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Abstract: Hollow Silicalite-1 and ZSM-5 zeolites with hierarchical porous shells have been
synthesized by using a dissolution-recrystallization method. The morphology, structure, and acidity
of these zeolites supported Pt catalysts were characterized by XRD, FT-IR, MAS-SSNMR, FE-SEM,
FE-TEM, N2-BET, XPS, NH3-TPD, and CO pulse chemisorption. Compared to the conventional
ZSM-5 supported Pt catalyst, the special structure in hollow ZSM-5 zeolite significantly promotes
the dispersion of metallic Pt and the synergistic effect between metal active sites and acid sites.
These boost the catalytic activity, selectivity of guaiacol hydrodeoxygenation toward cycloalkanes
and long-term stability over the Pt/hollow ZSM-5 catalyst combined with improved mass transfer
of products and reactants derived from the hierarchical hollow porous structure. Moreover, the
Pt/hollow ZSM-5 catalyst exhibits excellent low temperature catalytic activity to completely transform
guaiacol into cycloalkanes with the cyclohexane selectivity of more than 93% at 220 ◦C, suggesting
that hollow ZSM-5 zeolite is a promising support for upgrading of bio-oils.
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1. Introduction

Developing renewable and sustainable transportation liquid fuels has attracted significant
attention due to the gradual depletion of fossil resources and stringent environmental regulation [1,2].
Among the various sustainable energy sources, biomass is the only renewable organic carbon resource
in nature, which endows it with unique advantages in producing a variety of value-added chemicals
and fuels [3,4]. Bio-oils, from fast pyrolysis of biomass, are considered as the most promising alternative
energy. However, bio-oils contain many oxygenic compounds such as carboxylic acids, carbohydrates,
phenols, furans, sugars, aldehyde, ketones, and water [5,6]. Consequently, the high oxygen content
(35–50 wt%) leads to deteriorated properties such as poor heating value, high viscosity, corrosiveness,
low caloric value, low thermal and chemical stabilities, and immiscibility with conventional fossil
fuels [7,8]. As a result, bio-oils must be upgraded before they can be used as standard liquid
fuels. Catalytic hydrodeoxygenation (HDO) is generally considered as the most effective strategy for
upgrading bio-oils [9].

Various catalysts have been developed and used in the HDO of bio-oils to produce hydrocarbons.
In earlier studies, conventional hydrodesulfurization (HDS) catalysts such as supported NiMoS [10]
and CoMoS [11] catalysts were employed to remove oxygen from bio-oils and showed high
deoxygenation activity. However, these catalysts suffer from gradual deactivation during the HDO
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reaction due to the loss of sulfur, because the sulfur content in bio-oils is very low and the lost
sulfur will contaminate the resulting fuels [5]. Hence, non-sulfide catalysts have been developed and
investigated including noble metals [12–16], transition metal phosphides [9,17–19], carbides [20,21],
and nitrides [22,23] in order to replace sulfided catalysts and these catalysts exhibited excellent HDO
activity of bio-oils and deoxygenation selectivity for hydrocarbons. However, the rapid deactivation
because of coke formation during the HDO reaction hinders their extensive application [24,25].
It is clear that catalyst support plays a crucial role in HDO of bio-oils, Al2O3 [26,27], TiO2 [28–30],
ZrO2 [31,32], SiO2 [25,33,34], zeolite (e.g., ZSM-5, Beta, HY) [18,35–41], and activated carbon [42,43]
have been investigated in HDO of bio-oils, and the zeolite supported noble metal catalyst exhibited
better catalytic HDO performance. Unfortunately, the diffusion of reactants and products is usually
limited by the microporous structure of zeolite, which decreases the catalytic activity and stability of
catalyst. Fabricating intra-crystalline mesoporosity or macroporosity and/or decreasing the size of
zeolite crystals are effective methods to overcome the mass transfer limitation and to boost catalyst
stability [44–46]. Hunns et al. have investigated hierarchical mesoporous ZSM-5 supported Pd for
HDO of m-cresol and found that the hierarchical porous structure enhanced the dispersion of metallic
Pd, and significantly improved m-cresol conversion [39]. Wang et al. demonstrated that Pt supported
on mesoporous ZSM-5 exhibited better performance in dibenzofuran HDO reaction than Pt supported
on conventional microporous ZSM-5 [47]. These results indicate that the hierarchical porous structure
significantly promotes the catalyst activity and stability for bio-oils upgrading. However, it still is a
great challenge and highly desired to design and fabricate novel hierarchical catalysts with controllable
selectivity and stability.

In recent years, hollow zeolites with a cavity in core and hierarchical porous in shell have
attracted much attention due to their high surface area, thermostability, good diffusivity, and
excellent shape-selective catalytic capabilities [48–52]. Wu et al. synthesized hollow TS-1 zeolite
with mesoporous structure for cyclohexanone ammoximation to improve the activity and stability of
catalyst [51]. Zhou et al. demonstrated that bimetallic PtSn supported on hollow silica spheres had
excellent activity for acetic acid hydrogenation duo to more Pt active sites exposed on the surface
of hollow silica [50]. Wang et al. reported that Mo supported on hollow ZSM-5 catalyst exhibited
higher CH4 conversion and aromatic selectivity as well as longer lifetime compared with conventional
Mo/ZSM-5 catalyst in methane dehydroaromatization reaction [48]. Therefore, hollow structure
zeolites are expected to exhibit good performance in bio-oil upgrading. However, rare work has been
carried out.

Phenols are the primary oxygenates in bio-oils and phenolic oxygen is very difficult to be
removed [9,35]. Therefore, guaiacol, a typical lignin monomer containing both methoxy and phenolic
hydroxyl groups, is usually selected as a model compound to evaluate the HDO performance of
various catalysts. In this context, we investigate the selective HDO of guaiacol over the hollow MFI
structure zeolite supported Pt catalysts. Hollow Silicalite-1 and ZSM-5 zeolites are synthesized by
using a dissolution-recrystallization strategy. Additionally, Pt catalysts supported on various MFI
zeolites are prepared by the incipient wetness impregnation method. The role of introducing hollow
structure in MFI zeolite supports catalytic performance of Pt catalysts is mainly concerned.

2. Experimental Section

2.1. Catalyst Preparation

Synthesis of Silicalite-1 (S-1) zeolite: The parent S-1 zeolite was synthesized by conventional
hydrothermal synthesis method using a starting molar composition of 1 TEOS (tetraethyl orthosilicate):
0.3 TPAOH (tetrapropylammonium hydroxide): 39 H2O. In a typical run, 16.0 g of TEOS ( Aladdin,
99 %), 39.5 g of H2O, and 18.6 g of TPAOH ( innochem, 25 wt% in water) was mixed and stirred at
room temperature for 12 h to ensure complete TEOS hydrolysis. The gel was then transferred into a
100 mL Teflon-lined steel autoclave and heated at 170 ◦C for 72 h. After cooled to room temperature,
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the product was then recovered by centrifugation, washed with distilled water and dried at 110 ◦C
overnight. Finally, it was calcined at 550 ◦C in air for 6 h.

Synthesis of hollow silicalite-1 (hS-1) zeolite: The hS-1 zeolite was prepared by a dissolution
-recrystallization strategy using S-1 zeolite as the precursor [53,54]. Typically, 4 g of calcined S-1 zeolite
dispersed in 80 mL of 0.5 M TPAOH solution. The mixture was stirred for 5 min and then transferred
into a Teflon-lined autoclave, heating at 170 ◦C under static conditions for 24 h. The solution was
cooled down, recovered, washed with distilled water, dried at 110 ◦C overnight, and then calcined in
air at 550 ◦C for 6 h.

Synthesis of hollow ZSM-5 (hZSM-5) zeolite: The synthetic approach of hZSM-5 zeolite is similar
to that for hS-1 zeolite. 80 mL of TPAOH solution and 0.1261 g of aluminum nitrate nonahydrate
(Al(NO3)3·9H2O, ACROS, 99%) were mixed and stirred for 30 min, then 4 g of calcined S-1 added.
After an additional 5 min stirring, the mixture was treated at 170 ◦C in a Teflon-lined autoclave for
24 h. Finally, the hZSM-5 zeolite was recovered and calcined in the same procedure with hS-1 zeolite.

Preparation of supported Pt catalysts: Pt supported on the as-synthesized zeolite catalysts were
prepared by incipient wetness impregnation (IWI) method. Typically, 5 g of zeolite support was
impregnated with H2PtCl6·6H2O (Aladdin, 99%) aqueous solution containing a predetermined
quantity of Pt to achieve the final Pt loading of 1 wt%. The impregnated sample was then kept
overnight at room temperature and dried at 110 ◦C for 12 h. Finally, the sample was calcined at 450 ◦C
for 4 h. As a comparison, conventional ZSM-5 (cZSM-5) zeolite (Si/Al ratio of 80, Nankai University
Catalyst Co., Ltd., Tianjin, China) was also used as the support to prepare the Pt catalyst. The obtained
catalysts were denoted as Pt/S-1, Pt/hS-1, Pt/hZSM-5, and Pt/cZSM-5, respectively.

2.2. Catalyst Characterization

Powder X-ray diffraction (XRD) patterns were recorded on a Rigaku D/MAX-2500 diffractometer
(Rigaku, Ltd., Tokyo, Japan) using Cu Kα radiation using nickel-filtered Cu Kα X-ray source (40 kV, 200
mA, λ = 1.5406 Å) at a scanning rate of 0.02◦ over the range between 5◦ and 90◦. Fourier transformed
infrared (FT-IR) spectra were recorded on a Bruker VERTEX 70 spectrometer (Bruker Ltd., Karlsruhe,
Germany) in a wavenumber range between 4000 and 400 cm−1 with a resolution of 4 cm−1. Magic
angle spinning solid-state nuclear magnetic resonance (MAS-SSNMR) spectra were obtained on a
Varian Infinityplus 300 spectrometer (Varian Ltd., Palo Alto, America). Field emission scanning electron
microscopy (FE-SEM) images were obtained on a Hitachi S-4800 scanning electron microscope (Hitachi
Ltd., Tokyo, Japan) at 5 kV. Field emission transmission electron microscopy (FE-TEM) was carried
out on a JEM-2100F electron microscope (JEOL, Tokyo, Japan) with an accelerating voltage 200 kV.
Nitrogen adsorption and desorption isotherms (N2-BET) were obtained on a Micromeritics ASAP
2460 analyzer (Micromeritics Ltd., Georgia, America). Before the measurement, 0.15 g of the samples
were degassed under vacuum at 300 ◦C overnight. The Brunauer–Emmett–Teller (BET) equation
was applied to calculate the total specific surface area, while the pore volume and specific area of
micropore were calculated by using t-plot method. The pore size distribution curves were derived
using the non-local density functional theory (NLDFT) model. The Si/Al molar ratio was measured
by inductively coupled plasma-optical emission spectrometer (ICP-OES) (Agilent 7700x, Agilent Ltd.,
California, America).

X-ray photoelectron spectra (XPS) measurements were performed on Thermo ESCALAB 250XI
(Thermo Fisher Scientific, Massachusetts, America) with Al Kα X-ray radiation for the X-ray source.
The samples were reduced under catalytic conditions and exposure to air minimized prior to analysis.
For energy calibration, the C1s binding energy at 284.8 eV was taken as a reference value. Temperature
programmed desorption of ammonia (NH3-TPD) and CO pulse chemisorption of all the samples were
measured on an AutoChem1 II 2920 (Micromeritics Ltd., Georgia, America) apparatus equipped with a
thermal conductivity detector (TCD). For NH3-TPD measurement, 0.15 g of the sample was pretreated
in helium (He) at 450 ◦C for 1 h and then cooled to 100 ◦C. A mixture of 10% NH3 in He was absorbed
at 100 ◦C for 40 min and purged with pure He at the same temperature for 2 h. The sample was heated
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and the desorption profile was recorded. In CO chemisorption experiments, the sample was pretreated
in He at 300 ◦C for 1 h, reduced in H2 at 450 ◦C for 2 h, evacuated at 450 ◦C for 1 h, and then cooled to
40 ◦C in vacuum. Then, the CO adsorption isotherm was recorded at 50 ◦C based on the amount of
adsorbed CO at different pressures. A CO to surface Pt atom stoichiometry of 1.0 was used in metal
dispersion calculations [55].

2.3. Catalytic Evaluation

The catalytic HDO of guaiacol over different zeolites supported Pt catalysts were performed in
a fixed-bed reactor with 6 mm inner diameter. In a typical run, 1.5 g of catalyst (20–40 mesh) was
loaded in the center of reactor. The reaction temperature was controlled by three thermocouples on
the reactor wall and monitored with a thermocouple directly placed in the catalyst bed. Prior to the
experiment, the Pt catalyst was reduced in situ at 450 ◦C for 4 h under the H2 atmosphere and then
cooled down to the reaction temperature. A solution of 5 wt% guaiacol in n-dodecane was used as the
feedstock and supplied at a flow of 0.2 mL·min−1 using a high-pressure pump. The HDO reaction
was performed at the temperature range from 220 to 280 ◦C, under a total pressure of 3 MPa and H2

flow rate of 100 mL·min−1. The weight hourly space velocity is 0.3064 h−1. The liquid products at
different temperatures were collected for 2 h after the reaction reached the desired temperature and
1wt% n-tetradecanein was added as the internal standard. Then, the liquid samples were analyzed
off-line with a Shimadzu GC-MS QP2020 (Shimadzu Ltd., Kyoto, Japan) using a commercial Rtx-5MS
(50 m × 0.25 mm × 0.25 µm) column.

The guaiacol conversion (Xgua) and product selectivity (Sproduct-i) was calculated as follows:
Xgua= (Molgua,in − Molgua,out)/(Molgua,in), S = (Molproduct-i)/(Σ(Molproducts-i)), where Molproduct-i is
the mole number of product-i in the collected liquid sample.

3. Results and Discussion

3.1. Catalyst Properties

The FE-SEM images of different zeolites are shown in Figure 1. It clearly showed that S-1, hS-1
and hZSM-5 zeolites exhibited similar morphology of ellipsoids with the size of about 210 nm. The
parent S-1 zeolite had a little rough surface but a smooth one for hS-1 and hZSM-5 zeolites. Amorphous
silica and some broken crystals with large cavities were also observed in the hS-1 and hZSM-5 zeolites
and the crystal particles of these zeolites were a little larger than that of parent S-1. These results
confirmed that the dissolution of crystal core of S-1 zeolite and recrystallization of dissolved species
on the surface occurred in the presence of TPAOH at 170 ◦C, agreeing with the literature [53,54]. The
FE-SEM images (Figure 1b,e) of the broken crystals definitely revealed that the hollow structure was
formed for hS-1 and hZSM-5 zeolites. The TEM images (Figure 1c,f) further confirmed that these
zeolites were composed of the similar hollow nanocrystals. In addition, the sizes of the hollow cavities
were about 100 nm and the shell thickness of the zeolite crystal was about 20 nm. The introduction of
aluminum species during the dissolution-recrystallization process had no effect on the formation of
hollow structure. As a comparison, typical coffin-like morphology for cZSM-5 zeolite was obviously
observed in Figure 1d and the zeolite crystals were the largest ones among the as-synthesized zeolites.
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Figure 2 shows the powder XRD patterns of the as-synthesized S-1, hS-1, hZSM-5, and cZSM-5
zeolites. All the samples exhibited the five typical characteristic diffraction peaks at 7.98◦, 8.84◦,
23.12◦, 23.95◦, and 24.36◦, indicative of the MFI-type zeolites [44]. This meant that the bulk crystal
structures of hS-1 and hZSM-5 zeolites were maintained after dissolution-recrystallization process.
This result was further confirmed by FT-IR spectra. As shown in Figure S1, all the zeolites showed
the framework vibrations at 550 cm−1 and 452 cm−1, which are the characteristic bands of MFI-type
zeolites [56]. The significant broad bands at 1230 cm−1, 1110 cm−1, and 800 cm−1 were attributed to
the external asymmetric stretch, internal asymmetric stretch, and external symmetric stretch of typical
high-silica zeolite [57,58]. Compared with parent S-1 zeolite, the relative crystallinity (RC) of hS-1 and
hZSM-5 zeolites decreased by 7% and 14%, respectively, implying that a slight degradation of crystal
framework occurred after dissolution-recrystallization treatment. The relative crystallinity of hZSM-5
was lower than that of hS-1, probably because aluminum species retarded the recrystallization of silica
species dissolved from the parent S-1 [45]. The 27Al MAS-NMR spectra (Figure S2) of cZSM-5 and
hZSM-5 zeolites showed a major resonance at about 53 ppm and a very weak resonance around 0 ppm,
corresponding to tetrahedrally coordinated framework aluminum (AlO4) in silica frameworks and
octahedrally coordinated non-framework aluminum (AlO6), respectively [54]. This confirmed that the
Al species were essentially tetrahedrally coordinated after dissolution-recrystallization treatment.
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The nitrogen adsorption and desorption isotherms of different zeolites was further characterized
and are shown in Figure 3. The hS-1 and hZSM-5 zeolites exhibited a pronounced H4 hysteresis loop at
relative pressure P/P0 = 0.45 along with a sub-step around relative pressure P/P0 = 0.2, reflecting the
existence of both micropore and mesoporous [59]. This result illustrated the generation of mesoporous
in hollow MFI zeolites during TPAOH treatment process. The conventional ZSM-5 showed a type



Nanomaterials 2019, 9, 362 6 of 15

I isotherm and no distinct hysteresis loop, which proved that cZSM-5 was a typical microporous
zeolite without any mesoporous. The pore size distributions derived from non-local density functional
theory (NLDFT) (Figure 3b) further confirmed the existence of micropore and mesoporous in hS-1
and hZSM-5 zeolites. Additionally, the mesoporous size was mainly located around 2–4 nm. The
textual properties of various samples derived from N2 physisorption are summarized in Table 1.
The cZSM-5 showed a typical specific surface area (SBET, 332 m2·g−1) and pore volume distribution of
microporous zeolite. The parent S-1 zeolite had the similar textual structure with cZSM-5 zeolite except
more developed micropores. The hS-1 and hZSM-5 zeolites had almost the same pore distribution.
Compared with parent S-1, the mesoporous volume (Vmeso) increased by 79% and 80% for hS-1 and
hZSM-5 zeolites, respectively. Interestingly, the specific surface area of hS-1 and hZSM-5 had a slightly
decreased, while the total volume (Vtotal) determined by t-plot method had no significant change. This
could be attributed to the recrystallization leading to a smoother crystal surface and the formation of
hierarchical porous hollow structure.Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 15 
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Figure 3. (a) N2 adsorption and desorption isotherms and (b) pore size distributions of
different zeolites.

Table 1. Textual properties of various supports.

Samples
Specific Surface Area (m2·g−1) Pore Volume (cm3·g−1)

SBET
a Smicro.

b Sext.
c Vtotal

d Vmicro.
b Vmeso.

e

cZSM-5 332.04 218.34 113.70 0.1920 0.1366 0.0554
S-1 408.85 289.98 118.87 0.2411 0.1421 0.0990

hS-1 372.22 142.03 230.19 0.2483 0.0715 0.1768
hZSM-5 386.96 157.88 229.08 0.2585 0.0804 0.1781

a Measured by BET method. b Determined by t-plot method. c External surface area was calculated as Sext. = SBET −
Smicro.

d Total pore volume taken from the volume of N2 adsorbed at P/Po = 0.95. e Vext. = Vtotal − Vmicro.

The size distributions of Pt particles supported on different zeolites were further analyzed and
are illustrated in Figure 4. As shown in Figure 4a, the parent S-1 zeolite clearly showed an integral
hexagonal crystal structure. Pt particles were unevenly distributed on the surface of S-1 zeolite due
to the agglomeration. The mean size of Pt particles was estimated at about 7.91 nm. As for the
Pt/hS-1 catalyst, Pt particles were evenly distributed on the surface (Figure 4b) with the particle size
centered at 3.97 nm, much smaller than that of Pt/S-1 catalyst. This indicated that hierarchical hollow
structure was favorable for improving the Pt dispersion. Moreover, the Pt/hollow ZSM-5 catalyst
showed the smallest Pt particle size of 2.65 nm. The conventional Pt/cZSM-5 catalyst presented
a mean size of Pt particles at 6.84 nm. These results indicated that the Pt dispersion was greatly
boosted by the hollow structure and the introduction of framework aluminum could also promote the
dispersion of metallic Pt, probably because more Pt particles adjacent to surface strong acid sites of the
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introduced Al center were formed to confine the allegation of Pt nanoparticles leading to a stronger
metal-support interaction.

The variation of active metal dispersion on the support was confirmed by CO pulse chemisorption.
As shown in Table 2, the CO uptakes of the different catalysts varied from 6.79 to 17.36 µmol·g−1.
The metal dispersion of Pt/hS-1 and Pt/hZSM-5 increased significantly, suggesting that the hollow
MFI structure promoted the Pt dispersion and more metal active sites were exposed on the surface.
Microporous zeolites (S-1 and cZSM-5) are not conducive to the dispersion of metallic Pt. This was
consistent with the TEM results (Figure 4).Nanomaterials 2019, 9, x FOR PEER REVIEW 7 of 15 
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Table 2. Acidity properties and CO chemisorption of various Pt catalysts.

Samples Si/Al a
Peak Temperature (◦C) Amount of Acid Sites (µmol·g−1) CO Uptake

(µmol·g−1)
Dispersion b

(%)Peak I Peak II Peak III Weak Medium Strong Total

Pt/cZSM-5 80 172 232 364 208.03 72.61 144.1 424.74 7.98 15.56
Pt/S-1 — 147 — 329 32.44 — 19.15 51.59 6.79 13.24

Pt/hS-1 — 150 — — 7.08 — — 7.08 14.01 27.32
Pt/hZSM-5 175 177 285 380 128.37 43.8 87.75 259.93 17.36 33.86

a The silica alumina ratio determined by ICP-OES. b The metal dispersion determined by CO chemisorption.

In order to obtain a better understanding of the interaction between Pt and different MFI zeolite
supports, the metal valence of Pt element in various catalysts were analyzed by XPS and the spectra
are shown in Figure 5. After de-convolution of the spectra, these catalysts exhibited two energy
bands at 71.65~71.83 and 74.95~75.13 eV (Figure 5 and Table S1), which are values for the Pt 4f 7/2
and 4f 5/2 electrons of metallic Pt [60,61]. The binding energy peaks of Pt 4f 5/2 and Pt 4f 7/2 are
separated by 3.30 eV. This indicated that Pt particles in these catalysts existed in metallic state. Notably,
compared with Pt/S-1, the binding energy of Pt 4f shifted 0.11 and 0.18 eV for Pt/hS-1 and Pt/hZSM-5,
respectively. This could be attributed to the strong metal-support interaction [29,62], which was
consistent with the results of Pt particle size distributions (Figure 4).

The acidity of support has a significant effect on the catalytic activity for HDO of bio-oils [63,64].
The acidity distribution of all Pt catalysts characterized by NH3-TPD is shown in Figure 6. Three peaks
around 172~177 ◦C, 232~285 ◦C and 329~380 ◦C were observed in the NH3-TPD profiles, which were
attributed to weak, medium, and strong acidic sites, respectively. The quantitative analysis results are
summarized in Table 2. Obviously, conventional ZSM-5 supported Pt catalyst exhibited the strongest
acidity, attributed to the highest aluminum content in the zeolite according to the ICP-OES result
(Table 2). The Pt/S-1 catalyst had very small amount of weak and strong acid sites, which mainly
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originated from silanol groups on the surface of parent S-1 [65,66]. The Pt/hS-1 had only weak acid
sites with the smallest acid density of 7.08 µmol·g−1, which was decreased by 87% compared with
Pt/S-1. The drastic acidity decrease for Pt/hS-1 might be caused by the destruction of the acidic sites
on the surface of S-1 during TPAOH treatment. The acid sites density of Pt/hZSM-5 was significantly
enhanced by introducing aluminum species compared with Pt/S-1 catalyst, because the dissolved
amorphous silicon and aluminum species recrystallized on the surface of the parent S-1 to form the
hierarchical nanosized ZSM-5 crystals. The total acidity of this catalyst was nearly half of Pt/cZSM-5
due to its higher Si/Al ratio, but the distribution of weak, medium, and strong acid sites was almost
the same with the Pt/cZSM-5 catalyst (49%, 17%, and 34%, respectively).Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 15 
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3.2. Hydrodeoxygenation of Guaiacol

The catalytic performance of Pt catalysts supported on parent S-1, hollow S-1 (hS-1), hollow
ZSM-5 (hZSM-5) and conventional ZSM-5 (cZSM-5) for HDO of guaiacol was tested in a fixed-bed
reactor. The reaction was performed at 220 ◦C, 240 ◦C, 260 ◦C, and 280 ◦C under 3 MPa. Figure 7
shows the conversions of guaiacol over various Pt catalysts at different temperatures. The guaiacol
conversion over the parent S-1 zeolite supported Pt catalyst was only 17% at 220 ◦C and up to 72% at
280 ◦C. When the hollow S-1 zeolite was used as the support, a higher guaiacol conversion increased by
about 6% was obtained than that of Pt/S-1 catalyst at the same temperature. Similarly, the Pt/hZSM-5
also showed much higher conversion of guaiacol than Pt/cZSM-5. At a relatively low temperature,
the activity enhancement over Pt/hZSM-5 catalyst became more significant (~40% at 220 ◦C vs. ~5%
at 260 ◦C) compared with Pt/cZSM-5. The Pt/hZSM-5 catalyst exhibited the best activity with 100%
guaiacol conversion at 260 ◦C and 100% selectivity to cycloalkanes even at low temperature of 220 ◦C.
From Table 2, it could be observed that the acidity of hollow Pt/hS-1 and Pt/hZSM-5 catalysts was
much lower than that of Pt/S-1 and Pt/cZSM-5 catalysts, respectively. Therefore, it could be concluded
that the enhanced activity for Pt/hS-1 and Pt/hZSM-5 was mainly derived from the hollow structure,
which promoted the dispersion of metallic Pt (Table 2) and the diffusion of reactants and products. In
addition, it was found that the activity enhancement from Pt/hZSM-5 to Pt/cZSM-5 was much higher
than that from Pt/hS-1 to Pt/S-1 at low temperature. Compared with Pt/hS-1, the increased acid sites
for Pt/hZSM-5 mainly came from the introduced framework Al species. This indicated that high Al
acid sites density of support was also conducive to improve the catalytic performance for guaiacol
conversion. In addition, although the acidity of Pt/cZSM-5 was almost twice that of Pt/hZSM-5
(Table 2), more Pt active sites adjacent to strong Al acid sites were formed in the Pt/hZSM-5 catalyst to
facilitate the diffusion of intermediates between the metal-support active sites. Therefore, Pt/hZSM-5
showed a higher guaiacol conversion than Pt/cZSM-5 at the same reaction temperature. These results
indicated that the activity enhancement for Pt/hZSM-5 catalyst was attributed to the synergy of hollow
structure and metal-acid sites interaction, in which the higher dispersion of Pt metal on the surface
of hollow ZSM-5 support was achieved (Figure 4c) and the diffusion of reactants and products was
promoted by the hierarchical hollow structure.
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The product selectivity versus reaction temperature over different Pt catalysts was further
analyzed. As shown in Figure 8, similar product distributions were obtained over the Pt/S-1
and Pt/hS-1 catalysts. 2-methoxycyclohexanol (2-MOCYA) and cyclohexanol (CYA) were the main
products. Small amounts of methoxycyclohexane (MOCYH) and cyclohexane (CYH) were also found



Nanomaterials 2019, 9, 362 10 of 15

in the products. As the temperature increased from 220 ◦C to 280 ◦C, the selectivity to 2-MOCYA
gradually decreased from 86% to 59% for the Pt/S-1 catalyst and from 87% to 65% for the Pt/hS-1
catalyst. While the selectivity to CYA significantly increased from 7% up to 23% for Pt/S-1 and 24%
for Pt/hS-1 with a little increase to MOCYH and cyclohexanone. This indicated that for the Pt/S-1
and Pt/hS-1 catalysts high temperature would facilitate the cleavage of methoxy group (-OCH3) and
hydroxy group (-OH) of 2-MOCYA to form CYA and MOCYH as well as dehydrogenation of CYA to
cyclohexanone. Moreover, cyclohexene, cyclopentane (CYP), and methylcyclopentane (MCYP) were
also detected at high temperature (280 ◦C), which came from the further reaction of CYH on metal
active sites. The selectivity to complete deoxygenated product CYH over Pt/S-1 was a little higher
than that of Pt/hS-1. This could be attributed to the higher acid site density of Pt/S-1 catalyst and the
high mesoporosity of Pt/hS-1, which facilitated the diffusion of guaiacol and intermediates resulting
in lower selectivity to deoxygenated products. These results indicated that S-1 and hS-1 supported Pt
catalysts have strong hydrogenation ability and Pt metal sites were responsible for hydrogenation of
aromatic rings in guaiacol, agreeing with the literature [64].Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 15 
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Figure 8. Product selectivity as a function of temperature over different catalysts: (a) Pt/S-1, (b) Pt/hS-1,
(c) Pt/hZSM-5 and (d) Pt/cZSM-5 catalysts (MCYP: methylcyclopentane, CYH: cyclohexane, MOCYH:
methoxycyclohexane, CYA: cyclohexanol, 2-MOCYA: 2-methoxycyclohexanol, and others: Mainly,
cyclohexanone for (a,b) and cyclopentane for (c,d)).

Interestingly, the Pt/hZSM-5 and Pt/cZSM-5 catalysts exhibited significantly different product
distributions compared to Pt/S-1 and Pt/hS-1 catalysts. Guaiacol was completely transformed
into cycloalkanes over Pt/hZSM-5 at the range of experimental temperatures. Compared with
Pt/hZSM-5 catalyst, Pt/cZSM-5 catalyst needed a higher temperature to completely transform guaiacol
into cycloalkanes (260 ◦C vs. 220 ◦C), indicating that the hollow Pt/hZSM-5 catalyst had better
deoxygenation ability due to the formation of more Pt active sites adjacent to acid sites in hollow
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structure. At low temperature of 220 ◦C, guaiacol was transformed into CYH with a selectivity more
than 93% over Pt/hZSM-5, suggesting that this catalyst had strong C-O cleavage ability. As the
reaction temperature increased, the selectivity to CYH gradually decreased. And this decrease became
significant at 280 ◦C with the increase of CYP. Under the experimental conditions, CYH could isomerize
into MCYP and then demethylate to CYP at high temperature. However, the selectivity to MCYP almost
maintained at about 6% as the temperature increased. This indicates that high temperature is prone
to the isomerization-demethylation of CYH to CYP over the Pt/hZSM-5. But as for the Pt/cZSM-5
catalyst, the CYH selectivity was only 70% at 220 ◦C with about 18% of oxygenates, including 2-MOCYA
and MOCYH. As the temperature increased up to 240 ◦C, most of the oxygnetates were converted
into CYH and only a trace of 2-MOCYA was found. At high temperature, the Pt/cZSM-5 catalyst
showed the similar variation of CYP, MCYP and CYH with Pt/hZSM-5 catalyst. However, a higher
selectivity to MCYP and a lower selectivity to CYH were obtained compared with Pt/hZSM-5 catalyst,
probably attributed to stronger acidity of Pt/cZSM-5 and the promoted diffusion of products to inhibit
the isomerization by the hierarchical porous structure.

To further explore the effect of hollow structure on guaiacol HDO, the catalyst stability was also
evaluated over Pt/hZSM-5 and Pt/cZSM-5 catalysts at 240 ◦C under 3 MPa for 10 h. As shown in
Figure 9, the guaiacol conversion over the Pt/cZSM-5 catalyst gradually decreased from 82% to 74%
in the first five hours, and then decreased drastically, probably due to the coke deposition blocking
the pore and covering the active sites of microporous cZSM-5 zeolite. Meanwhile the Pt/hZSM-5
catalyst exhibited excellent long-term catalytic stability. Even at high conversion the Pt/hZSM-5
catalyst showed good resistance to carbon deposition (Figure S3) and the guaiacol conversion had no
decrease in the period of experiment. This result demonstrated that the hollow hierarchical structure
significantly enhanced the stability of Pt catalyst by promoting the mass transfer of products and
reactants. The product distributions in different time on Pt/hZSM-5 and Pt/cZSM-5 catalysts are
shown in Figure 10. For the Pt/hZSM-5 catalyst, no significant variation in product distribution was
observed and excellent stability was achieved with the selectivity to CYH more than 93%. However,
Pt/cZSM-5 showed very poor stability. As the reaction prolonged, the selectivity to total cycloalkanes
gradually decreased with the quick increase to oxygenates such as 2-MOCYA, CYA, MOCYH, and
cyclohexanone because of the decrease of the acid sites covered by coke deposition to reduce the
deoxygenation ability.
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Figure 10. Product selectivity as a function of time on stream over (a) Pt/hZSM-5 and (b) Pt/cZSM-5
catalysts (MCYP: methylcyclopentane, CYH: cyclohexane, MOCYH: methoxycyclohexane, CYA:
cyclohexanol, 2-MOCYA: 2-methoxycyclohexanol).

4. Conclusions

In summary, hollow Silicalite-1 and ZSM-5 zeolites with hierarchical porous structure were
synthesized by using the dissolution-recrystallization strategy and exhibited superior surface area
and porosity compared with the parent Silicalite-1. The hollow ZSM-5 zeolite supported Pt catalyst
exhibited excellent catalytic activity and long-term stability for hydrodeoxygenation of guaiacol. The
enhancement of activity and stability could be attributed to the synergetic effect of hollow structure and
the interaction of metal-acidic support. The special hollow structures promoted the dispersion of Pt
and improved the mass transfer of reactants and products. Therefore, hollow ZSM-5 zeolite supported
Pt catalyst showed high activity with 100% selectivity to cycloalkanes, even at a low temperature of
220 ◦C, suggesting that hollow ZSM-5 zeolite is a promising support for upgrading of bio-oils. This
work provides some new insights on designing efficient, highly selective, and stable catalysts for
bio-oils upgrading.
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Figure S1: FT-IR spectra of cZSM-5, S-1, hS-1 and hZSM-5 zeolites, Figure S2: 27Al NMR spectra of cZSM-5 and
hZSM-5 zeolites, Figure S3: TG curves of used Pt/cZSM-5 and Pt/hZSM-5 catalysts after stability tests. Table S1:
XPS quantitative data of different Pt catalysts.
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