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José Carlos Crispı́n,

Instituto Nacional de Ciencias
Médicas y Nutrición Salvador Zubirán

(INCMNSZ), Mexico

Reviewed by:
J. Michelle Kahlenberg,

University of Michigan, United States
Florencia Rosetti,

Instituto Nacional de Ciencias
Médicas y Nutrición Salvador Zubirán

(INCMNSZ), Mexico
Tomohiro Koga,

Nagasaki University, Japan

*Correspondence:
Xiaojie He

hexj7150@163.com

Specialty section:
This article was submitted to

Autoimmune and
Autoinflammatory Disorders,

a section of the journal
Frontiers in Immunology

Received: 04 March 2021
Accepted: 06 April 2021
Published: 20 April 2021

Citation:
Ding X, Ren Y and He X (2021) IFN-I
Mediates Lupus Nephritis From the

Beginning to Renal Fibrosis.
Front. Immunol. 12:676082.

doi: 10.3389/fimmu.2021.676082

REVIEW
published: 20 April 2021

doi: 10.3389/fimmu.2021.676082
IFN-I Mediates Lupus Nephritis From
the Beginning to Renal Fibrosis
Xuewei Ding1,2, Yi Ren1,2,3 and Xiaojie He1,2*

1 Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China, 2 Laboratory of Pediatric
Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China, 3 Pediatric
Internal Medicine Department, Haikou Maternal and Child Health Hospital, Haikou, China

Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE)
and a major risk factor for morbidity and mortality. The abundant cell-free nucleic (DNA/
RNA) in SLE patients, especially dsDNA, is a key substance in the pathogenesis of SLE
and LN. The deposition of DNA/RNA-immune complexes (DNA/RNA-ICs) in the
glomerulus causes a series of inflammatory reactions that lead to resident renal cell
disturbance and eventually renal fibrosis. Cell-free DNA/RNA is the most effective inducer
of type I interferons (IFN-I). Resident renal cells (rather than infiltrating immune cells) are the
main source of IFN-I in the kidney. IFN-I in turn damages resident renal cells. Not only are
resident renal cells victims, but also participants in this immunity war. However, the
mechanism for generation of IFN-I in resident renal cells and the pathological mechanism
of IFN-I promoting renal fibrosis have not been fully elucidated. This paper reviews the
latest epidemiology of LN and its development process, discusses the mechanism for
generation of IFN-I in resident renal cells and the role of IFN-I in the pathogenesis of LN,
and may open a new perspective for the treatment of LN.

Keywords: fibrosis, IFN-I, lupus nephritis, nucleic acid sensors, pathogenesis, renal resident cells
INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease in which immune complexes (ICs)
form and deposit in many organs. The kidney is one of the main target organs. Lupus nephritis (LN)
is present in at least 30% to 60% of SLE patients, and almost all patients have pathologic renal
involvement. The incidence of SLE and LN varies widely between regions of the world and between
ethnic groups (1). Although SLE is more prevalent in women than men across all age groups and
populations, several studies have shown that men with lupus more get LN than women with lupus
and patients with LN are younger, mostly of African, Asian, and Hispanic race/ethnicity (2–5). LN
has a mortality rate six times higher than that of the general population (6). LN is a major risk factor
for SLE mortality, with 10% of patients with LN developing the end-stage renal disease (ESRD) (1,
7). Compared with SLE patients without LN, LN patients had a higher standard mortality rate (6-6.8
versus 2.4) and earlier time of death (6, 8–10). In recent years, early diagnosis, standardized
treatment, and new immunosuppressants such as mycophenolate mofetil, anti-CD20 monoclonal
antibody, belimumab, and other drugs have significantly improved LN prognosis. However, the 5-
year mortality rate in patients with severe refractory LN remains high (1, 3, 11, 12). Therefore,
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elucidating its pathogenesis can provide a theoretical basis for the
screening of effective therapeutic targets for LN.

IFN-I is a central factor in the occurrence and development of
SLE. Recent studies suggest that IFN-I may play a role at the level
of terminal organs in SLE, especially LN. IFN-I is a response to
the activation of most immune cells. At present, studies on the
relationship between IFN-I and LN mainly focus on immune
cells in serum and kidney. Resident renal cells also have immune
functions and are involved in the immune war. Previous
literature has shown that resident renal cells (rather than
infiltrating immune cells) are the major source of IFN-I in the
kidney and that IFN-I can cause renal injury. However, there are
few studies on the production of IFN-I in the kidney and the
damage of IFN-I to resident renal cells. This paper reviews the
relationship between IFN-I and LN resident renal cells and
explores the related pathways of IFN-I promoting the
pathogenesis of LN.
PATHOGENESIS OF LN

IC Deposition
Nucleic acid exposure, the production of nephrogenic
pathogenic antibodies and the formation of ICs are the key
links leading to LN. Three mechanisms have been proposed for
ICs formation or deposition on the glomerulus, and they include
(1) the deposition of preformed circulating immune complexes
(CICs) in the kidney, (2) the formation of in-situ ICs in the
glomerulus, and (3) binding of anti-dsDNA antibodies to cross-
reactive antigens present either on the surface of resident renal
cells or in the extracellular environment (13–17).

Circulating autoantigens and antibodies form CICs, which are
deposited in the kidney. Due to improper clearance of necrotic,
apoptotic cells and/or abnormal increase in cell death in SLE
patients, undegraded nucleosomes (complexes of DNA and
histone-containing pairs of histone peptides) are released into
the bloodstream, increasing circulating autoantigens and
subsequent antibodies, which form CICs. They evade
recognition by the immune system and are deposited in
the kidney.

ICs can also be formed in situ. Electron-dense structures
(EDS) associated with glomerular basement membrane (GBM)
and the mesangial matrix constitute the main target for in situ-
bound antibodies in both murine and human lupus nephritis.
Nucleosomes and chromatin fragments accumulate due to the
loss of intrarenal and extrarenal deoxyribonuclease 1 (Dnase-1)
activity. Then nucleosomes and chromatin fragments readily
stimulate TLR9 in infiltrating macrophages and dendritic cells,
triggering the secretion of local MMPs (18, 19). MMPs degrades
the membrane barrier, allowing nucleosomes and chromatin
fragments to bind to GBM (20, 21). Exposure to glomerular
chromatin in situ induces anti-chromatin (anti-dsDNA and anti-
nucleosome) antibodies to become nephrogenic and pathogenic,
secondary to the formation of in-situ ICs (15).

In addition to binding to DNA fragments, they also bind to
cross-reactive antigens on the surface of renal cells to activate cell
proliferation, apoptosis, inflammation and fibrosis pathways (13,
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14, 17). Anti-dsDNA antibodies bind to renal mesangial cells
(RMCs) through cross-reacting with the cell surface annexin II
(22), a-actinin (23, 24), and ribosomal P protein (25). Anti-
dsDNA antibodies bind to glomerular endothelial cells (GECs)
through cross-reacting with membrane proteins with M.W. of
30–35, 44, 68, 110, and 180 kDa (26). Anti-dsDNA antibodies
bind to renal tubular epithelial cells (TECs) through cross-
reacting with A and D SnRNP polypeptides (27). The
polyreactivity of anti-dsDNA antibodies may be related to
structural/conformational similarity or molecular simulation
(28). Upon binding to the cell surface, anti-dsDNA antibodies
migrate to the cytoplasm and/or nucleus, promoting cell growth
and proliferation, or in turn inducing apoptosis (29). Recent
studies have reported that the RG2 extract from intestinal
symbiotic bacterium R. gnavus cross-reacts with anti-dsDNA
antibodies to trigger or exacerbate the immune pathogenesis of
LN (30, 31).

Depending on the type, duration, and severity of LN, ICs can be
found in the subendothelial, subepithelial, mesangial, and
tubulointerstitial regions (Figure 1). The distribution, quantity,
and proinflammatory properties of ICs in renal parenchyma
determine complement activation, inflammation, cell proliferation,
and the severity of glomerular and tubulointerstitial injuries (3, 5,
32, 33).

Glomerulus Loss
ICs are mainly deposited in the glomerulus. The main mediator
of IC-induced glomerular injury is the complement system,
especially the formation of the C5b-9 membrane attack
complex. C5b-9 is inserted into the glomerular membrane in
extremely low amounts, transforming normal cells into
inflammatory effector cells (34). Immunostimulatory
glomerular cells produce large amounts of pro-inflammatory
cytokines (35, 36), accelerating cell damage/aging, which may be
one of the mechanisms of glomerular injury in LN (37).

The initial IC-mediated glomerular injury varies with the
location of the IC deposition. IC subendothelial deposition leads
to the accumulation of proinflammatory cells, causing proliferative
disease and glomerular crescent (38). The GEC and the GEC
surface layer (also known as the glycocalyx) are the first points of
contact with the components of the circulating immune system. T
cells are recruited to the glomerulus via the direct binding of their
CD44 to the hyaluronic acid (HA) component of GEC glycocalyx
(39). ICs alter cell morphology, up-regulate active caspase-3’
expression, inhibit angiogenesis, and increase NO production in
GECs (40). Autophagy is a conserved metabolism that plays a
protective role in many cell types and diseases. ICs inhibit the
autophagy activity of GECs through Akt/mTOR-dependent
pathway (41). LN antibodies promote increased secretion of
endothelin-1 by GECs, leading to disruption of tight
intercellular junctions (42). IC subepithelial deposition leads to
podocytes damage and varying degrees of proteinuria. Podocyte
injury is characterized by the foot process effacement (FPE), loss of
podocyte-specific markers and cell detachment (43). Podocytes
also contribute to glomerular crescent formation. Dedifferentiated
podocytes migrate to cellular crescents. Podocyte injury ultimately
leads to the activation and proliferation of parietal epithelial cells
April 2021 | Volume 12 | Article 676082
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(PECs) through the JAK/STAT pathway, the production of HB-
EGF and IL-6, and/or absence of (C-X-Cmotif) ligand (CXCL) 12,
jointly contributing to glomerular crescent formation (43). LN IgG
stimulates cellular cytoskeletal rearrangement and decreases
vascular endothelial growth factor (VEGF) levels in podocytes
(42). IC mesangial deposition leads to RMC proliferation and
mesangial matrix increase. The inflammatory environment of LN
induces RMCs to produce pro-inflammatory cytokines, which
recruit leukocytes (44); promotes RMCs to express higher levels of
matrix proteins and regulate matrix degradation enzymes, which
lead to mesangial matrix deposition (44, 45); regulate the cell cycle
and promote RMC proliferation (46).

Podocytes, GECs, and RMCs in the glomerulus interact with
and support each other. Podocytes produce VEGF needed for
GECs survival (47, 48); GECs produce platelet-derived growth
Frontiers in Immunology | www.frontiersin.org 3
factor (PDGF) needed for RMCs survival; RMCs isolate the
potential transforming growth factor-b (TGF-b), thereby
protecting GECs from apoptosis (49). Progressive injury to one
cell type can eventually lead to damage of the other cell types.
The activation, dedifferentiation, or proliferation of glomerular
cells leads to the loss of structural integrity of the glomerular
cluster and ultimately to glomerular death.

Tubulointerstitial Fibrosis
Renal tubulointerstitium blood supply is provided by glomerular
runoff. Glomerular loss affects tubulointerstitial survival.
Changes resulting from loss of tubular interstitial viability,
such as tubular atrophy, fibrosis, and interstitial infiltration.
Injury of renal tubular epithelial cells (TECs) is an important
cause of renal fibrosis (50, 51). The severity and frequency of
FIGURE 1 | ICs deposition and glomerular injury. Cross-reactive antigens include annexin II, a-actinin, ribosomal P protein on RMCs’ surface and membrane
proteins with M.W. of 30–35, 44, 68, 110, and 180 kDa on GECs’ surface. CIC, circulating immune complex; GBM, glomerular basement membrane; GEC,
glomerular endothelial cell; PEC, parietal epithelial cell; RMC, renal mesangial cell.
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TECs injury determine whether this repair mechanism leads to
recovery or progression to fibrosis (52). TECs performs the
repair mechanism to restore normal function when the injury
is minor or for a short time. TECs experience maladaptive repair
when severe and persistent injury exceeds the normal repair
mechanism. The maladaptive repair is manifested in two aspects:
cell cycle arresting in the G2/M phase, which is characterized by
the expression of p53, p21 and p16INK4a; aging-associated
secretory phenotypes, which is characterized by the secretion
of pro-inflammatory factors and pro-fibrosis factors, including
TGF-b1, connective tissue growth factor (CTGF), CXCL1, IL-6,
IL-8 (50, 53–56). These factors promote a chronic inflammatory
microenvironment conducive to fibrous tissue (53). TECs secret
pro-inflammatory cytokines to recruit and activate different
inflammatory cells. And these recruited cells further produce
cytokines that drive the transformation of TECs, fibroblasts, and
pericytes to myofibroblast type (50, 57, 58). Eventually, TECs,
fibroblasts, and pericytes express a-smooth muscle actin (a-
SMA) and promoting the deposition of extracellular matrix
(ECM), contributing to the final process of renal fibrosis.

Although ICs are predominantly detected in the glomerulus
affecting glomerular and tubulointerstitial capacity, about 70% of
LN patients also have ICs aggregates along the tubular basement
membrane resulting in tubulointerstitial inflammation and fibrosis.
A study of LN biopsy found that tubular ICs are independent of
circulatory and glomerular ICs (59). Anti-dsDNA antibodies have
been shown to bind A and D SnRNP in TECs, causing them to be
internalized and transported to the cytoplasmic and nuclear
subcellular compartments, or they can remain at the cell surface
where interaction with complement results in cell lysis (27). The
binding of anti-dsDNA antibodies to TECs induces phenotypic
changes in TECs that may promote the epithelial-to-mesenchymal
transition (EMT) (60). Another study has shown that anti-dsDNA
antibodies induce TECs secretion of soluble fibronectin and increase
downstream TGF-b1 and collagen synthesis by prior activation of
ERK, p38 MAPK, JNK, PKC-a and PKC-bII (61).

Pericytes are potential sources of myofibroblasts (50, 57, 58).
Loss of pericytes leads to thinning of capillaries. Capillary thinning
induced anoxia in TECs, which increases interstitial oxidative stress.
Injured or hypoxic TECs secrete hypoxia-inducing factor-1a (HIF-
1a) and subsequent VEGF to promote endothelial cells (ECs)
survival and proliferation, increasing perivascular capillary density
(62, 63). However, excessive production of VEGF promotes the
formation of leaky and nonfunctional vessels, thus resulting in a
hypoxic and highly oxidative environment (64). Besides, VEGF can
be used as a pro-inflammatory factor to aggravate fibrosis response
(64). Hypoxia has been shown to promote EMT as an important
microenvironmental factor (65–68). Increased matrix strength also
aggravates tubular hypoxia and the progression of EMT. The above
factors form a vicious circle.

Renal Microvascular Lesions
Renal microvascular lesions are common in LN and are increasingly
being recognized as a marker of LN. Five pathological types of LN
renal microvascular lesions have been proposed and they are
vascular immune complex deposits (ICD), arteriosclerosis (AS),
thrombotic microangiopathy (TMA), non-inflammatory
Frontiers in Immunology | www.frontiersin.org 4
necrotizing vasculopathy (NNV), and true renal vasculitis (TRV)
(69). Up to one-third of LN patients have two or more vascular
lesions at the same time. Although each lesion type may exhibit its
unique factors, there are some common mechanisms among
different vascular lesions. Damaged TECs induce loss of pericytes
leading to thinning of capillaries (50, 57, 58, 62–64). The activation
and dysfunction of vascular ECs, as well as immune system
dysfunction, are key mechanisms of LN renal microvascular
lesions, especially IC-induced vascular inflammation and anti-
phospholipid antibody (APL)-related thrombotic events (69). The
binding of autoantibodies to vascular ECs and the deposition of
CICs on the microvessels lead to changes in the connections
between ECs, thus activating complement, increasing the
expression of adhesion molecules, inflammatory cytokines and
chemokines, and increasing the permeability of ECs. The
activation and dysfunction of ECs further recruit monocytes
through adhesion molecules and chemokines, which induces
platelet aggregation, resulting in procoagulant activity and
microthrombosis (70, 71). APL-induced thrombotic events are the
important mechanism of renal LN TMA (72). Patients with TMA
had the worst renal outcomes (73). Renal microvascular lesions
adversely affect long-term renal outcomes and may determine the
selection of treatment strategies (73, 74) (Figure 2).
THE MECHANISMS FOR GENERATION OF
IFN-I IN THE KIDNEY

Clinical studies have found that LN patients overexpress IFN-I, and
IFN-I activity is closely related to inflammation of LN (75–77).
Experimental animal studies have shown that exposure to IFN-I in
NZB/W mice or C57BL/6J mice accelerates glomerulonephritis,
glomerular crescent, and renal tubular interstitial nephritis (78–80);
reducing the biological activity of IFN-I in NZB/W mice alleviated
renal pathology and improved survival rate (81). Although a study
has shown that Toll-like receptor 7 (TLR7) -mediated LN is
independent of IFN-I signaling, it is not enough to mask the
ultimate role of IFN-I in nephritis acceleration (82). IFN-I
includes IFN-a and IFN-b, which play a biological role by
binding to type I interferon receptor (IFNAR).

The Mechanisms for Generation of IFN-I
Cell-free nucleic acid (DNA/RNA) is the most effective inducer of
IFN-I. They are recognized by intracellular nucleic acid sensors,
which activate the signaling pathway that produces IFN-I (Figure
3). DNA sensors include the endosome TLR9, DNA-dependent
activator of IFN-regulatory factors (DAI), interferon-inducible
protein 16 (IFI16), and cyclic GMP-AMP (cGAMP) synthase
(cGAS). RNA sensors include TLR3, TLR7, TLR8, retinoic acid-
inducible gene I (RIG-I) and melanoma differentiation-associated
protein 5 (MDA5). TLR7/8 binding with ssRNA and TLR9
binding with CpG DNA activates downstream signaling
pathways—adaptor protein MyD88 and transcription factors
such as IRAKs, TRAF6 and IRF7, then leading to secretion of
IFN-a (83, 84).TLR3 binding with dsRNA induces IFN-b mainly
through the TRIF-TBK1-IRF3 signaling pathway. cGAS (85, 86),
DAI (87), IFI16 (88) recognize dsDNA and then activate the
April 2021 | Volume 12 | Article 676082
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stimulator of interferon genes (STING)- TANK-binding kinase 1
(TBK1)-IRF3 signaling pathway to regulate transcription of IFN-b
and IFN-induced genes. RIG-I and MDA5 recognize dsRNA and
undergo conformational changes to induce mitochondrial
antiviral signaling (MAVS), then activate IRF3/7 by TRAF6/3,
resulting in the production of IFN-I (89).
Frontiers in Immunology | www.frontiersin.org 5
SLE patients are rich in chromatin or cell-free nucleic acids,
especially dsDNA, due to defective clearance of apoptotic cells
and necrotic cells and increased neutrophil extracellular traps
(NETs). These cell-free DNA/RNA acids activate above signaling
pathways through intracellular DNA/RNA sensors to trigger the
production of IFN-I (90). Studies have shown that there are
FIGURE 2 | Pathogenesis of LN. CIC, circulating immune complex; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition; ESRD, end-stage renal
disease; GEC, glomerular endothelial cell; HIF-1a, hypoxia-inducing factor-1a; IC, immune complex; LN, lupus nephritis; RMC, renal mesangial cell; TEC, renal
tubular epithelial cell; VEGF, vascular endothelial growth factor.
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several SLE-related susceptibility gene loci in the above signaling
pathways, and their gene variants contribute to the production of
IFN-I and the progression of LN (Table 1).

The Main Producers of IFN-I in the Kidney
The IFN-I system in SLE is in a long-term activation state. All
nucleated cell types can produce IFN-I during pathogenic
infection. Under the background of SLE, immune cells are
abnormally activated. For example, plasmacytoid dendritic cells
(pDCs) massively produce IFN-a (103); neutrophils secrete
IFN-I in the early stages of the disease (104). Early T1 B cells
in SLE produce IFN-I, especially IFN-b (105). A previous study
has shown that renal resident cells (rather than infiltrating
immune cells) were the main source of IFN-I in the kidney
(80). Besides the circulating cell-free nucleic acid and the nucleic
acid component of CICs, renal immunostimulatory nucleic acids
are an important source of pathogenic nucleic acid. Large
chromatin fragments in the kidney are exposed due to selective
down-regulation of Dnase1 activity in the kidney (16, 106, 107).
Lupus nephrogenic autoantibodies enter renal cells, damaging
cell structure, enhancing DNA cleavage, and inducing cell death
(29, 108). Another potential source of renal immunostimulatory
nucleic acids is NETs released by neutrophils in the glomerulus
and renal tubule, which are not fully degraded and are made of
DNA, histones, and neutrophil proteins (109–111). NETs
activate the cGAS-STING pathway or the TLR9 pathway to
produce IFN-I (111, 112). The IFN-I subtype secreted by renal
Frontiers in Immunology | www.frontiersin.org 6
resident cells and DNA/RNA receptors’ expression in renal
resident cells varied (Table 2).

Podocyte
DNA/RNA-ICs induce IFN-b production in podocytes. Podocytes
treated with TLR3 ligand—polyIC—expressed IFN-I. And
podocytes express TLR1-6 and TLR9 (113). Masum MA et al.
found that TLR9 is overexpressed in podocytes in mice with
autoimmune glomerulonephritis (AGN), which is associated with
glomerular podocyte injury (114). However, Machida H et al.
found that TLR9 was expressed only in podocytes from active LN
patients and disappeared during remission (115). cGAS and IFI16
are the main DNA sensors in podocytes and trigger the expression
of IFN-b by activating the cGAS/IFI16-STING pathway, thereby
promoting the progression of LN in SLE patients (116). Besides,
Kimura J et al. analyzed BXSB/MPJ-YAa lupus model mice and
found that the expression of TLR8 and its downstream cytokines
was significantly increased in lupus mice, and TLR8 was localized
in podocytes (117).

RMC
DNA/RNA-ICs induce IFN-b production in RMCs. In the
context of SLE, RMCs express TLR1-4 and TLR6, especially
highly express TLR3 (118).TLR3 belongs to the nucleic acid-
specific TLR subgroup that activates the IFN-b production by
recognizing dsRNA (119). However, RMCs do not express other
members of the TLR subgroup—TLR7-9 (118, 119). Besides, LN
FIGURE 3 | The mechanisms for generation of IFN-I. cGAS, cyclic GMP-AMP (cGAMP) synthase; DAI, DNA-dependent activator of IFN-regulatory factors; IFI16,
interferon-inducible protein 16; IFN, interferons; IFNAR, type I interferon receptor; ISG, IFN-stimulated gene; MAVS, mitochondrial antiviral signaling; MDA5,
melanoma differentiation-associated protein 5; RIG-I, retinoic acid-inducible gene I; STING, stimulator of interferon genes; TBK1, TANK-binding kinase 1;
TLR, Toll-like receptor.
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patients’ RMCs show high levels of MDA5 expression (120).
dsRNA induces RMCs to release IFN-a/b by MDA5 (rather than
RIG-I); IFN-a/b can activate RMCs in an autocrine-paracrine
loop (121). Although RMCs do not express TLR9 (118, 119),
DNA-ICs also induce RMCs activation. Qing X et al. found that
IgG anti-dsDNA antibodies up-regulate RMCs pro-
inflammatory genes in MRL/LPR mice (122). Allam R et al.
found that viral dsDNA stimulated RMCs to produce IFN-b and
IFN-induced genes which are independent of DAI (123).

GEC
DNA/RNA-ICs induce IFN-b production in GECs. GECs
express TLR1-6 (124). dsRNA activates TLR3 and induces
GECs to express IFN-b (125, 126). Liu Q et al. found that
dsRNA induced GECs expression of RIG-I and MDA5 through
the TLR3/IFN-b signaling pathway (127). At the same time,
dsRNA activates GECs through RIG-I to secrete IFN-a/b, while
IFN-a/b cannot activate GECs in an autocrine-paracrine loop
(128). GECs lacks a unique DNA-specific TLR—TLR9 (124).
However, Hagele H et al. stimulated GECs with viral dsDNA and
found that viral dsDNA entered GECs through endocytosis and
then activated GECs to produce IFN-a/b in a TLR-independent
manner (129). IFN-b can induce DAI expression and IRF3
phosphorylation, but IFN-b cannot activate GECs in an
autocrine-paracrine loop (129).
Frontiers in Immunology | www.frontiersin.org 7
Others
Resident renal cells also include TECs, renal interstitial fibroblasts,
and peritubular capillary endothelial cells (PTC ECs). Castellano G
et al. found that TECs were the main producer of IFN-a (130).
Recent studies have found that TECs express RIG-I, an intracellular
pattern-recognition receptor that participates in the production of
IFN-b by recognizing RNA (131). It is unknown whether renal
interstitial fibroblasts produce IFN-I and their intracellular DNA/
RNA receptor expression. The TLR9 expression level was
significantly increased in PTC ECs in lupus-prone AGN model
mice and was associated with peritubular capillary and renal tubular
interstitial injury (132).
THE DAMAGE EFFECTS OF IFN-I IN LN

Renal resident cells are the main source of IFN-I in the kidney
(80). Renal resident cell-induced IFN-I, in turn, promotes the
inflammatory state of glomerular cells, leading to renal fibrosis,
scarring and renal loss (80). The damage of IFN-I is manifested
in three aspects: (1) IFN-I induces the production of nuclear
antigen and autoantibodies, promoting the formation of ICs;
(2) IFN-I recruits leukocytes to promote proliferative lesions;
(3) IFN-I acts on resident renal cells, leading to cell activation,
injury, apoptosis, and progression to renal fibrosis (Figure 4).
TABLE 2 | Distribution and expression of DNA/RNA sensors in renal resident cells.

Renal resident cells RMCs GECs Podocytes TECs fibroblasts PTC ECs

DNA sensors TLR9 N N Y U U Y
DAI Y Y U U U U
IFI16 U U Y U U U
cGAS U U Y U U U

RNA sensors TLR3 Y Y Y U U U
TLR7 N N N U U U
TLR8 N N Y U U U
RIG-I/MDA5 Y Y Y Y U U
April 2
021 | Volume 12 | Artic
Y means “yes”; N means “no”; U means “unknown”. GEC, glomerular endothelial cell; PTC EC, peritubular capillary endothelial cell; RMC, renal mesangial cell; TEC, renal tubular
epithelial cell.
TABLE 1 | Genetic variants in the DNA/RNA-IFN signaling pathway that contributes to the progression of LN.

Locus Genetic variants References

TLR TLR9 (rs352140) (91)
TLR7 (rs385389) (92)
TLR5 (rs5744168) (91)
TLR3 (rs3775291, rs3775294) (93)

RIG-I/MDA5 VISA (rs17857295, rs2326369) (94)
IRF IRF3 (rs7251) (95)

ITGAM (rs1143678, rs1143679, rs1143683) (96)
NF-kB TNIP1 (rs7708392, rs4958881) (97, 98)

MiR-146a (rs2431697) (99)
STAT STAT4 (rs7582694) (100)
TLR9 (rs352140) (91)、TLR7 (rs385389) (92)、TLR5 (rs5744168) (91)、TLR3 (rs3775291 and rs3775294) (93)、IRF3 (rs7251) (95)、STAT4 (rs7582694) (100) are significantly
associated with LN. Moreover, TNIP1 (rs7708392 and rs4958881) are associated with the risk of LN and may be involved in the disease development through abnormal regulation of
NF-kB and mitogen-activated protein kinase activity (97, 98). MiR-146a (rs2431697T allele) may also increase the occurrence of LN by regulating IFN-I and NF-kB pathways (99). ITGAM
variants reduce nuclear FoxO3 protein levels, thereby eliminating inhibition of IRF7 and enhancing the production of IFN-I (96, 101), which give a high risk of SLE and LN (102).
Virus-induced signaling adapter (VISA) is an important adaptor protein that connects RIG-I and MDA5 with downstream signaling events. VISA rs17857295 and rs2326369 are associated
with the occurrence of LN (94). MDA5, melanoma differentiation-associated protein 5; RIG-I, retinoic acid-inducible gene I; TLR, Toll-like receptor; VISA, virus-induced signaling adapter.
le 676082

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ding et al. IFN-I Promotes LN
IFN-I Promotes the Formation of Nuclear
Antigens and Autoantibodies
IFN-I promotes the formation of nuclear antigens. IFN-I can
induce B cell activating factor (BAFF) expression and
Frontiers in Immunology | www.frontiersin.org 8
mobilization (133, 134). BAFF promotes the activation of T
cells (135) and the production of NETs (136). Overactivity of
SLE T cells leads to mitochondrial hyperpolarization, which
ultimately leads to increased production of reactive oxygen
FIGURE 4 | The damage effects of IFN-I in LN. (A) IFN-I promotes the formation of nuclear antigens and autoantibodies. (B) IFN-I promotes glomerular sclerosis.
(C) IFN-I promotes renal interstitial fibrosis. (D) IFN-I promotes renal microvascular lesions. AC, adenylyl cyclase; APOL1, apolipoprotein L1; BAFF, B cell activating
factor; cAMP, cyclic adenosine monophosphate; COL, collagen; CXCL, (C-X-C motif) ligand; CXCR3B, chemokine-receptor-3B; EC, endothelial cell; ECM,
extracellular matrix; EMT, epithelial-to-mesenchymal transition; EndMT, endothelial-to-mesenchymal transition; EPC, endothelial progenitor cell; FGF-2, fibroblast
growth factor 2; FN, fibronectin; GEC, glomerular endothelial cell; HIF-1a, hypoxia-inducing factor-1a; IC, immune complex; IFN-I, type I interferons; MCP-1,
monocyte chemotaxis proteins 1; MIF, macrophage inhibitory factor; MMP, matrix metalloproteinases; NET, neutrophil extracellular trap; PA, plasminogen activator;
PAI-1, plasminogen activator inhibitor 1; PDGD, PDGF, platelet-derived growth factor; PKA, protein kinase A; RMC, renal mesangial cell; ROS, reactive oxygen
species; TEC, renal tubular epithelial cell; TIMP, tissue inhibitors of metalloproteinases; TGF-b1, transforming growth factor-b1.
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species (ROS) (137). ROS can modify cellular components and
metabolites, giving them immunogenicity (138). ROS
contributes to the formation of NETs (112). NETs trigger a
concerted activation of TLR9 and B-cell receptor (BCR) leading
to autoantibodies production in lupus (139). Follicular helper
T cells (TFHs) (140, 141), CXCR5-CXCR3+PD1hiCD4+T helper
cells (142), and peripheral helper T cells (TPHs) (143) promote B
cells differentiation and antibody production in different ways.

IFN-I promotes the formation of autoantibodies. BAFF is a key
factor in the maturation, survival and function of SLE pathogenic B
cells (144, 145), which are responsible for the production of
autoantibodies. IFN-I not only directly mobilized BAFF (133,
134) but also indirectly regulated the BAFF pathway by
promoting the production of macrophage inhibitory factor (MIF)
(146–148). BAFF also promotes the activation of B cells by IFN
(149). Besides, SLE-related autoantibodies and ICs can induce the
strong release of NETs (150), increasing nucleic acid exposure.

Then increased nuclear antigens and autoantibodies induced
by IFN-I enhance the chance of IC formation and triggers LN.

IFN-I Promotes Leukocyte Infiltration
IFN-I strongly induces chemokine CXCL9/10/11, then recruiting
leukocytes into the inflammatory site through the CXCR3A-Gi-
PI3K-MAPK signaling pathway (151, 152). Several studies have
found that renal IFN-I induced leukocytes into the kidney in LN
patients. Increased leukocyte recruitment might be an operative
mechanism that IFN-I drives immune-mediated nephritis (80).
Triantafyllopoulou A et al. induced IFN-b overexpression
in NZB/W mice using TLR3 ligand poly (I: C) and found that
IFN-b induced macrophagic infiltration in renal tissue (78).
Yoshikawa M et al. found that IFN-b down-regulates CXCR5
expression in B cells and IFN-g upregulates CXCR3 expression in
B cells, which induces B cell infiltration in renal tissue of LN
patients (153). Besides, IFN-I regulates these immune cells.
Kishimoto D et al. found that IFN-I inhibited the anti-
inflammatory properties of M2-like macrophages in the
glomerulus by up-regulating Bach1 and down-regulating ho-1
expression, thus promoting glomerular inflammation (154).

IFN-I Promotes Renal Tissue Injury
IFN-I Promotes Glomerular Sclerosis
Podocyte
Impair to podocyte structure is one of the early symptoms of
glomerular injury and is a characteristic of LN (155–157).
Podocytes are highly differentiated epithelial cells that are fixed
on the basement membrane through the extension of the foot
process and interact with the surrounding podocytes to form a
slit diaphragm and eventually a filtration barrier. The slit
diaphragm is a unique cellular connection formed by podocin-
specific proteins such as nephrin and podocin, which interact
with the actin cytoskeleton (158). The actin cytoskeleton is the
main structure of podocytes. Disorders of actin cytoskeleton play
a major role in FPE and mitotic catastrophe, leading to podocytes
detachment and proteinuria (159–161).

Podocyte cells are induced to produce IFN-b, which in turn
stimulates podocyte B7-1 expression and actin remodeling (162).
IFN-b specifically promotes podocyte detachment or death by
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inducing mitotic catastrophe in podocytes. IFN-a prevents
podocyte repair by causing cell-cycle arrest and inhibiting
proliferation and migration of PECs. And both of the above
IFNs suppress renal progenitor differentiation into mature
podocytes, which conducive to focal scar formation but not to
glomerular repair (163). dsDNA induces podocytes to secret
IFN-b. IFN-b expression activates IFNAR. IFNAR-associated
JAK1 and TYK2 kinases then phosphorylate STAT1, which
promotes transcription of apolipoprotein L1 (APOL1). And
activated STAT1 up-regulates IFI16, which triggers a positive
feedback mechanism promoting APOL1’s expression (116).
Overexpression of APOL1 in podocytes is highly toxic. The
APOL1 allele G1 and G2 are risk factors for LN and end-stage
renal disease associated with lupus nephritis (LN-ESRD) in
African Americans (164, 165). The observed injury of
glomerular podocytes in LN suggests that the increase of
APOL1 risk variant in podocytes of SLE patients may promote
the faster progression of LN and LN-ESRD (155–157). Recent
studies have shown that IFN-a is also associated with damage to
podocyte structure and function. IFN-a has a significant effect
on the filtration barrier function of podocytes. At the same time,
IFN-a attenuates the mTORC1 signal and induces podocyte
autophagy. However, increased autophagy ameliorates IFN-a-
induced podocyte injury (166). This seems to show a protective
negative feedback regulation.

GEC
GECs are also the component of the glomerular filtration barrier.
Previous studies have shown that IFN-I, especially IFN-a,
mediated endothelial dysfunction and caused the EC apoptosis
(167), which increases GECs permeability and results in a loss of
glomerular filtration barrier function.

RMC
RMCs are the key factor in LN glomerular fibrosis in LN. They
play an important role in homeostasis by maintaining
glomerular structure, producing and maintaining mesangial
matrix, regulating filtration surface area and phagocytizing
apoptotic cells or ICs (49). In response to ICs deposition and
cytokine-induced injury, RMCs promote glomerular fibrosis
through hypertrophy and proliferation (168). PDGF-B is a
proliferation/migration-inducing growth factor that induces
RMC proliferation in glomerulonephritis (169). TGF-b1
activates the downstream Smads signaling pathway by
autocrine/paracrine, inducing the production of PDGF-B. The
IFN-b autocrine/paracrine loop activates Smad7 which inhibits
Smad3/4 activation and prevents induction of PDGF-B (170).
However, studies have shown that IFN-a/b stimulation increases
TGF-b1 expression (44, 78), which may enhance the expression
of PDGF-B and promote the proliferation of RMCs. Moreover,
CXCL10 induced by IFN-I not only recruit leukocytes but also
aggravates RMC proliferation by activating ERK signaling
pathway (171).

In addition to overproliferation, RMCs are one of the major
stromal generating cells, secreting mesangial matrix components,
such as type I collagen (COL I), type III collagen (COL III), and
fibronectin (FN). TGF-b1/Smads signaling pathway plays a major
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role in the excess extracellular matrix (ECM) (172, 173). First, the
TGF-b1/Smad signaling pathway up-regulated matrix protein
synthesis, including COL I and COL III. Second, the TGF-b1/
Smad signaling pathway inhibits matrix degradation. The addition
of TGF-b1 to normal glomerulus significantly reduced the activity
of plasminogen activator (PA) and increased the synthesis of
plasminogen activator inhibitor 1 (PAI-1) (174). TGF-b1
regulates the expression of MMP-9 (44); the main function of
MMPs is to degrade ECM components, so it seems that TGF-b1
enhances matrix degradation. However, a large number of studies
have shown that the levels of MMPs and tissue inhibitors of
metalloproteinases (TIMPs) in serum, urine and glomerulus of LN
patients are increased, accompanied by the deposition
of mesangial matrix (78, 175–179). Overexpressed MMPs
interact with TIMPs, changing matrix composition to promote
mesangial matrix expansion (178). IFN-a/b induces high
expression of MMP-9 and TIMP-1 in the kidney (78). Besides,
TGF-b1 alters the expression of mesangial a1b1 and a5b1
integrins and their ligands (such as laminin, collagen, and FN),
promoting matrix adhesion (180).

IFN-I can indirectly induce TGF-b1 expression in RMCs. In
addition to CXCL10, IFN-I induced RMCs expression of
monocyte chemotaxis proteins 1(MCP-1/CCL2) and IL6.
Increased MCP-1 levels stimulate the formation of TGF-b1 in
renal resident cells (181) and induce Col IV mRNA expression,
collagen deposition, and FN expression (182). The role of IL-6 in
renal fibrosis remains controversial. Previous studies have shown
that IL-6 does not play an important role in the development of
renal fibrosis (183). Recent studies have shown that
overexpression of IL-6 and its receptor reduces the abundance
of FN and Col IV in RMCs (184); IL-6 trans signal transduction
may be involved in the occurrence and development of renal
fibrosis (185). This is consistent with the theory that IL-6 signaling
is mediated through two main pathways. The anti-inflammatory
activity of IL-6 is mediated through classical signaling pathways,
whereas the pro-inflammatory property is mediated through
trans-signaling pathways (186). Moreover, IFN-I autocrine/
paracrine loops largely induce RMCs death (121). On the whole,
IFN-I shows a significant damaging effect on RMCs (187, 188).

IFN-I Promotes Renal Interstitial Fibrosis
Renal interstitial fibrosis is the result of the chronic inflammatory
process. During chronic inflammation, different cell components
and complex signaling networks interact to lead to the
development of renal myofibroblasts, which lead to excessive
accumulation of ECM, a major and common feature of different
chronic kidney diseases. The possible origin of myofibroblasts
from renal epithelial/endothelial cells, fibroblasts, or pericytes
remains a subject of debate (189–195). LeBleu VS et al. showed
that proliferative myofibroblasts account for 50%, derived from
resident fibroblasts; non-proliferative myofibroblasts derive
through differentiation from bone marrow (35%), the
endothelial-to-mesenchymal transition (EndMT) program
(10%) and the epithelial-to-mesenchymal transition (EMT)
program (5%) (193). TGF-b1 still plays a central role in many
fibrotic factors (196). First, TGF-b1 promotes the proliferation of
fibroblasts. fibroblast growth factor 2 (FGF-2) is a powerful
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mitogen of fibroblasts, promoting the autocrine growth of
fibroblasts (197). TGF-b1, PDGF-B and FGF-2 jointly promote
the proliferation of fibroblasts (197–199). Second, TGF-b1
promotes the transformation of other cells into myofibroblasts.
TGF-b1 induces the functional transformation of TECs and
GECs into myofibroblasts, which are responsible for ECM
deposition (193, 200–204). MMP-9 is involved in EndMT and
EMT through Notch signaling up-regulation, and its activation is
located downstream of TGF-b1 (205, 206). FGF-2 also plays an
important role in EMT (207–209). TGF-b1 is also involved in
fibroblast-myofibroblast transformation through TGFR1
phosphorylation and subsequent Smad2/3 pathway mediating
a-SMA transcription and myofibroblast differentiation (210).
TGF-b1 and PDGF transform fibroblasts into myofibroblasts
(211, 212), which together with fibroblasts produce ECM (213,
214). In addition to the TGF-b1 signaling pathway, the PDGF
signaling induces pericytes proliferation and differentiation into
myofibroblasts (64, 215–218). Moreover, TGF-b1 regulates PA,
PAI-1, MMP-9, and integrin to inhibit matrix degradation and
promote ECM accumulation and interstitial fibrosis (44, 174,
178, 180).

TGF-b1 is mainly produced by TECs. Whether IFN-I induces
TECs to secrete TGF-b1 remains to be seen. IFN-a induces barrier
instability and apoptosis of TECs (219–221), which may activate
TECs. In the recent single-cell RNA sequencing studies of renal
biopsies from LN patients, the expression of IFN-I response genes in
TECs from LN patients was significantly higher than those of
healthy control subjects (222) and correlates with clinical scores
and with the response to treatment (223). Activated TECs secrete a
series of pro-inflammatory mediators and absorb more circulating
monocytes into the renal tubulointerstitium; infiltrated monocytes
become activated macrophages (224). IFN-I also recruited
macrophages to infiltrate (78). Activated macrophages secrete
PDGF, TGF-b1, MMP and TIMP, which are involved in the
regulation of tissue fibrosis (224). Similarly, IFN-I can enhance
the process of renal interstitial fibrosis through MCP-1/CCl2 and
IL-6 (181, 184, 185).

IFN-I Promotes Renal Microvascular Lesions
The imbalance between vascular endothelial injury and repair is
a key event in vascular lesions. IFN-I breaks this balance (225).
Endothelial progenitor cells (EPCs) are the main repair
mechanism. IFN-I induces CXCL9/10/11 expression. CXCL9/
10/11 activates chemokine-receptor-3B (CXCR3B)-Gs-adenylyl
cyclase (AC)-cyclic adenosine monophosphate (cAMP)-protein
kinase A (PKA) signaling pathways, directly promoting ECs and
EPCs dysfunction (225). It also up-regulates the function of other
pro-EPC dysfunction factors (IL-18 (226), BAFF (133, 134, 227))
and down-regulates the function of pro-angiogenic molecules
(IL-1b and VEGF (167)), which indirectly leads to
EPC dysfunction.

IFN-I promotes vascular imperfection by affecting pericytes.
IFN-I regulates TGF-b1 and PDGF expression (44, 78, 170).
TGF-b1 and PDGF signaling pathways induce pericytes to
proliferate and differentiate into myofibroblasts (64, 215–218).
Pericytes are attached to the surface of capillary wall and share a
developmental origin with fibroblasts. Normal pericytes stabilize
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the walls of blood vessels and maintain vessel tranquility and
integrity. Activated pericytes are shed from the vascular wall and
transformed into myofibroblasts (195, 228–232). Loss of
pericytes leads to the formation of fragile capillaries and
unstable, pathological blood vessels, ultimately resulting in
renal vascular thinning (233). The loss of capillaries around
renal tubules is closely related to renal fibrosis.
CONCLUSION

Cell-free DNA/RNA accumulation is the initial step of lupus and
LN. Cell-free DNA/RNA and the nucleic acid components of ICs
trigger the DNA/RNA sensors in renal resident cells, thus
activating the signaling pathway for IFN-I production. IFN-I in
turn induces nucleic acid exposure and the formation of
autoantibodies. IFN-I acts on renal resident cells and is
involved in the whole process of renal injury, especially the
activation of the TGF-b1/Smads signaling pathway. Also, IFN-I
recruits leukocytes into renal tissues through the CXCL9/10/11-
CXCR3A-Gi-PI3K-MAPK signaling pathway, enhancing renal
fibrosis response. Moreover, IFN-I promotes renal microvascular
lesions, further damaging renal function. IFN-I is found in
almost every link of the pathogenesis of LN. Therefore, IFN-I
plays an important role in the pathogenesis of LN. Targeting
IFN-I systems in the kidney has potential therapeutic effects on
the premature emergence of LN in SLE patients. It also suggests
that the immune function of renal resident cells is greater than
that of the renal immune cells in LN and renal resident cells are
Frontiers in Immunology | www.frontiersin.org 11
the dominant player and acceptor in the occurrence and
development of LN. The study on renal resident cells will
further deepen the understanding of LN and contribute to the
targeted therapy of LN in the future.
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GLOSSARY

AC adenylyl cyclase
AGN autoimmune glomerulonephritis
APOL1 apolipoprotein L1
APL anti-phospholipid antibody
AS arteriosclerosis
BAFF B cell activating factor
BCR B-cell receptor
cAMP cyclic adenosine monophosphate
cGAS cyclic GMP-AMP (cGAMP) synthase
CIC circulating immune complex
COL I type I collagen
COL III type III collagen
CTGF connective tissue growth factor
CXCL (C-X-C motif) ligand
CXCR3B chemokine-receptor-3B
DAI DNA-dependent activator of IFN-regulatory factors
Dnase-1 deoxyribonuclease 1
EC endothelial cell
ECM extracellular matrix
EDS electron-dense structures
ESRD end-stage renal disease;
EMT epithelial-to-mesenchymal, transition;
EndMT endothelial-to- mesenchymal transition
EPC endothelial progenitor cell
FGF-2 fibroblast growth factor 2
FN fibronectin
FPE foot process effacement
GBM glomerular basement membrane
GEC glomerular endothelial cell
HA hyaluronic acid
HIF-1a hypoxia- inducing factor-1a
IC immune complex
ICD vascular immune complex deposits
IFI16 interferon-inducible protein 16
IFNAR type I interferon receptor
IFN-I type I interferons
ISG IFN-stimulated gene
LN lupus nephritis
LN-ESRD end-stage renal disease associated with lupus nephritis
MAVS mitochondrial antiviral signaling
MCP-1 monocyte chemotaxis proteins 1
MDA5 melanoma differentiation-associated protein 5
MIF macrophage inhibitory factor
MMP matrix metalloproteinases
NET neutrophil extracellular trap
NNV non-inflammatory necrotizing vasculopathy
PA plasminogen activator
PAI-1 plasminogen activator inhibitor 1
pDC plasmacytoid dendritic cell
PDGF platelet-derived growth factor
PEC parietal epithelial cell
PKA protein kinase A
PTC EC peritubular capillary endothelial cell
RIG-I retinoic acid-inducible gene I
RMC renal mesangial cell
ROS reactive oxygen species
SLE systemic lupus erythematosus
STING stimulator of interferon genes
TBK1 TANK- binding kinase 1
TEC renal tubular epithelial cell
TFH Follicular helper T cell
TGF- b1 transforming growth factor-b1

(Continued)
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TIMP tissue inhibitors of metalloproteinases
TLR Toll-like receptor
TMA thrombotic microangiopathy
TPH peripheral helper T cell
TRV true renal vasculitis
VEGF vascular endothelial growth factor
VISA virus- induced signaling adapter a-smooth muscle actin (a-SMA)
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