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Abstract: A non-targeted volatile metabolomic approach based on the gas chromatography-quadrupole
time of fight-mass spectrometry (GC-QTOF-MS) coupled with two different sample extraction techniques
(solid phase extraction and solid phase microextraction) was developed. Combined mass spectra of
blueberry wine samples, which originated from two different cultivars, were subjected to orthogonal
partial least squares-discriminant analysis (OPLS-DA). Principal component analysis (PCA) reveals
an excellent separation and OPLS-DA highlight metabolic features responsible for the separation.
Metabolic features responsible for the observed separation were tentatively assigned to phenylethyl
alcohol, cinnamyl alcohol, benzenepropanol, 3-hydroxy-benzenethanol, methyl eugenol, methyl
isoeugenol, (E)-asarone, (Z)-asarone, and terpenes. Several of the selected markers enabled a
distinction in secondary metabolism to be drawn between two blueberry cultivars. It highlights the
metabolomic approaches to find out the influence of blueberry cultivar on a volatile composition
in a complex blueberry wine matrix. The distinction in secondary metabolism indicated a possible
O-methyltransferases activity difference among the two cultivars.
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1. Introduction

Blueberries are known to be a potential source of natural antioxidants such as anthocyanins [1]
and phenolics [2], and have demonstrated a broad spectrum of biomedical functions [3–5]. Blueberries
are widely grown around the world, and their production in China has grown every year since being
introduced from United States in 1989 [6]. Blueberry wine is a berry fruit wine that has dark red color,
pleasant blueberry aroma, and may have a multitude of health benefits [7,8]. Although not as famous
as grape wine, blueberry wine is quickly growing in popularity. The production process closely mimics
that of both red and white wines. The health-enhancing antioxidants, total phenols, anthocyanins, and
flavonoids in blueberry wines as well as in blueberry wine pomace have been widely reported [7–10].
But fewer studies have focused on the aroma/volatile composition of blueberry wines, although aroma
is one of the most important qualities for wine products [11].

It is well known that grape varietal difference largely affect the aroma of corresponding
wines [12–14]. Among various Vaccinium species and blueberry cultivars, significant variation in
number and quantity of volatile compounds has been reported [15]. Generally, the dominant volatiles
in blueberries are C6 compounds, such as (E)-2-hexenol and (E)-2-hexenal, followed by terpenoids
and esters [16,17]. Understanding the aroma, especially cultivar aroma of blueberry wines, could
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help the raw material selection and lead to better quality control in blueberry wine production.
However, volatile analysis in wine is always challenging, due to compound complexity, detection
limit, and matrix interferences, thus it often requires multiple extraction steps. Among the various
sampling techniques, solid phase extraction (SPE) is widely used in wine volatile analysis [18,19].
Among the numerous SPE phases offered today, LiChrolut-EN (ethylvinyl benzene-divinylbenzene),
which was introduced in the market in the 1990s, has a high extraction capacity due to its high
specific areas. It has been demonstrated that LiChrolut-EN has a much stronger retention of volatiles
than other commonly used sorbents, such as bond Elut ENV (styrene- divinylbenzene), Amberlite,
and Tenax TA [20,21]. Another commonly used technique is solid phase microextraction (SPME),
which can extract volatile and semi-volatile organic compounds from environmental, biological, and
food samples [22–24]. There are also a lot of commercially available stationary phases, although the
divinylbenenze/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) is the most frequently used on
an expanded range of analytes.

Gas chromatography-mass spectrometry (GC-MS) is the most widely used technique for volatile
compound detection. Limitations of the traditional GC-MS technique include its relatively low sensitivity
and limited number of compound examinations. The relative concentrations of volatile compounds
in foods can vary from millimolar to picomolar level, which easily exceed the linear range of the
analytical techniques employed. Compounds at low concentrations, which may be of great importance,
are often ignored, thus causing inconsistency and bias in the results. Recent developments in plant
metabolomic techniques allow faster and more sensitive metabolite detection, which make it possible
to compare complex sample matrix reliably and to identify differences and similarities objectively [25].
The metabolomic techniques can help resolve many issues and questions related to food safety, traceability,
quality, new foods, transgenic foods, functional foods, nutraceuticals, etc. [26]. For example, Fourier
transform ion cyclotron resonance-mass spectrometry (FTICR-MS) combined with ultra-high performance
liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and multivariate
statistical tools could provide a fine description of the chemical complexity and geographic origins of
wines [27]. Wine metabolomic data from GC-MS could be correlated with the sensory properties
of wine [28]. The application of wine metabolomics could also help to reveal new compounds in
wines [29]. Besides on wine, the metabolomic techniques have been applied on many other food
matrices such as tea [30], essential oils [31], as well as fermented strawberry products [32].

Since a huge amount of data is usually obtained from omics studies, it is necessary to develop
strategies to convert the complex raw data obtained into useful information. However, most of the
current approaches were focused on the non-volatile metabolites [33,34], which could not reflect the
aroma quality of the sample. Therefore, in the present study, we developed a non-targeted volatile
metabolomic approaches based on the GC-QTOF-MS coupled with two different sample extraction
techniques (SPE and SPME), followed by multivariate statistics, to study the difference of cultivar
volatile metabolites in wines made from two southern highbush blueberry cultivars (interspecific
hybrids of Vaccinium virgatum, Vaccinium corymbosum, and Vaccinium darrowii)—“Misty” and “O’Neal”,
grown in central China. Results of the analysis highlight the potential of the use of combined volatile
extraction methods and metabolic tools for a direct analysis of the raw material difference of food after
the complicated processing steps.

2. Material and Methods

2.1. Fruit Harvest and Winemaking

Fruits were purchased from a commercial blueberry orchard in Huangpi, Hubei, China (N 31◦06′,
E 114◦28′). Blueberries from plants of the O’Neal and Misty cultivars were randomly harvested on
the same day in June of 2016. Only berries that were at their commercial maturity were selected. The
two cultivars were grown under similar horticultural conditions (e.g., irrigation, fertilization, etc.).
After harvest, blueberries were cooled in an air-conditioned room (~20 ◦C) for half an hour, then
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transported to the laboratory and frozen (−20 ◦C, 50 h) before winemaking. Three kg of blueberries of
each cultivar were thawed and crushed manually in microscale fermenters (5 L). Each cultivar was well
mixed before winemaking and separated into 4 replicates to avoid compositional variation. The brix
of the blueberry was measured using a PAL-1 pocket refractometer (Atago USA, Inc., Bellevue, WA,
USA), and was adjusted to 20 by adding sucrose. Fifty mg/L SO2 (as potassium metabisulfite) was
added to each ferment, and 0.02 g/kg pectinase EX (Lallemand, Montreal, QC, Canada) were added
half an hour later. Fermenters were placed in a temperature-controlled rooms set at 27 ◦C, warmed
to room temperature, and inoculated with Saccharomyces cerevisiae D254 (Lallemand, Montreal, QC,
Canada) at approximately 106 cfu/mL after rehydration, according to the manufacturer’s specifications.
After 24 h of fermentation, diammonium phosphate (DAP, 300 mg/L) was added to each ferment to
assist the yeast growth. During fermentation, the ferments were punched down every 24 h. After all
fermentations reached dryness (<0.5 g/L reducing sugar as measured by a glucose meter, Sinocare Inc.
Changsha, China), they were pressed using a cheese cloth. Wines were placed in a cold room at 14 ◦C
to settle for 10 days, then racked, and an addition of SO2 (30 mg/L) was added prior to being bottled
in 500 mL wine bottles and stored at 4 ◦C before analysis.

2.2. Chemicals

LiChrolut EN cartridges (500 mg, 6 mL) were obtained from Merck (Darmstadt, Germany). All
chemicals were of analytical reagent grade unless otherwise stated, and water was obtained from a
Milli-Q purification system (MilliporeSigma, Burlington, MA, USA). Folin-Ciocalteu reagent, sodium
carbonate, sodium acetate, potassium chloride, sodium chloride, sucrose, methanol (HPLC grade),
ethanol (HPLC grade), dichloromethane (HPLC grade) and gallic acid were purchased from SCR®

(Shanghai, China). Eucalyptol (99%), linalool (≥95%), (−)-myrtenol (95%), carveol (97%, mixture
of isomers), borneol, (≥99.0%, sum of enantiomers, GC), terpinolene (≥94.0%), β-citronellol (95%),
geraniol (98%), ethyl-2-methylbutyrate (99%), ethyl-3-methylbutyrate (98%), (Z)-3-hexenol (98%),
(E)-2-hexenol (96%), benzyl alcohol (≥99%), phenylethyl alcohol (≥99%), cuminic alcohol (97%),
methyl butanoate (99%), isobutyl acetate (99%), ethyl butanoate (99%), isoamyl acetate (≥99%),
methyl benzoate (99%), ethyl benzoate (≥99%), diethyl succinate (99%), methyl salicylate (≥99%),
ethyl octanoate (≥99%), ethyl decanoate (98%), methyl vanillate (99%), decanoic acid (≥98.0%),
benzaldehyde (≥99%), p-cresol (99%), 4-vinylguaiacol (≥98.0%), vanillin (99%), (E)-asarone (98%),
(Z)-asarone (70%) were obtained from Sigma-Aldrich (St. Louis, MO, USA). All volatile standards
were prepared by dilution with HPLC grade methanol.

2.3. Basic Parameter Measurements for Blueberries and Resulting Wines

The basic chemical parameters for berries and wines are shown in Table 1. The wine alcohol contents
were measured by hydrometer after distillation and pH was measured by pH meter. Yeast assimilable
nitrogen (YAN) of the must is expressed as the sum of primary amino nitrogen and ammonia nitrogen.
The primary amino acids in blueberries were tested using an Ortho-phthaldialdehyde/N-acetyl-L-cysteine
(OPA/NAC) spectrophotometric assay [35]. The ammonia nitrogen was measured using an Ammonia
Assay Kit (Sigma-Aldrich, St. Louis, MO, USA).

Table 1. Basic parameters for fruit and wine samples in this study. Mean ± SD presented (n = 4).

Sample Parameters O’Neal Misty

Berry

TSS 11.4 ± 0.4 11.2 ± 0.3
pH 3.33 ± 0.03 3.25 ± 0.06

Berry Water Content (%) 86 ± 0 87 ± 0
Berry Density (g/cm3) 1.0 ± 0.0 1.0 ± 0.0

Yeast Assimilable Nitrogen (mg/L) 138 ± 2 204 ± 5

Wine
Alcohol Content (%) 10.5 ± 0.2 9.8 ± 0.1

pH 3.05 ± 0.02 2.94 ± 0.03
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2.4. Qualitative Analysis of Aroma Compounds

2.4.1. SPE-GC-QTOF-MS

The volatiles in wine were extracted by solid phase extraction (SPE) with LiChrolut EN cartridge
(500 mg, Merck, Darmstadt, Germany). The blueberry wine sample (100 mL) was diluted with 100 mL
of milli-Q water, and filtrated with filter paper (medium flow, Aoke, Hangzhou, China). An aliquot of
40 mL filtered wine was passed through the LiChrolut EN cartridge, followed by 10 mL of milli-Q
water. The cartridge was dried by passing through the air for 5 min, and the volatiles were eluted
with 5 mL of dichloromethane. The residual water in the eluate was carefully removed using a glass
dropper. The vial was then capped and stored at −20 ◦C until analysis. The extraction was performed
in duplicate for each of the eight biological replicates (four replicates × two varieties).

A 7200 accurate-mass GC–QTOF-MS instrument (Agilent Technologies, Santa Clara, CA, USA)
operated in electron impact ionization (EI) mode at 70 eV. MassHunter Acquisition B.06 was used
for the determination of volatile compounds. The GC separation was performed using a fused silica
HP-5MS (5% Phenyl Methyl Siloxane, 30 m × 250 µm × 0.25 µm) column. The GC oven temperature
was programmed starting at 40 ◦C for 5 min, and increased to 180 ◦C at 3 ◦C/min and held for
1 min, then increased to 300 ◦C at 30 ◦C/min and held for 2 min. The samples were injected by
an ALS autosampler (Agilent Technologies, Santa Clara, CA, USA). Splitless injections of 1 µL of
sample (eluate from SPE) were carried out at 250 ◦C and ultra-pure grade helium was used as the
carrier gas at flow rate of 1.2 mL/min. The interface and ion source temperatures were set to 300 ◦C
and 250 ◦C, respectively. A solvent delay of 4 min was used to prevent damage in the ion source
filament. QTOF-MS was operated at mass range of m/z 35 to 350. Mass calibration was performed
daily. The in-batch order of all samples analyzed in this study was randomized with one blank sample
injection for every 5 samples.

2.4.2. SPME-GC-QTOF-MS

Free form volatiles in the blueberry wines were measured using the headspace-solid phase
microextraction (HS-SPME) method coupled with GC-QTOF-MS. A 50/30 µm DVB/CAR/PDMS
fiber (Supelco Inc., Bellefonte, PA, USA) was used for volatile extraction. One mL of wine sample was
diluted with 9 mL of citrate buffer (0.2 M, pH 5.0) in a 20 mL vial, and 3 g of NaCl were added with a
small magnetic stir bar. The vial was tightly capped and equilibrated at 50 ◦C in a thermostatic bath
for 15 min and extracted by SPME fiber for 45 min at the same temperature with stirring (500 rpm).
After extraction, the fiber was inserted into the injection port of GC (250 ◦C) to desorb the analytes.
The extraction and desorption was conducted manually. The GC-QTOF-MS conditions were the same
as described above, except the split ratio was 1:10, and no solvent delay was used. The extraction
was performed in duplicate for each of the eight biological replicates (four replicates × two varieties).
The in-batch order of all samples analyzed in this study was randomized with one blank sample
injection for every 5 samples.

2.4.3. Compound Identification

Background subtraction was first performed using the MassHunter B.06.00 software. Metabolite
identification was performed manually by comparing retention times and accurate mass spectra
(mass difference of less than 5 ppm and two ions) to those of the standards, when available.
Tentative annotation of the chromatographic peaks, without a standard, was made by using spectral
features (mass difference of less than 5 ppm theoretical value, at least one indicative fragment and
isotopic pattern), literature information about chromatographic properties, mass spectra records from
external databases such as The National Institute of Standards and Technology (NIST), The Human
Metabolome Database (HMDB), MassBank and an internal database for the wine volatiles based on
the literature, and by comparing the Kovats retention indices (RI) in NIST database and published
literatures. Deconvolution supported by MassHunter B.06.00 software was performed to extract
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possible components in a peak if no match was found. For example, β-phellandrene was detected
at 18.75 min. The average spectrum of the peak at 18.75 min extracted by conventional manual
background subtraction (Figure 1a) could not match with any known compound in the library, due to
the co-elution. After deconvolution, ions like m/z 93.0704, 79.0533, and 65.0371, etc., having similar
peak shapes at 18.75 min, were grouped to reconstruct a deconvoluted spectrum (Figure 1b), which
could be tentatively identified as β-phellandrene by comparing the spectrum with the NIST library
(Figure 1c) and by comparing the accurate mass of the ions from the predicted spectrum (Figure 1d).
The compound was further confirmed by comparing the calculated RI with the RI in the published
literature (Table 2).

Molecules 2018, 23, x FOR PEER REVIEW  5 of 18 

 

18.75 min. The average spectrum of the peak at 18.75 min extracted by conventional manual 
background subtraction (Figure 1a) could not match with any known compound in the library, due 
to the co-elution. After deconvolution, ions like m/z 93.0704, 79.0533, and 65.0371, etc., having similar 
peak shapes at 18.75 min, were grouped to reconstruct a deconvoluted spectrum (Figure 1b), which 
could be tentatively identified as β-phellandrene by comparing the spectrum with the NIST library 
(Figure 1c) and by comparing the accurate mass of the ions from the predicted spectrum (Figure 1d). 
The compound was further confirmed by comparing the calculated RI with the RI in the published 
literature (Table 2).  

 

Figure 1. Example of β-Phellandrene detection in a blueberry wine sample (a) The average spectrum 
of β-Phellandrene extracted by conventional manual background subtraction; (b) the deconvoluted 
spectrum of β-Phellandrene. (c) β-Phellandrene spectrum from NIST library; (d) Predicted GC-MS 
Spectrum-GC-MS (Non-derivatized)-70 eV, Positive (HMDB0036081), obtained from The Human 
Metabolome Database (HMDB).

Figure 1. Example of β-Phellandrene detection in a blueberry wine sample (a) The average spectrum
of β-Phellandrene extracted by conventional manual background subtraction; (b) the deconvoluted
spectrum of β-Phellandrene. (c) β-Phellandrene spectrum from NIST library; (d) Predicted GC-MS
Spectrum-GC-MS (Non-derivatized)-70 eV, Positive (HMDB0036081), obtained from The Human
Metabolome Database (HMDB).
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Table 2. Characterization and relative peak size a of the volatile compounds detected in different blueberry wines by different volatile extraction methods.

No. Compound Exact Mass (Da) RI b LRI c Identification d
SPE SPME

Misty O’Neal Misty O’Neal

Alcohols
1 ethanol 46.042 730 668 MS e, RIL f +++ +++
2 1-pentanol 88.089 771 766 MS, RIL +++ +++
3 2-Methylbutan-1-ol 88.089 773 779 MS, RIL t i t
4 (Z)-3-hexenol 86.073 856 858 S g, MS, RI h + +
5 (E)-2-hexenol 86.073 865 853 S, MS, RIL t t
6 2-ethyl-1-hexanol 130.136 1025 1032 MS, RIL + +
7 benzyl alcohol 108.058 1029 1039 S, MS, RIL ++ + + +
8 phenylethyl alcohol 122.073 1111 1111 S, MS, RIL +++ +++ +++ +++
9 benzenepropanol 136.089 1227 1231 MS, RIL ++ t

10 cuminic alcohol 150.104 1286 1284 S, MS, RIL + ++
11 cinnamyl alcohol 134.073 1301 1312 MS, RIL ++ t t t
12 3-hydroxy-benzeneethanol 138.068 1422 - MS ++ +++
13 homovanillyl alcohol 168.079 1527 1530 MS, RIL + +

Esters
14 ethyl acetate 88.052 742 628 S, MS, RI +++ +++
15 methyl butanoate 102.068 768 724 S, MS, RIL + +
16 isobutyl acetate 116.084 794 776 S, MS, RIL + +
17 methyl isovalerate 116.084 795 765 MS, RIL + ++
18 ethyl butanoate 116.084 811 804 S, MS, RIL + +
19 ethyl 2-methylbutanoate 130.099 851 849 S, MS, RI + +
20 ethyl 3-methylbutanoate 130.099 854 853 MS, RI + ++
21 isoamyl acetate 130.099 875 876 S, MS, RIL ++ ++
22 ethyl hexanoate 144.115 998 1002 MS, RIL + + + +
23 methyl benzoate 136.052 1090 1103 S, MS, RIL ++ ++
24 ethyl benzoate 150.068 1168 1185 S, MS, RIL + ++ ++ +++
25 phenylethyl formate 150.068 1178 1176 MS, RIL + +
26 diethyl succinate 174.089 1183 1167 S, MS, RIL ++ + +++ +++
27 methyl salicylate 152.047 1189 1198 S, MS, RIL + ++
28 ethyl octanoate 172.146 1198 1198 S, MS, RIL ++ + +++ ++
29 ethyl decanoate 200.178 1395 1398 S, MS, RIL + +
30 methyl vanillate 182.058 1513 1525 S, MS, RIL ++ +
31 ethyl 4-hydroxyphenylacetate 180.079 1550 1559 MS, RIL + t
32 benzoic acid, 3,4,5-trimethoxy-, methyl ester 226.084 1718 - MS +

Ketones
33 3-hydroxy-2-butanone 88.0524 742 718 MS, RIL +++ +++
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Table 2. Cont.

No. Compound Exact Mass (Da) RI b LRI c Identification d
SPE SPME

Misty O’Neal Misty O’Neal

Acids
34 isovaleric acid 102.068 865 877 MS, RIL ++ +
35 hexanoic acid 116.084 991 982 MS, RIL + +
36 decanoic acid 172.146 1368 1373 S, MS, RIL + + + +
37 homovanillic acid 182.058 1639 1633 MS, RIL + +

Aldehyde
38 benzaldehyde 106.042 953 960 S, MS, RIL + +++
39 2,4-dimethyl benzaldehyde 134.073 1208 1181 MS, RIL + +
40 syringaldehyde 182.058 1653 1667 MS, RIL t t

Terpenes
41 eucalyptol 154.136 1024 1030 S, MS, RI + t
42 β-phellandrene 136.125 1068 1053 MS, RIL + t
43 terpinolene 136.125 1098 1087 S, MS, RI + + +++ ++
44 linalool 154.136 1099 1096 S, MS, RI ++ ++ +++ ++
45 borneol 154.136 1160 1162 S, MS, RI + ++
46 α-terpineol 154.136 1187 1186 S, MS, RI + ++ + ++
47 myrtenol 152.120 1191 1194 S, MS, RI + ++
48 (E)-carveol 152.121 1216 1217 S, MS, RI + + + +
49 β-citronellol 156.151 1125 1233 S, MS, RI ++ +
50 p-menth-8-en-3-ol 154.136 1336 - MS + t t t
51 p-mentha-1(7),8(10)-dien-9-ol 152.120 1340 - MS ++ +
52 (E)-sobrerol 170.131 1374 1374 MS, RIL + t

Thiols
53 methionol 135.230 978 978 MS, RIL ++ +
54 dihydro-2-methyl-3(2H)-thiophenone 116.030 985 994 MS, RIL + + + +

Phenols and derivatives
55 p-cresol 108.058 1075 1075 S, MS, RIL t ++
56 4-vinylguaiacol 150.068 1309 1323 S,MS, RIL + ++
57 eugenol 164.084 1354 1355 S, MS, RI + + ++ +++
58 methyl eugenol 178.099 1402 1404 MS, RIL ++ +
59 (Z)- or (E)-isoeugenol 164.084 1445 1438/1454 MS, RIL + + + +
60 methyl isoeugenol 178.099 1495 1492 MS, RIL + +

Norisoprenoids
61 4-(2,2,4-trimethylcyclohex-3-enyl)but-3-en-2-one 192.151 1216 - MS + +
62 β-ionol 194.167 1426 1428 MS, RIL +
63 4-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-2-butanone 196.183 1428 1424 MS, RIL +
64 dihydro-β-ionol 196.183 1442 1449 MS, RIL +
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Table 2. Cont.

No. Compound Exact Mass (Da) RI b LRI c Identification d
SPE SPME

Misty O’Neal Misty O’Neal

65 3-hydroxy-7,8-dihydro-β-ionol 208.146 1686 1683 MS, RIL +

Miscellaneous
66 unknown 1 - 1227 - + + ++ +
67 unknown 2 - 1253 - + ++
68 unknown 3 - 1359 - +++ +
69 vanillin 152.047 1392 1410 S, MS, RIL t t + +
70 acetovanillone 166.063 1480 1490 MS, RIL + + t t
71 (E)-asarone 208.110 1556 1561 S, MS, RIL +++ +
72 2,6-dimethoxybenzoquinone 168.042 1561 - MS + +
73 (Z)-asarone 208.110 1649 1646 S, MS, RIL +++ +

a The relative peak size was presented. +, the TIC peak area was less than 2 × 106; ++, the TIC peak area was between 2 × 106 and 5 × 107; +++, the TIC peak area was larger than
5 × 107. b Kovats index calculated on a HP-5MS capillary column; c Kovats index reported in published literatures; d Identification method; e Mass spectrum matched with NIST library;
f Calculated Kovats index matched with NIST database or published literature; g Compound identified by comparing mass spectrum with authentic standards; h Compound identified by
comparing the retention time with authentic standards; i Trace level, no peak but target ions can be extracted from background.
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2.4.4. GC-QTOF-MS Data Pre-Processing

Data of individual GC-QTOF-MS runs were first analyzed using the MZmine 2.28 software
(Free Software Foundation, Inc., Boston, MA, USA) for feature extraction, baseline correction, noise
reduction, smoothing, deconvolution, grouping, and alignment according to Pluskal et al. [36].
MZmine 2.28 data processing was limited to the first 47 min of the chromatography to avoid possible
interferences in the last 13 min (column bleeding and non-volatile compounds). Peak intensities of
analytical replicates were averaged after peak alignment. The peak table output of MZmine 2.28 was
then used for the following statistical analysis.

2.4.5. Multivariate Data Analyses and Visualization

Statistical analysis was performed with the online software MetaboAnalyst version 3.0
(http://www.metaboanalyst.ca) [37]. The metabolite feature was defined as mass-to-charge
ratio/retention time pair (m/z_RT pair). The principal component analysis (PCA) plots were used to
obtain an overview of the large datasets and visualize similarities and metabolite features responsible
for the observed patterns. The orthogonal partial least squares discriminant analysis (OPLS-DA) was
performed to obtain information on differences in the volatile metabolite composition of blueberry
wine samples. Markers for the difference between Misty blueberry wine (MBW) and O’Neal blueberry
wine (OBW) were subsequently identified by analyzing the S-plot, which was declared with covariance
(p) and correlation (p(corr)). All mass peaks were pre-processed by normalization by the median,
generalized log transformation (glog2), and using a Pareto scaling for both PCA and OPLS-DA.

3. Results

3.1. Extraction Methods

Two volatile extraction methods, SPE and SPME, were employed in this study. SPE resulted in a
higher baseline and higher noises in the mass spectrum. Compared to SPE, headspace sampling using
SPME showed good sensitivity when coupled with GC-QTOF-MS, as the peaks were saturated in
splitless mode in our preliminary tests. So, the split ratio was changed to 1:10 for SPME-GC-QTOF-MS
later, which made the peaks sharper in shape (Figure S1, supplementary figure). SPME also resulted in
a cleaner baseline, which was expected because SPME only sampled the volatiles in the headspace
and no solvent was injected. The relative peak areas (Table 2 and Figure S1) show that SPME
favored adsorption of low molecular weight volatiles. SPE showed a good performance on the
semi-volatile compound extraction, but resulted in omission of many highly volatile compounds due
to the solvent delay as well as the loss during extraction. Nevertheless, both extraction methods
introduced interferences from the handling materials, such as naphthalene and dibutyl phthalate in
the chromatograph. For SPME, more contaminants were found mainly due to the siloxane peaks from
the fiber coating. These peaks were excluded in the identification results.

3.2. Compound Identification

Instead of directly going to statistical analysis, compound identification was first performed to
get an overview of the compounds in samples and to get rid of the interference peaks/features as
much as possible. We found the identification challenging, even with the well-established MS library,
since a small molecule possesses the same or similar fragment after electron ionization, and a base ion
was often missing, which makes it difficult to determine the structure. Many volatile compounds share
similar structures, such as (Z)-3-hexenol and (E)-2-hexenol, or possess isomers, like (Z)-isoeugenol
and (E)-isoeugenol, which often resulted in highly identical mass spectra. So, RI value could serve as
a second, independent parameter for library matching for compound identification. A summary of
volatiles from two blueberry wines is shown in Table 2. A total of 41 compounds were found using
SPE-GC-QTOF-MS, while 53 compounds were observed by SPME-GC-QTOF-MS. Seventy of these
volatile and semi-volatile compounds were identified or tentatively identified by using the techniques

http://www.metaboanalyst.ca
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listed in the Table 2. There were thirteen alcohols, nineteen esters, one ketone, four acids, twelve
terpenes, two thiols, six phenols and phenol derivatives, five norisoprenoids and eight miscellaneous
compounds. Three unknown peaks were included in Table 2 since they were selected by statistical
analysis as important markers, among which unknown 1 and unknown 2 showed very similar mass
spectra (Figure S2, supplementary figure). However, they could not be identified by searching the
MS library.

3.3. Principal Component Analysis

The non-targeted QTOF-MS analysis generates a tremendous amount of data and requires
pre-treatment prior to the application of statistical tools. After data pre-processing, 8867 features
(m/z_RT pairs) were detected by the SPE method and 12,694 features were detected by the SPME
method. The principal task of the present study was the discrimination of volatile compounds between
two blueberry wines, and the detection of corresponding markers. For the initial overview of the
dataset, PCA was carried out. The score plots showed that both SPE and SPME methods could well
distinguish the two blueberry wines, and two blueberry wines were mainly separated on principal
component 1 (PC1). Score plot of SPE (Figure 2a) explained 42.9% of the total variance. Score plot
of SPME (Figure 2c) explained 41.1% of the total variance. However, due to the extremely large
number of data included, it was very hard to extract effective information from the loading plot of
PCA (Figure 2b,d), so further statistical analysis was required. Nevertheless, the PCA results certified
that the scaling method used was appropriate and there was a real separation between the two groups,
as the separation was seen despite no class data being included in the algorithm.
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Figure 2. PCA of the metabolite features detected in the blueberry wines by different sample extraction
method (SPE and SPME) followed by GC-QTOF-MS. The explained variances are shown in brackets.
(a) Score plot of SPE; (b) Loading plot of SPE; (c) Score plot of SPME; (d) Loading plot of SPME.
The PCA showing that the volatile metabolites are clearly different between Misty blueberry wine (M1,
M2, M3, M4) and O’Neal blueberry wine OBW (O1, O2, O3, O4) despite of the extraction methods.

3.4. Marker Detection and Annotation

To determine possible differences between the volatile metabolite fingerprint of MBW and
OBW samples, the volatile composition of two blueberry wines extracted by different methods
were compared using OPLS-DA (Figures 3 and 4). These models constructed with a dataset from
each extraction method separate MBW from OBW along the first discriminating component (T [1]).
The model showed one orthogonal component, with R2X = 0.274 (total variation in X explained by
the model), R2Y = 0.998 (total variation in Y explained by the model) and Q2 = 0.782 (goodness of
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prediction) from the SPE dataset, R2X = 0.25, R2Y = 0.999 and Q2 = 0.747 from the SPME dataset
(Figures 3b and 4b), indicated that both models were validated. Potential markers for separation
by different extraction methods were subsequently identified using S-plots, which were represented
with covariance (p) against correlation (p(corr)). The S-plots of the OPLS-DA were proposed for
the identification of potential markers of group separation by Wiklund et al. [38]. It shows the
most relevant variables on the differentiation of two samples. The 10 identified markers with the
highest variable influence on projection (VIP) scores by OPLS-DA are summarized in the boxplots in
Figures 3 and 4, with their corresponding compound no. in Table 2. The results showed that some
different markers were selected by SPE and SPME. The mass peak intensities of cinnamyl alcohol (11),
p-mentha-1(7),8(10)-dien-9-ol (51), benzenepropanol (9), linalool (44), methyl eugenol (58), α-terpineol
(46), phenylethyl alcohol (8), ethyl benzoate (24), 3-hydroxy benzeneethanol (12) and an unknown peak
(68) were significantly different between MBW and OBW samples by SPE (Figure 3). While, the mass
peak intensities of linalool (11), terpinolene (43), β-citronellol (49), p-menth-8-en-3-ol (50), (Z)-asarone
(73), (E)-asarone (71), phenylethyl alcohol (8), methyl eugenol (58), and two unknown peaks (66, 67)
were significantly different between MBW and OBW samples by SPME (Figure 4).
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Figure 3. OPLS-DA of metabolite features detected in the blueberry wines by SPE-GC-QTOF-MS.
(a) Score plot of all metabolite features; (b) Model overview of the OPLS-DA model; (c–e) Loadings
S-plot showing the variable importance in a model, combining the covariance and the correlation
(p(corr)) loading profile. The box-plots at bottom showed the significantly different volatile metabolites
between Misty blueberry wine (M1, M2, M3, M4) and O’Neal blueberry wine (O1, O2, O3, O4) in the
OPLS-DA model (Line, mean; box, standard error; whisker, standard deviation).
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Figure 4. OPLS-DA of metabolite features detected in the blueberry wines by SPME-GC-QTOF-MS.
(a) Score plot of all metabolite features; (b) Model overview of the OPLS-DA model; (c–e) Loadings
S-plot showing the variable importance in a model, combining the covariance and the correlation
(p(corr)) loading profile. The box-plots at bottom showed the significantly different volatile metabolites
between Misty blueberry wine (M1, M2, M3, M4) and O’Neal blueberry wine (O1, O2, O3, O4) in the
OPLS-DA model (Line, mean; box, standard error; whisker, standard deviation).

4. Discussion

It is generally accepted that volatile compounds influence the overall aroma profile when their
concentration is above their odor thresholds. However, even when the concentration is below the odor
threshold, some volatile compounds can interact with other volatiles to enhance or suppress the aroma
perception [39]. Furthermore, some of them are only present at very low concentrations but often
contribute greatly to the overall aroma [40]. Thus, it is important to have analytical tools suitable to
detect these odor compounds, to learn the complexity behind wine aroma and to be used for selection



Molecules 2018, 23, 2376 13 of 18

and quality control [41]. Performances of different volatile extraction methods has been compared
in many studies [41,42]. Andujar-Ortiz et al. [42] reported that SPE using a LiChrolut-EN cartridge
showed very good linearity, covering a wide range of concentrations of wine volatile compounds,
compared to the HS-SPME procedure. The advantage of SPME is that it can detect the highly volatile
compounds which are often covered by the solvent peaks, and can eliminate problems associated
with chemically and thermally unstable samples, thus avoiding generation of artifacts [43]. It has
to be mentioned that the performance of the analytical methods are not only dependent on the
compound extraction, but also depend on many other factors, such as column selection and instrument
conditions, which are less feasible to change in real practice. In order to recover a wider range of
volatile compounds in the blueberry wines, both SPME and SPE methods were used in our study.
For SPE, LiChrolut-EN resins were selected because previous studies showed that they had an excellent
ability for the extraction of aroma compounds from wine [42,44]. For SPME, triphase SPME fiber
(DVB/CAR/PDMS) was chosen because it had been found to extract the representative blueberry
volatiles [15]. The results showed a good coverage of compounds with different polarity, as well as
a good coverage from the highly volatile compounds to semi-volatile compounds. The PCA plots
showed that the wines made from OBW and MBW were clearly separated by the PC1, indicating
the metabolomic analysis based on different extraction methods is useful to reveal the compositional
differences of volatile compounds. However, we also observed different projections of the four
replicates between SPE and SPME within the same variety. Misty blueberry wines in Figure 2a are
projected in opposite quadrants along the PC1, showing that differences between replicates exist. The
differences between replicates might come from multiple sources, since several variables were not easy
to control, such as the inner temperature of fermenter, pre-fermentation extraction, as well as the yeast
growth [45]. It was also interesting to note that the replicates of MBW were much closer in Figure 2c
compared to Figure 2a, indicating the two extraction methods extracted different compounds thus
could affect the sample being distinguished.

Significant differences were observed between MBW and OBW samples in terms of composition
and amount of the volatile compounds. However, due to the different selectivity of SPE and SPME,
OPLS-DA found different markers from the two datasets, which could be complementary to each
other. Linalool, methyl eugenol, and phenylethyl alcohol were selected as significantly different
volatile metabolites between MBW and OBW in both of the OPLS-DA models. Only one of the
fermentation-derived compounds (phenylethyl alcohol) was selected as marker using the SPME
dataset, while five (phenylethyl alcohol, cinnamyl alcohol, ethyl benzoate, 3-hydroxy-benzeneethanol
and benzenepropanol) were selected using the SPE dataset. It was possibly due to the different
selectivity of the extraction methods, since SPME showed very poor affinity to benzenepropanol
and 3-hydroxy-benzeneethanol as well as cinnamyl alcohol. The mass peak intensities of cinnamyl
alcohol and benzenepropanol were higher in the MBW, while ethyl benzoate, phenylethyl alcohol,
and 3-hydroxy-benzeneethanol were higher in the OBW. Among them, phenylethyl alcohol was often
reported as a potential aroma compound in wine, which has a rose-like aroma [46,47].

The profile of fermentation-derived compounds, including alcohols, esters, acids, ketones, and
volatile thiols identified in the blueberry wine were similar with those reported in the grape wines.
Higher alcohols and esters mainly contribute to the fruity aroma of wine. They can be synthesized
by yeast through anabolic pathway from glucose, or catabolic pathway from their corresponding
amino acids [48]. As a result, their production in wine is highly dependent on the yeast stain,
must YAN, fermentation temperature, and oxygen availability [49]. Since the yeast strain, DAP
addition, and fermentation condition were the same in the blueberry winemaking, the differences
in fermentation-derived aroma was probably associated with the different YAN of the two cultivars
(Table 1), which was also a part of the cultivar characteristics. It was interesting that these fermentation
derived compounds were all volatile molecules with the structure of a benzene ring, which might
be associated with the metabolization of aromatic amino acids, such as tyrosine, phenylalanine, or
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tryptophan during fermentation [50,51], indicating the possible differences of aromatic amino acid
composition of the two blueberry varieties.

Generally, more of the important features detected in OPLS-DA were berry-derived compounds
such as linalool, which has the notes of rosy and fresh fruit, and has a very strong organoleptic
contribution in blueberries [15]. Besides linalool, many other terpenes were also selected by either
one of the two OPLS-DA models, such as α-terpineol, p-mentha-1(7),8(10)-dien-9-ol, terpinolene,
β-citronellol, and p-menth-9-en-3-ol, which was in agreement with previous report that terpenes
were important aroma compounds in highbush blueberries and their concentration varied with
cultivar [11,15,52].

Interestingly, we found that OBW contained several berry-derived semi-volatiles such as methyl
eugenol, methyl isoeugenol, (E)-asarone, and (Z)-asarone, which did not exist in MBW (Table 2). Methyl
eugenol and methyl isoeugenol are isomers, which are naturally occurring flavors and fragrances
found in a variety of different food sources, including spices (nutmeg, allspice), herbs (basil, tarragon),
and fruit, including bananas and oranges [53,54]. Methyl eugenol is also one of the plant metabolites
used for defense against herbivores and pathogens as well as attracting pollinators [54]. Eugenol,
isoeugenol, methyl eugenol, and methyl isoeugenol share the initial biosynthetic steps with the lignin
biochemical pathway [55]. Eugenol and isoeugenol can undergo further methylation and require
O-methyltransferases for the downstream production of methyl eugenol and methyl isoeugenol [56].
In the present study, eugenol and isoeugenol were found in both blueberry wines, but methyl eugenol
and methyl isoeugenol were only found in OBW, indicating the possible O-methyltransferases activity
difference among the two cultivars, which needs to be confirmed in the future studies. (Z)-Asarone
has been found in glycoside form in pineapple wines [57]. It has also been reported as bioactive
compounds in some of the medicinal plants such as rhizomes of Acorus gramineus [58]. It is interesting
that (Z)-asarone has been reported to have neuroprotective and cardiovascular protective effects
in an animal model [59]. Compared to the well-known antioxidants in blueberry wines, such as
anthocyanins and phenolics, these compounds have received much less attention and might be worth
to be further explored.

The other group of volatile compounds that was very different among the two blueberry wine
samples was the C13-norisoprenoids. C13-norisoprenoids are degradation products of carotenoids in
many plants including blueberry [60,61]. Many of them are also well-known scent compounds with
extremely low sensory thresholds, and are also important sources of grape-derived flavors in wines [62].
Among the five C13-norisoprenoids tentatively identified, only 4-(2,2,4-trimethylcyclohex-3-enyl)
but-3-en-2-one was found in both blueberry wines. Dihydro-β-ionol was only detected in OBW, while
β-ionol, 3-hydroxy-7,8-dihydro-β-ionol, and 4-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-2-butanone
were only observed in MBW, indicating that the two cultivars might differ in the C13-norisoprenods
biosynthesis pathway. Although the related gene expression has been reported in blueberry species [61],
little information was found for the C13-norisoprenoids metabolites in blueberries as well as blueberry
wine. Du & Rouseff [15] tentatively identified that β-damascenone was an odor active compound in
southern highbush blueberries by SPME-GC-olfactometry analysis, but no peak was found, possibly
due to low concentration. Our results showed that various C13-norisoprenoids were present in the
blueberry wines, although further study is still needed to confirm their sensory contributions.

The use of SPE/SPME and GC-QTOF-MS for non-targeted volatile metabolic profiling and
metabolite identification of blueberry wine was shown here. It provided good group separation and
revealed possible markers for O’Neal and Misty blueberry wines, several of which were unknown to
date. Further studies of these compounds in blueberries could help to confirm their cultivar correlation.
The use of combined volatile extraction methods provided a significant advantage to such approaches
since more complete volatile profiles were recovered. The results revealed the applicability of this
approach in non-targeted studies of volatile compounds of blueberry wines and possibly other complex
food products.

Supplementary Materials: Supplementary materials are available online.
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Abbreviations

SPE solid phase extraction
SPME solid phase microextraction
GC-QTOF-MS gas chromatography-quadrupole time of fight-mass spectrometry
RI Kovats retention index
MS mass spectrum
PCA principal component analysis
OPLS-DA orthogonal partial least squares discriminant analysis
MBW Misty blueberry wine; OBW, O’Neal blueberry wine
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