive compared with the glucose-only strategy. Heat maps show fold-change in expected
growth using posterior predictive strategy relative to glucose-only expected growth rate, as a function of the transition probabilities (θGlu→Glu and
θGal→Glu) that parametrize the environment (see ‘Materials & Methods’ for detailed calculation). From (i) to (ii), increasing galactose growth rate
(µGal) with fixed glucose growth rate (µGlu).

The expected growth rate is dependent on the environment’s transition probabilities, the
growth rates afforded by each of the nutrients, as well as the cost of being ‘‘mismatched’’
to the environment (i.e., being tuned to a nutrient that isn’t present in the environment.)

In our Markov nutrient environment, there are two environment states (glucose or
galactose) and two possible actions for the cell population, each associated with a different
growth rate. Notation for these states and parameters is as follows:

• Environment states: the state of the environment at time t is represented by the
random variable Ct , which takes on one of two values, c1=Glu,c2=Gal.
• Transition probabilities: θGlu→Glu, θGal→Glu.
• Actions: tuning to glucose (α1=Glu) or tuning to galactose (α2=Gal).
• Growth rates associated with each action and environment state:
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– When tuned to glucose in glucose environment: V11 (identical to growth rate on
glucose, µGlu, from main figures)

– When tuned to glucose in galactose environment: V12

– When tuned to galactose in galactose environment: V22 (identical to growth rate on
galactose, µGal, from main figures)

– When tuned to galactose in glucose environment: V21.

A policy π is a mapping from an environment’s state to an action. We can now write
down the conditional growth rate associated with a particular policy, R(π |Ct−1), which
is the growth rate given the previous environment state Ct−1. Let π1 and π2 correspond
to policies that constitutively tune to glucose or galactose, respectively. The conditional
growth rates for these policies are:

R(π1|Ct−1)=V11P(Ct = c1|Ct−1)+V12P(Ct = c2|Ct−1)

R(π2|Ct−1)=V22P(Ct = c2|Ct−1)+V21P(Ct = c2|Ct−1).

For simplicity, we assume that the growth rate is zero when the internal state of the cells
is mismatched to the environment, i.e., V12=V21= 0. The conditional growth rates then
simplify to:

R(π1|Ct−1)=V11P(Ct = c1|Ct−1)

R(π2|Ct−1)=V22P(Ct = c2|Ct−1).

To get the expected growth rates, we sum over the possible states of the environment at
time t−1, yielding:

R(π1)=V11
[
θGlu→Glu+θGal→Glu

]
R(π2)=V22

[
(1−θGlu→Glu)+ (1−θGal→Glu)

]
The policy π1 is optimal when R(π1)

R(π2)
> 1.

Unlike the glucose-only or galactose-only policy, the posterior predictive policy
chooses the next action based on the transition probabilities θGlu→Glu and θGal→Glu. This
policy, denoted π3, chooses the most probable nutrient as a function of the environment’s
previous state Ct−1:

π3(Ct−1)=



{
α1 if θGlu→Glu> 0.5
α2 otherwise

if Ct−1= c1,{
α1 if θGlu→Glu> 0.5
α2 otherwise

if Ct−1= c2.

We can now write the expected growth rate for the posterior predictive policy by
analyzing each of the cases involving the transition probabilities θGlu→Glu and θGal→Glu:
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Figure 3 Signature of adaptive behavior resulting from using the posterior predictive inference strat-
egy. (A) Dynamic Bayesian model for meta-changing nutrient environments in graphical model notation
(Jordan, 2004): grey nodes represent observed variables, white nodes represent hidden variables. Nutrient
value at time t , Ct , depends on the nutrient value at time t −1, Ct−1, and on the switch state St . See Fig. S2
for detailed graphical model. (B) Posterior predictive probability, obtained by particle filtering, of glucose
using the full model (red), and using a Markov model with ‘‘flat’’ structure and no hidden states (dotted
black line). In the first transition from the periodic to constant glucose environment, the posterior predic-
tive probability in the full model updates more slowly compared to the second transition from periodic to
constant environment.

R(α3)=



V11θGlu→Glu+V11θGal→Glu,

if θGlu→Glu,θGal→Glu≥ 0.5
V11θGlu→Glu+V22(1−θGal→Glu),

if θGlu→Glu≥ 0.5 and θGal→Glu< 0.5
V22(1−θGlu→Glu)+V11θGal→Glu,

if θGlu→Glu< 0.5 and θGal→Glu≥ 0.5
V22(1−θGlu→Glu)+V22(1−θGal→Glu),

if θGlu→Glu,θGlu→Glu< 0.5.

The ratio R(π3)
R(π1)

is shown in Fig. 2 as a function of θGlu→Glu and θGal→Glu for different
values of each nutrient’s growth rate (V11 and V22).

Bayesian model for meta-changing nutrient environments
Here we describe in detail the dynamic Bayesian model used to adapt to meta-changing
environments (such as the one shown in Fig. 3). This model is in the family of dynamic
probabilistic models, also called ‘‘switching state space models,’’ that have been widely
used in artificial intelligence, robotics and machine learning (Ghahramani & Hinton,
1998;Murphy, 2002). In our model, there are K -many hidden switch states that are
used to produce one of J -many ‘‘outputs.’’ The outputs are the different nutrients and
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Figure 4 Fitness of growth policies in meta-changing environments. (A) Meta-changing environment
with two hidden states: a periodic environment and a constant environment. The hidden state transitions
are parameterized by the probability of transitioning from the periodic environment to itself, p1, and from
the constant to the periodic environment, p2. (B) Growth rates obtained by growth using different poli-
cies in meta-changing environments (mean growth rates from 20 simulations plotted with bootstrap con-
fidence intervals as shaded regions). Four environments shown, each parameterized by different settings
of p1,p2 (where µGlu is twice µGal). Posterior predictive policy generally outperforms other policies. Mean
growth rates from 20 simulations plotted with bootstrap confidence intervals (shaded regions).

the switch states correspond to stretches of the environment such as the ‘‘periodic’’ or
‘‘constant’’ regions shown in Fig. 4A. Each switch state represents a transition matrix that
is used to generate nutrient fluctuations. The nutrient produced at time t , Ct , depends
on the value of the switch state St and the previous nutrient Ct−1. The next switch state
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St+1 is generated conditioned on St based on a separate set of switch state transition
probability, then Ct+1 is generated conditioned on St+1 so on.

The transition probabilities associated with each switch state, as well as the probabilities
of transitioning between switch states, all have to be learned from the environment. We
therefore place a prior on these transition probabilities.

The full graphical model including hyperparameters is shown in Fig. S2 using plate
notation (Jordan, 2004). Formally, a switch state takes on one of 1,...,K values. The initial
switch state S1 is drawn from a probability distribution on the initial switch state values,
πs1 . Since πs1 is unknown, we place a prior on it using the Dirichlet distribution, i.e.,:

πs1 ∼Dirichlet(αs1)

S1|πs1 ∼Multinomial(πs1,1)

which means P(S1 = i|πs1) = π
(i)
s1 , where π

(i)
s1 denotes the ith entry in πs1 . For clarity,

we will sometimes omit the explicit value assignment for a random variable, and write
P(St = i|πs1) as simply P(S1|πs1). The switch states at later time points are generated as
follows: each switch state i ∈ {1,...,K } has an associated probability vector πi, whose
jth entry π (j)

i determines the probability of transitioning from switch state i to j. The
probability of the switch state at time step t > 1 therefore depends on the previous switch
state’s value St−1 and the switch state transition probabilities:

πi∼Dirichlet(αs)

St |St−1= i∼Multinomial(πi,1).

Similarly, each nutrient state can take one value i∈ {1,...,J }, and the initial nutrient state
C0 is drawn from a probability distribution, πc0 , which is in turn drawn from a Dirichlet
prior distribution:

πc0 ∼Dirichlet(αc0)

C0|πc0 ∼Multinomial(πc0,1).

The probability of a nutrient output at time t > 0 depends on the previous nutrient
Ct−1 and on the switch state at time t . The switch state value indexes which transition
probability distribution to use for the outputs, and as before, the transition probabilities
are drawn from a Dirichlet prior:

π ′i,j ∼Dirichlet(αc)

Ct |Ct−1= i,St = j ∼Multinomial(π ′i,j,1).

The posterior predictive distribution, P(Ct+k |C0:t ), is the main quantity of interest
(we assume k = 1 as in all of our simulations). This distribution can be calculated
recursively in dynamic probabilistic models, a property that we will use in a later section
to derive a real-time estimation procedure for this distribution using particle filtering.
(For an accessible introduction to recursive estimation of Bayesian posteriors and to
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particle filtering, see Ch. 1 inMurphy (2002), Ch. 1-3 in Särkkä (2013) or Cappé, Godsill &
Moulines (2007)). We derive the posterior predictive distribution in steps. First, consider
the posterior distribution over the switch state at time t given the environment history up
until and including time t , P(St |C0:t ), called the filtering posterior distribution, which is
obtained by marginalizing out the switch state St−1:

P(St |C0:t )∝ P(Ct |St )
∑
St−1

P(St |St−1)P(St−1|C0:t−1).

Note that the third term is the filtering posterior over the switch state at time t −1, which
can be rewritten as we did above in terms of the filtering posterior at t − 2, and so on—
this shows that the posterior can be computed recursively. The base case of the recursion
is given by our prior distributions over the initial nutrient state C0 and the initial switch
state S1 (as shown in Fig. S2).

The posterior predictive distribution P(Ct+1|C0:t ) can then be written as a product that
uses the filtering posterior, marginalizing out the hidden switch states:

P(Ct+1|C0:t )∝
∑
St

∑
St+1

P(Ct+1|Ct ,St+1)P(St+1|St )P(St |C0:t−1).

The distributions that the filtering posterior decomposes to depend on parameters
that are unobserved, such as the transition probabilities. Since Dirichlet-Multinomial
distributions are conjugate (Gelman et al., 1995), we can analytically integrate out these
parameters. For example, the transition probabilities π for the switch states can be
integrated out:

P(St+1|St = i)=
∫

P(St+1|St = i,πi)P(πi|αs)dπi.

Similarly, the probability of observing a nutrient given the previous nutrient and the
switch state, P(Ct+1|Ct ,St+1), can be computed while integrating out the nutrient
transition probabilities π ′i,j :

P(Ct+1|Ct = j,St+1= i)=∫
P(Ct+1|Ct = j, St+1= i,π ′i,j)P(π

′

i,j |αc)dπ
′

i,j .

We discuss in detail how to estimate these distributions from observations in the section
on particle filtering.

Values of hyperparameters: In all analyses, we set hyperparameters αs1,αc0,αc to be
vectors consisting of all ones. The hyperparameter on switch state transitions αs was set
such that self-transitions get the hyperparameter value 2, i.e., for the ith switch state,
α(i)s = 2, and all other entries in αs are set to 1. This encodes a weakly ‘‘sticky’’ prior that
slightly favors self-transitions for hidden switch states.

Real-time inference using particle filtering
We estimate the posterior predictive distribution above in real-time using particle filtering
(Cappé, Godsill & Moulines, 2007) as outlined in Algorithm S1. Particle filtering for our
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model is implemented in the particlefever library (available on Github.) We used 200
particles for all simulations with particle states initialized from the prior.

In particle filtering, a distribution of hidden state values (in our model, the hidden
switch states) is represented using a set of particles. Each particle corresponds to a
configuration of the hidden states (configurations are typically assigned from the prior
distribution at time t = 0). The particles are assigned weights that are initialized to be
uniform. Starting with time t , the particle filtering algorithm works by first predicting
hidden state values particles t +1. When a data point at time t +1 is observed, the weight
of each particle is updated to be proportional to the likelihood of the new data point
given the particle’s hidden state configuration. This process is repeated as data points are
observed. To prevent particle degeneracy (a case where particles get weights that are too
low), a resampling step is used where particles are sampled in proportion to their weights
and the weights are reset to be uniform.

We now turn to the representation of our state space that is encoded in each particle.
As discussed above, because of the conjugacy of Dirichlet-Multinomial distributions
(Gelman et al., 1995), we can analytically integrate out the transition probabilities in our
model. This means that these transition probabilities don’t have to be represented in
our particles. Instead, the sufficient statistics’ for our model are simply: (1) a matrix of
counts S where S(i,j) is the number of times hidden switch state i transitioned to hidden
state j in the particle’s trajectory, and (2) a three-dimensional array of counts C where
C(i,j,k) is the number of times nutrient i transitioned to nutrient j under switch state k.
The predict/update cycles for a particle p= {st ,S,C}, where s is the particle’s hidden state
at time t , are:

Prediction step: For each particle p we draw a new switch state for t + 1, st+1 ∼
P(St+1|St = st ). By conjugacy, the switch state transition probabilities πst can be
integrated out, yielding the posterior predictive distribution for a Dirichlet-Multinomial:

P(St+1= st+1|St = st )∝
αs+S(st ,st+1)∑
k(αs+S(st ,k))

which can be sampled from.
Updating step:When a nutrient ct+1 is observed, we update the weight w of our particle

p={st+1,S,C} in proportion to P(Ct+1|Ct ,St+1):

w ∝ P(Ct+1= ct+1|Ct = ct ,St+1= st+1).

Integrating out the nutrient transition probabilities π ′ct ,ct+1 , this also gives the Dirichlet-
Multinomial posterior predictive distribution:

w ∝
αc+C(ct ,ct+1,st+1)∑
k(αc+C(ct ,k,st+1))

.

See Algorithm S1 for remaining details.
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Fitness simulations
We simulated growth with different policies using a simple model of exponential
growth. Cells were assumed to grow exponentially with a growth rate determined by
the environment’s nutrient state. The initial population size and the time duration of
each environment simulated are as described in figure legends. To determine growth
rates empirically, we fitted splines to the log of the population sizes across the time and
computed the first derivative. All code for fitness simulations is available in the paper’s
Github repository.

Molecular implementation of nutrient transition counter
The nutrient transition counter model was drawn in CellDesigner (version 4.4) (Funa-
hashi et al., 2008), serialized as an SBML file, and simulated in Python using
libRoadRunner. The SBML file for the model is available at 10.6084/m9.figshare.3493994.
A detailed report of the chemical reactions and rate parameters was generated by SBML2

(Drager et al., 2009) and is available at 10.6084/m9.figshare.3492185.

RESULTS
Growth advantage of using the environment’s probabilistic structure
We first asked whether an adaptive strategy, which exploits the probabilistic structure
of the environment, would pay off in terms of growth compared with a non-adaptive
strategy. We considered a class ofMarkov nutrient environments that fluctuate between
two nutrients, glucose and galactose, where nutrient changes follow a Markov model.
The probabilistic structure of these environments is determined by two parameters: the
probability of transitioning from glucose to glucose (θGlu→Glu) and the probability of
transitioning from galactose to glucose (θGal→Glu), as shown in Fig. 1A. (Equivalently, the
model can be parameterized by θGlu→Gal and θGal→Glu, since θGlu→Gal = 1− θGlu→Glu.)
Intuitively, the higher θGlu→Glu and the lower θGal→Glu, the more likely we are to
encounter glucose in the environment. Different settings of the transition probabilities
can produce qualitatively different environments (Fig. 2A). We also assume that one
nutrient (in this case, glucose) confers a higher growth rate than alternative nutrients,
which is typically the case.

In our framework, the behavior of a cell population is determined by a policy : a map-
ping from the environment’s past state to a future action. We compared the performance
of two policies in Markov environments: a posterior predictive policy, in which cells tune
to the most probable nutrient (based on θGlu→Glu and θGal→Glu), and a non-adaptive
strategy in which cells are constitutively tuned to the preferred nutrient, glucose. The
quantity of interest in the posterior predictive policy is the posterior predictive distri-
bution, which is the probability of a nutrient at the next time step given the previously
observed nutrients: P(Ct+1|C0:t ), where Ct+1 denotes the nutrient at time t +1 and C0:t

denotes the environment’s nutrient history up until t . The posterior predictive policy
chooses the nutrient that maximizes this probability (see ‘Materials & Methods’ for
details).
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To compare the fitness difference between these policies, we simulated population
growth with each policy using a highly simplified growth model, similar to one used
in Jablonka et al. (1995). In this model, we assume that cells respond to changes in the
environment with a delay, or ‘‘lag.’’ Cells tune to a nutrient at time t and incur a change
in growth rate as a consequence of this decision at a later time t +k, where k is the lag pa-
rameter (we assume here that k = 1). For growth kinetics, we assume that: (1) cells grow
exponentially when their nutrient state matches the environment’s state, (2) there is no
switching cost for cells between nutrient states, and (3) when cells are ‘‘mismatched’’ to
their environment—i.e., tuned to a nutrient that is not present—their growth rate is zero
(this assumption is supported by the observation that cells lacking Gal4, a transcription
factor required to activate the GAL pathway, cannot grow in galactose alone (Escalante-
Chong et al., 2015)). Altogether, our growth assumptions represent extreme conditions,
but they serve as a useful starting point for seeing when an adaptive strategy is beneficial
to population growth.

Given these growth assumptions, we plotted for each Markov environment the ratio
of expected growth rate using the posterior predictive policy to the expected growth
rate under the glucose-only policy in Fig. 2B (the detailed calculation of these ratios is
described in ‘Materials & Methods’). To constrain our choice of growth rates, we analyzed
growth measurements of 61 yeast strains cultured with different sugars as primary carbon
sources (see ‘Materials & Methods’ for details). As expected, median growth rate in
glucose was higher than in other sugars (Fig. S1A). Across strains, growth rate in glucose
was on average∼1.5 fold higher than in galactose and in some strains over 3-fold higher
(Fig. S1B).

We find that in environments where glucose yields a significantly larger (∼2–4 fold)
growth rate than galactose, the posterior predictive policy outperforms the glucose-
only policy only in specific regimes of the space of possible Markov environments (red
regions in Fig. 2B). For a wide range of environments, the non-adaptive policy is equal
to or better than the adaptive policy. As expected, when the difference in growth rate
between glucose and galactose gets smaller (Fig. 2B, left to right), the payoff from using
the posterior predictive policy is greater. However, as our analysis of growth rates in yeast
strains showed, glucose typically confers a substantially higher growth rate than galactose.

This idealized calculation shows the importance of the probabilistic structure of the
environment in assessing where an adaptive strategy would pay off. This suggests that in
order to highlight the advantage of adaptive strategies, specific types of environmental
fluctuations will have to be used.

Adapting to meta-changing environments with real-time inference
Our analysis of Markov nutrient environments above doesn’t capture several key aspects
of adaptive growth in changing environments. First, our environment’s changes had a
simple ‘‘flat’’ structure describable by only two parameters, whereas natural environment
may be generated by far more complex underlying mechanisms. Second, our comparison
of the adaptive and glucose-only strategies assumed that the transition probabilities
governing the environment, θGlu→Glu and θGal→Glu, are known and can be used by
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cells. In reality, if this information can be used by cells, it has to be learned from the
environment and cannot be assumed as given. Third, such information has to be learned
in real-time as cells must respond to the environment while it is changing. We now
address each of these aspects in turn.

Changes in complex environments may be governed by dynamic processes that are
unobservable to cells. Some environments may oscillate between noisy regimes, where the
nutrient switches are less predictable, and stable regimes where the nutrient switches are
either rare or more predictable. Such environments can be thought of as ‘‘meta-changing’’
in the sense that there’s a change in the way they fluctuate: the probability of being a
specific state of the environment (e.g., where a nutrient is available) changes through
time, depending on an unobserved condition, such as whether we’re in a noisy or stable
regime. The transition from noisy to stable regimes might itself be governed by another
time-varying mechanism. As an intuitive example of meta-changing environments,
consider the eating routine of animals like us. During feeding, bursts of nutrients that
are otherwise scarce may become available in the gut. The fluctuations in nutrient levels
within a feeding period will depend on what and how much is being consumed. The
separation between meals is also subject to randomness, but can still be predictable,
depending on how consistent we are in our eating schedule. This high-level structure
can be exploited by adaptive systems to anticipate future changes and to separate noisy
fluctuations in nutrients from signals of feeding periods.

To understand the adaptive strategies that may be used for effective growth in such
environments, we developed a dynamic Bayesian model of meta-changing environments.
In our model, we assume a fixed number of hidden ‘‘switch states’’ that correspond to
regimes in the environment, and these states are used to generate the fluctuations in
nutrients (Fig. 3A—see ‘Materials & Methods’ for full model description.) The switch
states and their dynamics are not observable, and therefore have to be learned from the
environment. To do this, our model has a prior distribution over the dynamics of the
unobservable switch states and the nutrient transitions in the environment (‘Materials
& Methods’). Through experience with the environment, these priors are updated using
Bayesian inference to learn the dynamics that drive nutrient fluctuations. Formally, the
goal is to compute the posterior predictive distribution over nutrients, P(Ct+1|C0:t ),
which depends on the nutrient history C0:t and on the hidden switch state St+1:

P(Ct+1|C0:t )=
∑
St+1

P(Ct+1|Ct ,St+1= i)P(St+1|C0:t ). (1)

For an inference-based strategy to be biologically plausible, it has to be carried out
in real-time since cells respond to the environment while it is changing. To compute
the posterior predictive distribution (Eq. (1)) in real-time, we use a particle filtering
algorithm (Cappé, Godsill & Moulines, 2007) (described in detail in Algorithm S1 and
‘Materials & Methods’). Rather than naively ‘‘memorizing’’ the environment’s history,
in particle filtering a representation of the posterior distribution is continuously updated
as the environment changes (‘Materials & Methods’). The uncertainty of the distribution
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is represented by a set of ‘‘particles’’ (which can be thought of as samples from a distribu-
tion). Each particle corresponds to a configuration of the hidden states of our system. For
our model, each particle p is a set {s,S,C}, where s corresponds to the value of the hidden
switch state, S is a transition matrix that tracks the frequencies of transitions between
switch states and C is a transition matrix that tracks the frequency of transitions between
nutrients (‘Materials & Methods’).

The particle filtering algorithm can be understood by analogy to evolution through
mutation and selection. Initially, all particles are weighted equally. Before the environ-
ment changes, particles are probabilistically assigned to new configuration based on our
model of the environment (‘‘mutation’’ step). When a new state of the environment is
observed, the particles are re-weighted by their fit to this observation and probabilistically
resampled using the updated weights (‘‘selection’’ step). This process repeats as the
environment continues to change. Particles that represent more probable states of the
environment will get ‘‘selected’’ for through time, while the ‘‘mutation’’ and resampling
steps ensure that diversity is brought into the particle population. As each particle
p goes through this process, the hidden state and nutrient state configurations in its
trajectory are counted by updating the transition matrices S and C. Since the particles are
propagated through this process in parallel, particle filtering takes what naively would
be a serial computation (requiring the complete nutrient history) and converts it to a
parallel one that can be performed in real-time. This property may make particle filtering
amenable to implementation by molecular circuits, as discussed later.

Signatures of Bayesian adaptation in meta-changing environments
Our model makes a number of predictions about the dynamics of adaptation by systems
that represent hidden environmental states. In Fig. 3B, a meta-changing environment is
shown that switches between two regimes: one with periodic switches between glucose
and galactose, and another where glucose is constant. The posterior predictive probability
of glucose in the next time step, P(Ct+1|Ct ), as it gets updated by real-time inference, is
plotted along the environment (Fig. 3, top).

The change in the posterior predictive distribution has a number of characteristic
features. Starting with a uniform probability over the nutrients, the posterior predictive
distribution slowly changes to ‘‘learn’’ the first periodic regime of the environment
(Fig. 3B, red line). When the environment shifts to the constant regime (at t = 20,
Fig. 3B), the posterior distribution also updates slowly to reflect this. However, when
the environment shifts again to the periodic regime (at t = 40), the posterior predictive
distribution updates faster to reflect the periodicity. Similarly, when the environment
shifts to the constant region for the second time (at t = 60), the posterior predictive distri-
bution changes even more quickly, since the hidden switch state where the environment is
periodic has been seen before. More generally, our model predicts that the more familiar
stretches of the environment will be adapted to more quickly. By contrast, a Markov
model with a ‘‘flat’’ structure that only tracks transition probabilities between glucose and
galactose does not show this behavior (Fig. 3B, dotted line). This is one of several subtle

Katz and Springer (2016), PeerJ, DOI 10.7717/peerj.2716 16/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.2716


predictions about the dynamics of adaptation one would expect from an inference-based
strategy that uses a representation of hidden environmental states.

Posterior predictive adaptation confers growth advantage in
meta-changing environments
We next asked how beneficial the adaptive patterns that result from representing hidden
environmental states (of the sort shown in Fig. 3) would be for growth. We compared
the inference-based growth policy to other policies in meta-changing environments.
We considered meta-changing environments that fluctuate between two hidden states:
one where there is periodic switching between glucose and galactose, and another where
glucose is constant in the environment (Fig. 4A). Each hidden state corresponds to a
Markov environment (parameterized by a pair of transition probabilities, as described
earlier). The switching dynamics between the hidden states are controlled by two
transition probabilities, which we labelled p1 and p2 in Fig. 4A. We compared the growth
rates obtained by using the posterior predictive policy to that obtained by plastic, random
and glucose-only policies. In the ‘‘plastic’’ policy (described in Jablonka et al., 1995), cells
tune to the environmental condition that they experienced last, whereas in the random
policy the decision is made uniformly at random. We found that across different settings
of p1 and p2, the posterior predictive policy generally results in faster (in some regimes,
nearly two-fold higher) growth rates, which are often less variable, compared with other
policies (Fig. 4B).

A bet-hedging growth policy based on real-time inference
While all the policies we have considered so far act at the population-level, bet-hedging
has been proposed as an adaptive strategy in fluctuating environments (Veening, Smits
& Kuipers, 2008). With bet-hedging, different fractions of the population are tuned to
different environment conditions, and these cellular states can be inherited through
several generations through epigenetic mechanisms (Veening, Smits & Kuipers, 2008).
Previously, a bet-hedging policy was shown in simulation to give increased fitness when
the bet-hedging proportions matched the frequencies of the environment’s fluctuations
(Jablonka et al., 1995) (in that study, bet-hedging was referred to as ‘‘carry-over’’).
However, as we discussed above, there is no way for a population of cells to know these
probabilities in advance. Our real-time inference scheme lends itself to a bet-hedging
policy where the fraction of cells devoted to an environmental state is determined by the
posterior predictive probability of this state, which is learned in real-time. Using a growth
fitness simulation in the same meta-changing environments, we found that a bet-hedging
posterior predictive policy performs similarly to its population-level counterpart and
outperforms a random bet-hedging policy (Fig. S2). Real-time probabilistic inference
therefore gives us a principled approach for adaptively setting bet-hedging proportions.

Adapting to multi-nutrient meta-changing environments
In natural nutrient environments, unlike in most laboratory conditions, multiple
nutrients that can be metabolized by cells may be available. We next asked how distinct
growth strategies would do in such multi-nutrient environments.
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We analyzed Markov environments with three nutrients—glucose, galactose and
maltose—that many yeast strains can grow on as primary carbon sources (as shown in
Fig. S1). Three qualitatively distinct environments generated by varying the transition
probabilities that control these environments are shown in Fig. 5A. The first environment
has ‘‘persistent’’ stretches of each of the nutrients, the second is a mixture of periodic
glucose-galactose switches and persistent maltose states, and the third is one where the
presence of glucose signals an upcoming stretch of galactose, while galactose signals an
upcoming persistent maltose stretch (Fig. 5). Even with only three nutrients, qualitatively
rich environments such as these can be constructed.

For fitness comparisons of growth policies, we considered meta-changing environ-
ments that switch between the second and third multi-nutrient environments shown in
Fig. 5A. These switches, as in previous meta-changing environments, are governed by two
transition probabilities, p1 and p2 (Fig. 5B, top). It’s straightforward to apply the posterior
predictive policy to multi-nutrient environments by running real-time inference using
a version of our Bayesian model that assumes three rather than two nutrient states. We
compared the growth performance of this posterior predictive policy to that of the plastic,
random and glucose-only policies for different settings of p1 and p2 (Fig. 5B). In all cases,
the posterior predictive policy results in growth rates that are larger than those produced
by other policies.

Molecular circuit design for inference-based adaptation
Our results suggest that cell populations that use a probabilistic inference-based growth
strategy can achieve greater fitness, but it’s not clear how such a strategy can be realized in
molecular circuits. We next asked whether the particle filtering algorithm can inform the
design of molecular circuits that implement the posterior predictive strategy.

In order to implement the posterior predictive strategy, we need a way to encode the
inference algorithm’s representation of the environment in molecules. Our particle filter-
ing algorithm uses a minimal representation of (Markovian) environments that a circuit
that performs inference in real-time would have to track. This representation consists
of the hidden switch state s, and a pair of transition matrices S and C that track hidden
state and nutrient state transitions, respectively (as described above and in ‘Materials &
Methods’). When the environment changes, these representations are updated. At the
molecular level, binary state such as the hidden switch state s can be represented easily
using phosphorylation, protein dimerization or other known molecular switches. The
more challenging part of implementing inference is keeping track of the environment’s
changes. As the environment changes, our inference algorithm tracks the number of times
the environment transitioned from one nutrient state to another, effectively keeping
a counter. Recall that the Markov environments we analyzed can be parameterized by
the frequency of transitions from glucose to galactose, and from galactose to glucose.
Therefore, our circuit would have to distinguish glucose-to-galactose from galactose-to-
glucose switches and ‘‘count’’ these switches as the environment fluctuates.

To build this circuit, we need three types of components: (1) sensors that detect the
presence of nutrients, (2) activators that act downstream of the sensors to turn on the
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Figure 5 Fitness of growth policies in multi-nutrient meta-changing environments. (A, B) Three
multi-nutrient Markov environments where glucose, galactose and maltose fluctuate. Transition
probability matrices shown as heat maps (A) along with the environments they produce starting with
glucose as initial state (B). (C) A meta-changing multi-nutrient environment that switches between the
second and third Markov environments shown in (B). (D) Growth rates obtained using different policies
in meta-changing environment shown in top, shown for four different settings of p1,p2. Growth rate
settings used: µGlu was twice µGal and µGal = µMal. Mean growth rates from 20 simulations plotted with
bootstrap confidence intervals (shaded regions).
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relevant metabolic pathway, and (3) ‘‘memory molecules’’ that record each relevant
transition (glucose-to-galactose or galactose-to-glucose). Two of these component types,
the sensors and the activators, are already part of the basal nutrient signaling pathway.
What’s left is to wire these components to the memory molecules so that the circuit can
count nutrient transitions.

We constructed such a nutrient transition counter for an environment that has
glucose and galactose. The eight-component circuit is shown in Fig. 6A and its reaction
equations are listed in Table S1 (all parameters used in reactions are given in ‘Materials
& Methods’). The circuit has sensors that are activated by sugars, activators that are
produced downstream of the sensors, and proteins that count glucose-to-galactose and
galactose-to-glucose transitions (and act as ‘‘memory molecules’’). In the left branch of
the circuit, glucose catalytically activates a galactose sensor (Fig. 6A). When galactose
is present, the galactose sensor reversibly forms a galactose activator (Gal_Sensor+
Gal
Gal_Activator). Similarly, in the right branch of the circuit, galactose catalytically
activates a glucose sensor, which in the presence of glucose reversibly forms a glucose
activator (Glu_Sensor+Glu 
 Glu_Activator). The glucose activator triggers the
production of a glucose-to-galactose transition counting molecule, while the galactose
activator produces a galactose-to-glucose transition counting molecule. The transition
counting molecules are assumed to have a very slow degradation rate, and this rate
determines the stability of the counter’s ‘‘memory.’’

We simulated the behavior of this circuit in an environment that switches between
glucose and galactose (Fig. 6B, top). The glucose sensor is active during galactose pulses
and the galactose sensor is active during glucose pulses. When the environment first
switches from glucose to galactose (at t = 50, Fig. 6B), the galactose activator is formed
and triggers a spike in the glucose-to-galactose counter (Fig. 6B, bottom). When the
environment switches from galactose to glucose, the galactose-to-glucose counter spikes
(at t = 100). The counter molecules are highly stable, so their level forms the ‘‘memory’’
of these two transitions. When the environment switches from glucose to galactose for
the second time (at t = 150), the glucose-to-galactose counter spikes again to a level
roughly twice that of the galactose-to-glucose counter, while the galactose-to-glucose
counter is unaffected. After all nutrient switches, the circuit retains that 2 glucose-to-
galactose and 1 galactose-to-glucose transitions have been observed. This information can
be used downstream to implement an inference-based adaptive strategy, like the posterior
predictive strategy.

A key feature of this circuit architecture is that sensors associated with one nutrient
(e.g., glucose) get activated by other nutrients (such as galactose). This ‘‘crosstalk’’
between the two arms of the pathway enables the environmental change tracking that is
needed for inference. It may be argued that it’s inefficient for organisms to express a sen-
sor for a nutrient that isn’t present, but yeast cells in fact do so: for instance, cells grown
in galactose express glucose sensors and transporters, while cells grown in glucose also
express galactose transporters and internal galactose sensors. Our circuit design shows
that a relatively simple change in wiring among mostly existing components (such as a
nutrient sensor and activator), in addition to a memory molecule, is sufficient to make the
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Figure 6 Molecular circuit implementation of a nutrient transition counter. (A) Network of chemi-
cal reactions for implementing nutrient transition counter.∅ denotes null species in degradation reac-
tions. Reaction equations represented by the network are listed in Table S1. Split line arrows represent cat-
alytic reactions, straight lines with arrowheads on both sides represent reversible reactions. (B) Input doses
of glucose and galactose. (C, D) Simulation of circuit component concentrations that result from inputs
shown in (B). (Concentrations are in A.U.)
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transition counter. While a true digital counter is unbounded, this molecular counter’s
dynamic range and reliability is limited by the degradation rates and dynamic ranges
of the molecular components involved (such as the sensors and counting molecules
in Fig. 6A).

Whether such a circuit is likely to be used by an organism will depend on the type
of fluctuations in the organism’s environment and on the fitness advantage conferred
by tracking metabolites (relative to the cost of tracking). These tradeoffs are currently
unknown, but can be studied experimentally by engineering synthetic circuits such as
the one we have proposed into cells and analyzing their fitness in various environments.
It’s plausible that even if such circuits exist in nature, only a subset of the nutrients cells
consume may be tracked in this way.

Our circuit is a proof-of-concept design of the core machinery needed for real-time
inference in our probabilistic model, but a full implementation of inference would require
integration with the remaining basal glucose/galactose signaling network (as well as
careful analysis of the circuit’s robustness and precision).

DISCUSSION
Fluctuations in complex environments, such as the gut, can be driven by mechanisms that
cells cannot sense directly. The main contributions of this work have been to: (1) provide
a framework for characterizing the computational (or information-processing) problem
that cells face when living in such environments (conceived here as a form of probabilistic
inference), (2) suggest particle filtering as one class of algorithms that cells may use to
solve inference in real-time, and (3) propose a proof-of-concept design of a circuit that
implements part of this algorithm using familiar protein biochemistry. Together, this
gives an outline of a three-level analysis, following Marr’s framework (Marr, 1982), of
microbial growth in complex environments.

We found that a growth strategy based on inference, where hidden environmental
features are represented, can give cells a fitness advantage. An important future direction
would be to test if signatures of adaptation by inference (such as those in Fig. 3B) can be
observed experimentally in glucose-galactose switching with yeast (Stockwell, Landry &
Rifkin, 2015) or glucose-lactose switching with bacteria (Lambert & Kussell, 2014).

Although we assumed in our fitness simulations that the goal is to maximize population-
level fitness, other goals—like minimizing the probability of population extinction
(Lewontin & Cohen, 1969)—can be more relevant in some environments, especially for
small population sizes, and these should be investigated further. Another limitation
of our analysis is the assumption that environmental fluctuations follow a Markov
process; an assumption violated by many natural time-varying processes. However,
dynamic Bayesian models similar to the one presented here have been extended to
handle non-Markov environments (Yu, 2010). It will be fruitful to experiment with these
models and compare their assumptions to the statistical properties of natural microbial
environments.

Katz and Springer (2016), PeerJ, DOI 10.7717/peerj.2716 22/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.2716


Another future challenge is to link the continuous features of the environment (which
can be clearly sensed by microbes) to more abstract discrete structure like that of meta-
changing environments. Elegant work by Sivak and Thomson derived optimal enzyme
induction kinetics for the noisy statistics of an environment with continuously varying
nutrients (Sivak & Thomson, 2014). This suggests that in an ideal adaptive system, princi-
ples of optimal inference are at work at multiple layers—from the abstract computational
problem of anticipating the next nutrient to the quantitative decision of how much of the
relevant enzymes to induce. More work is needed to link abstract computations to these
lower mechanistic levels.

To represent the structure of meta-changing environments, our model posited a finite
number of hidden states that drive nutrient fluctuations. The number of hidden states was
fixed in advance, but nonparametric dynamic Bayesian models offer a principled alter-
native (Fox et al., 2011; Johnson & Willsky, 2013). In these models, the number of hidden
states is learned from observation. Recent work in computational linguistics (Borschinger
& Johnson, 2011) proposed a particle inference algorithm for a nonparametric dynamic
Bayesian model of word segmentation, a task that, like nutrient adaptation, has to be
performed in real-time. It would be interesting to investigate whether molecular kinetics
can implement such nonparametric Bayesian inference procedures.

While we have focused on glucose-galactose environments, our framework generally
applies to environments that change too quickly for mutation and natural selection to
take hold. This is distinct from cases where natural selection (e.g., through experimental
evolution, as inMitchell et al., 2009 and Tagkopoulos, Liu & Tavazoie, 2008) rewires
circuits genetically to better respond to the predictable structure of the environment.
It remains open how inference-based adaptive strategies that apply on short timescales
can be implemented at the molecular level, either in natural or engineered cellular
circuits. The molecular mechanisms needed to implement these strategies are likely to
be epigenetic, based in chromatin (Stockwell, Landry & Rifkin, 2015) or stable protein
inheritance (Jarosz et al., 2014).

We have proposed a design for one critical part of an adaptive inference circuit,
which can be supported by a variety of molecular mechanisms. Our circuit design can be
implemented using transcriptional, post-transcriptional or epigenetic chromatin-based
regulation. The choice of mechanism will determine the timescale and precision of the
adaptive response. More work is needed to understand the precision and reliability of
the circuit we proposed in the presence of gene expression variability and cell division.
A computational account of circuits that can track the state needed for probabilistic
inference may also apply to neuronal circuits.

Recent work argued compellingly for developing methods that ‘‘compile’’ abstract
computational problems, like probabilistic inference, to molecular descriptions that are
physically implementable (Napp & Adams, 2013). In this work, a scheme was proposed
for solving exact inference for probabilistic graphical models using chemical reaction
networks, with DNA strand displacement as the physical instantiation (Napp & Adams,
2013). This choice of substrate is implausible as a mechanism for cellular computation,
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however (and striving for exact as opposed to approximate inference may be too re-
strictive for many computational problems). In a different approach, an intracellular
kinetic scheme that implements a real-time probabilistic decision procedure for a simple
continuously changing environment was proposed (Kobayashi, 2010). An open challenge
is to extend these schemes to handle structured environments, such as the meta-changing
environments we have considered, and to define the molecular components would be
needed to build these circuits in vivo.

Real-time inference algorithms, such as particle filtering, have the potential to guide
the construction of synthetic cellular circuits that adapt to rich changing environments.
Since particle filtering algorithms rely on noise, these procedures point to areas where
biochemical noise (in gene expression or protein interactions) would not only be
tolerated, but would in fact be required for inference to work. These algorithmic features
may inform the design of synthetic circuits that implement probabilistic computation out
of noisy molecular parts.
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