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Population mobility induced phase 
separation in SIS epidemic and 
social dynamics
Nathan Harding   1 ✉, Richard E. Spinney1 & Mikhail Prokopenko   1,2

Understanding the impact of behavior dependent mobility in the spread of epidemics and social 
disorders is an outstanding problem in computational epidemiology. We present a modelling approach 
for the study of mobility that adapts dynamically according to individual state, epidemic/social-
contagion state and network topology in accordance with limited data and/or common behavioral 
models. We demonstrate that even for simple compartmental network processes, our approach 
leads to complex spatial patterns of infection in the endemic state dependent on individual behavior. 
Specifically, we characterize the resulting phenomena in terms of phase separation, highlighting phase 
transitions between distinct spatial states and determining the systems’ phase diagram. The existence 
of such phases implies that small changes in the populations’ perceptions could lead to drastic changes 
in the spatial extent and morphology of the epidemic/social phenomena.

Understanding and modelling population mobility during epidemics has been highlighted as a key area of impor-
tance for epidemiology1–3, especially in cases when the epidemics occur over a prolonged time period. Recent 
Ebola virus disease (EVD) outbreaks in western Africa during 2014–2016, and the even more recent outbreaks 
in heavily populated regions in the Democratic Republic of the Congo (DRC) emphasized the complexity of the 
disease spread in volatile and diverse areas. The efforts to contain the virus have been hindered by the high rates 
of population movement from the affected areas to other areas of the DRC and across borders to neighboring 
countries, creating complex paths and patterns of the infection spread.

In cases like these, high rates of mobility characterize both infected and uninfected populations due to the 
general lack of security, long-held mistrust of authority and wide-spread community distrust. Hence, the nature 
and dynamics of spatial spread of infectious diseases4,5 must be investigated and modelled explicitly, ideally 
coupled with more established network-based6–17 and/or agent-based methods of computational epidemiol-
ogy18–21. However, there are several challenges on this path, making the development of refined epidemic models 
problematic.

One significant obstacle is the lack of high-resolution data, both in terms of contact rates and transmission 
vectors, specified within and across suitable social mixing contexts. Despite successful attempts to utilize proxy 
data, such as mobile phone usage data, in retrospective modelling of the population mobility in highly volatile 
regions during the Ebola epidemic in Sierra Leone in 201522, there are several outstanding questions about spa-
tial epidemic expansion, related to (i) the role of density-dependent transmission, especially in situations where 
mobility restrictions may increase or decrease close congregation, or in cases with highly local super-spreading 
events (e.g., burials), and (ii) the role of long-distance travel.

Another challenge for spatial modelling is the heterogeneity and sensitivity of spatial epidemic patterns to 
changes in several underlying parameters (behavioral and disease related)22. In general, the resultant patterns 
are fairly intricate, demanding more refined mechanisms going beyond simple gravity-based interactions or 
a wave-like diffusion2,20,23–25. when in real-world epidemics human mobility may not agree with these stand-
ard predictions26. In many cases these more refined models have considered time variation of the underlying 
network27–29. In related work, a mathematical model of the spatial development of social disorder, treated as a 
contagion, was shown to simulate emergent spatial patterns, while considering the distances travelled to riot 
locations and the deterrent effect of policing30. Importantly, this spatial interaction model utilized the concept 
of the rational offender contemplating the potential utilities (rewards) available at different spatial locations, 
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while minimizing costs and trying to avoid capture. Such examples30 highlight that spatial contagion models that 
address the question of individual mobility would have utility beyond the narrower scope of canonical epidemio-
logical models. Indeed, we may recognise that any evolving social phenomena that shares the underlying contact/
interaction basis for spread of a quantity of interest stands to gain from such refinements, with examples of such 
social dynamics including opinion dynamics, population segregation, social unrest and economic competition, 
where people may “go mad in herds, while they only recover their senses slowly, one by one”31.

The optimal way to model the behaviour associated with individual mobility in such models, however, 
remains an open question. In this study we aim to provide a rigorous framework that incorporates such dynamic 
human decision-making into commonly used epidemic/social phenomena models which is capable of explaining 
and categorizing spatial heterogeneity arising from variable mobility under stress. In doing so usual parameters 
impacting the evolution of the phenomena (such as the basic reproductive ratio R0

4,32,33 in epidemic models), are 
augmented by parameters accounting for varying levels of rationality.

When such behavior is introduced, cases of particular interest arise when the population contains groups 
with differing preferences and/or misaligned interests. In such cases the resulting behaviour may lead to several 
qualitatively distinct solutions, due to the possibility of emergent frustrated dynamics. This may be compared 
with pattern formations studies carried out in the context of vegetation models in ecology34,35, prey-taxis and 
predator avoidance systems36–41 and other similar diffusive processes. This may lead to the existence of phase 
transitions between distinct regimes of behavior in a space of control parameters. Population groups with varied 
compartment dependent42,43 and mobility dependent behaviors have appeared in related models30,44, but to our 
knowledge critical phenomena have not been systematically investigated in such contexts. In identifying such 
transitions we adopt approaches from statistical physics, such as percolation theory and information-theoretic 
measures of criticality.

The study of critical dynamics more broadly is of great importance to epidemiology, complex systems and 
network processes. For example, slowly varying an underlying control parameter, such as the transmissibility of 
the disease, may induce a sudden change in an observable order parameter, such as the disease attack rate4,45. 
Indeed, it has been argued that a maladapted pathogen, initially with <R 10 , can lead to an epidemic if genetic 
variations, events such as crossing the species barrier, or changes in the host population cause R0 to exceed 146. 
Other studies indicate that tracing an approach towards an epidemic threshold can also improve prediction and 
prevention of epidemics47. Of particular relevance is the study of Balcan and Vespignani48, wherein the consider-
ation of human mobility and activity patterns on the spread of infectious diseases lead to “a phase transition 
between a regime in which the contagion affects a large fraction of the system and one in which only a small 
fraction is affected”.

The modelling framework we present is based on the Boltzmann-Lotka-Volterra (BLV) methodology49. The 
dynamics underpinning the framework are comprised of a fast- and slow-scale component reflecting (i) the 
preference for temporary relocation and minimizing travel cost, and (ii) the underlying dynamics of transmis-
sion and recovery (here implemented as a Susceptible–Infectious–Susceptible (SIS) model), respectively. The 
fast-scale dynamics are modeled using the Maximum Entropy (MaxEnt) method which yields the mobility flow 
with the least bias given incomplete information about the system. Both the travel impedance and the preference 
for temporary relocation to safer locations are quantified through Lagrange multipliers interpreted as coefficients 
capturing the bounded rationality of the affected individuals. The mobility flow is then re-evaluated dynamically, 
affecting a non-linear feedback mechanism in the slower-scale SIS model, defined across a network. Importantly, 
we identify several distinct phases of spatial patterning in the endemic state of the epidemic, dependent on the 
rationality parameters of the compartment populations, identifying critical regimes and characterizing the system 
through phase diagrams.

The proposed approach to modelling population mobility in the presence of a severe disease or social disorder, 
is highly flexible, straight-forwardly adapting to various compartmental models, network topologies and utility 
functions. It thus serves as an ideal test bed for investigating, within a single setting, various factors affecting 
individuals’ choice, so that the critical phenomena emerging in response to changes in human behavior can be 
understood. This addresses questions such as (i) when do small changes in the population’s perception of the epi-
demic risks, or social disorder threats, trigger abrupt and significant changes in the spatial distribution of people 
across the affected areas, (ii) what is the extent of mixing within the affected communities, and (iii) under what 
conditions are there co-existing stable and unstable regions within a larger affected territory.

Methods
Here we present our framework designed to extend common epidemiological/social models. Specifically, we 
generalise the SIS-network model50,51, described in SI Appendix Section 1, to incorporate dynamic mobility that 
responds to the evolving state of the epidemic and which allows for compartment-dependent behavior. This is in 
contrast to existing models which assume temporal and compartmentally homogeneous population mobility50,51. 
Although more complex compartmental models such as Susceptible-Infected-Recovered-Susceptible (SIRS) 
models could be considered under this framework with state dependent mobility occurring only if an individ-
ual has been previously infected, the steady state behaviours of these models will be similar, with a well defined 
endemic equilibrium which is locally asymptotically stable52,53, with the primary difference being the transient 
behaviour of the model. As our analysis focuses on the potential of this framework and the long term behaviour 
of the model, there is little additional benefit to considering more complex compartmental models for the analysis 
presented in this work. However, in the case of analysis to specific data, these extensions would be necessary. The 
structure of the model is informed by the Boltzman-Lotka-Volterra (BLV) framework49,54, consisting of a slow 
dynamic, the infection dynamics captured by the SIS-network model50,51, and a fast dynamic, the dynamic, state 
dependent mobility terms.
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The SIS-network model considers M locations, each with its own sub-population of Ni, ∈ …i M{1, , }, indi-
viduals of which Ii are infectious and = −S N Ii i i are susceptible. The state of the epidemic is then characterized 
by the set of all Ii, written I. These locations are organized into a network model which is characterized by a matrix 
C of edge weights cij associated with mobility from location i to location j. We note that, in the general case, we 
may have non-zero diagonal elements cii to specify a cost associated with ‘mobility’ to an individual’s home loca-
tion. These cij may represent physical distance, effective travel cost etc. according to modelling needs.

We then introduce mobility functions for each compartment of the model: infectious and susceptible. These 
are denoted I C( , )ij

Iφ  and φ I C( , )ij
S , explicitly allowing for network, compartment and infection level dependence 

in the mobilities. Explicitly, φ I C( , )ij
x  is the fraction of the population of compartment x originating from location 

i that will mix in location j, dependent on the topology C and the state of the epidemic I. Since these functions 
change instantaneously in response to any changes in I they constitute a fast dynamic assumed to equilibrate on a 
time scale faster than the evolution of the epidemic. These are brought into the standard SIS-network model such 
that the progression of the epidemic is given by

ˆ
dI
dt
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N
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where N̂ I C( , )j  is the total number of individuals mixing at location j (see Eq. 2), γ is the individual recovery rate 
and β is the transmission rate between a single infected and susceptible individual within the same location. 
Consequently, the terms βφ φ ˆS I N/ij

S
kj
I

i k j reflect the rate of total new infections for the susceptible population of i 
caused by the infected population from k which occur in location j at time t. We emphasize that the mobilities 
φ I C( , )ij

x , ∈x S I{ , }, now vary in time as the values of the Si and Ii evolve, introducing a qualitatively distinct 
mechanism for dynamic population mobility.

The task which remains is to specify the functional form of these I C( , )ij
Iφ  and φ I C( , )ij

S  which could arguably 
take many different forms. The principle and insight behind the BLV methodology49,55 is to recognize that not all 
choices of these functions are equally reasonable given the limited knowledge of the system available to the mod-
eler. Rather, we should be concerned with identifying the minimal constraints that characterize plausible behavior 
and choose the most likely, or least-biased, functional form that is consistent with them. This is the reasoning 
behind the well-known MaxEnt methodology56,57. Consequently, we postulate two fundamental behaviors: (i) a 
perceived ‘cost’ associated with the graph structure captured by a function of the cij and (ii) a perceived ‘benefit’ 
associated with the spatial configuration and extent of the epidemic captured by a function of Ii and Si. Specifically, 
here, we consider the cost of mobility from i to j to be given simply by cij, whilst the benefit of mobility from i to j 
to be given by = −−b N N I( )j j j j

1 . We note that the cost and benefit functions are not restricted to the functional 
forms used here and may, in principle, be any reasoned function of the compartment, C and I or even augmented 
with additional model details. The MaxEnt method then determines the φ I C( , )ij

x , at each point in time, by maxi-
mizing the Shannon entropy of the probability distribution of all individual behavior, such that it is consistent 
with the current state of the epidemic, I, in addition to constraints on the mean benefit due to mobility for infec-
tious and susceptible individuals
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Such a solution, detailed in SI Appendix Section 2, is given by

φ α ω α ω| = −− ( )Z b cI C( , , ) exp , (6)ij
x x

x i
x

j ij,
1

where α ω= ∑ −Z b cexp( )x i j
x

j ij, . The functional form of φij
x is entirely determined by the Lagrange multipliers αx 

and ω, which correspond to the mean quantities Bx and C. Methodologically, such a formulation provides two 
distinct modelling perspectives which we illustrate in (7). In the first, Bx and C could be measured from data, from 
which the αx and ω would be inferred allowing the least biased fit to data58. In this case the φij

x would constitute 
the minimal empirical model consistent with the observables. In contrast, the second, which is considered in this 
work, considers the relationship in the other direction. In this case αx and ω are considered to be free model 
parameters corresponding to different strengths of behavior in response to concepts of cost and benefit.
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Different choices thus correspond to distinct, hypothetical, model populations with different behaviours which 
we can analyze. In thermodynamic contexts, in which MaxEnt techniques were first conceived56,57, the Lagrange 
multipliers appear as intensive parameters such as temperature. Analogously, the two modelling perspectives 
would amount to i) inferring the temperature given data on measured energies and ii) generative modelling of 
hypothetical situations at different temperatures. In practical terms, each of these perspectives amounts to a dis-
tinct way to use this modelling framework. Firstly, a theoretical model based on assumptions around the effects 
of disease presence on mobility could be compared to real data in order to test hypothesis around state dependent 
mobility or identify likely outcomes of an epidemic. Conversely, if time series for mobility and infection dynamics 
exist on the same resolution, the mean quantities could be calculated and used in order to infer the behavioural 
parameters of different countries, indicating the extent to which individuals mobility is impacted by the presence 
of disease. The combination of these approaches would allow for the inference of parameters to be performed on 
historical data (second approach) and the parameters generated in this way could then be used for future forecast-
ing of disease within similar communities (first approach).

This formulation is entirely consistent with behavioral models that consider individuals with bounded ration-
ality59,60. In such a formulation an objective pay-off function is proposed which is then paired with a rationality 
parameter. Here the objective pay-off functions are the benefit bj and cost cij with corresponding rationality 
parameters αx and ω. Given a fixed ω we may consider a two dimensional rationality phase space α α ∈ { , }S I 2 
such that αS and αI may be positive or negative capturing a range of possible behaviours. The degree of rationality 
is captured by αx  with the benefit bj being perceived as negative/positive compartment x based on the sign of αx. 
I.e. when α > 0x , compartment x views low infectiousness as a benefit and so higher rationality increases mobil-
ity towards locations with low levels of infection. On the other hand when α < 0x , compartment x views low 
susceptibility as a benefit and higher rationality increases mobility towards locations with relative low levels of 
susceptible individuals, see Fig. 1. When the αx  is infinite the pay-off function entirely determines behavior 
associated with that pay-off, with all individuals at location i choosing the option(s) which maximize/minimize 
the payoff φ∑ bI C( , )j ij

x
j. In contrast, when α = 0x , behavior is indifferent to the pay-off such that there is a flat 

distribution over all options. For the purposes of this study we insist that ω > 0 such that edge weights on the 
network are always considered as a (positive) cost. We emphasize that the above formulation insists on homoge-
neous statistical behavior in the individuals, since the constraints are in terms of averages over the total popula-
tion, however this assumption can be relaxed as discussed in SI Appendix Section 2.

Finally, we discuss the model parameters utilized in this study. We emphasize that our methodology, as pre-
sented, can operate on any graph structure, with topologically inhomogeneous behavior, and incorporated into 
any existing compartmental metapopulation model on a graph. However, in order to present, in a transparent and 
straight-forward way, the possible richness in behavior such a methodology can produce we restrict ourselves to 
the SIS model with topologically homogeneous behavior on a simple square lattice of length L, such that we have 

=M L2 locations, with periodic boundary conditions. At each location we consider an arbitrary, normalized, 
population =N 1i . Elements cij of C are taken to be 1 for the self interaction term cii in addition to those connect-
ing each location to its four immediate neighbors and ∞ otherwise such that mobility from site i only occurs to 

Figure 1.  Dominant mixing preferences within each quadrant of the α α,I S phase space. The larger the 
magnitude of αI or αS the more dominant the mixing behaviour. The mixing of each quadrant from top right to 
bottom right counter-clockwise may be used to describe: typical epidemic behaviour where all individuals avoid 
infectious individuals (top right), Schelling style segregation where individuals actively seek similar individuals 
(top left), spreading of social myths where individuals who are aware of the myth continue to associate with 
those who do (bottom left) and rioting behaviours (bottom right).
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itself and its topological neighbors. Since all finite cij are equal the choice of ω is arbitrary so long as ω< < ∞0 , 
simplifying the analysis in this case.

Results
Here we investigate the behavior of the model specified in the previous section. Whereas typical epidemic mod-
elling investigates the qualitative extent and reach of epidemics given a phase space of infection and recovery rates 
(β and γ), we consider a phase space of differing compartmental behavior through varying values of the rational-
ity parameters αS and αI, with a focus on the regimes of emergent spatial structure in the endemic infection 
levels.

To do so we focus primarily on the post-critical regime ( β γ= >R / 10 ), comprehensively exploring the 
rationality phase space defined by αS and αI with fixed infection and recovery rates β = 10 and γ = 5, allowing 
us to consider a wide range of potential behaviours. Very broadly we can divide these behaviours into four main 
types which we associate with the four quadrants of the rationality phase space, demonstrated in Fig. 1 where each 
quadrant is defined by the signs of the α parameters. The positive quadrant (α α >, 0S I ) represents plausible 
mixing preferences present in epidemics where all individuals predominantly avoid infectious individuals. The 
second quadrant (α α< >0, 0I S ) possesses dominant mobility behaviour similar to Schelling style segregation61 
where individuals prefer to mix with members of their own group (S or I). In the third quadrant (α α< <0, 0I S ) 
all individuals consider ‘infection’ as a benefit and seek out the infected population. This type of mixing behavior 
may be of particular use in the modelling of the spread of certain social phenomena, e.g. rumors, social myths etc. 
Finally, in the fourth quadrant (α α> <0, 0I S ), individuals seek members of the opposite group. This behaviour 
is much more dynamic and unstable, suggesting application to more extreme social contexts such as rioting and 
social unrest.

We integrate Eq. 1 using a forward Euler method with Δ = .t 0 001. Since the equations are deterministic the 
ensemble of behavior given specified model parameters derives entirely from the ensemble of initial conditions 
which we specify to be an i.i.d uniform random initial infectious population, Ii, for each location on .[0, 0 05]. 
Evolution of the dynamics leads to stable long term solutions with distinct typical spatial structures dependent on 
the rationality parameters, despite the uniform topology. Figure 2 illustrates these behaviors with data from direct 
simulation. We observe four qualitatively distinct regions: (i) a flat spatial distribution of infection (coloured 
green) which we refer to as the ‘unseparated regime’, (ii) large highly connected domains (coloured red) which we 
refer to as the ‘connected regime’ (iii) many small disconnected domains (coloured blue) which we refer to as the 
‘isolated regime’ and (iv) an alternating checkerboard pattern containing long-lived defect structures due to initial 
heterogeneity (coloured orange), which we refer to as the ‘anti-aligned’ regime. We mention that the regimes 
observed in the space defined by α > 0S  and α < 0I  are reminiscent of the standard sequence of spatial patterns 
(gaps, labyrinth, spots) observed in vegetation growth models34,35.

It is important to note, however, that these regimes do not map directly onto the four quadrants laid out in 
Fig. 1. For example, in the first quadrant, expected to be most relevant for conventional epidemic modelling, we 
find qualitatively different spatial patterns in the endemic state despite the entire population (both S and I) shar-
ing a consistent conception of benefit (i.e. α > 0S  and α > 0I ), through quantitative differences in their rational-
ity α| |( I  vs. α| |)I .

Figure 2.  Simulation snapshots after 20000 timesteps with Δ = .t 0 001 for β = 10, γ = 5 ω = 1 on a ×50 50 
lattice demonstrating qualitatively different phases across a phase space defined by αS and αI. Region (i), the 
unseparated regime, is coloured green, region (ii), the connected regime, is coloured red, region (iii), the 
isolated regime is coloured blue whilst region (iv) the anti-aligned regime is coloured in orange. Each snapshot 
is renormalised by the infection mean and standard deviation to emphasise key spatial differences. Darker areas 
represent regions of higher relative infection.
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The existence of these distinct regimes is highly suggestive of a system with several stable phases separated 
by phase transitions where the system undergoes large re-configurations in response to very small variations in 
system parameters. In order to characterize these regimes, we seek to understand the qualitative picture presented 
in Fig. 2 mathematically. In doing so we offer evidence that such regimes are indeed well characterized as distinct 
configurational phases separated by discontinuous transitions. We present three order parameters designed to 
distinguish between the salient features in each of the four identified regimes. We then investigate the effect that 
changes in the basic reproductive ratio have upon the phase diagram.

First, we consider the distinction between the unseparated regime and the connected/isolated/anti-aligned 
regimes. The behavior in the unseparated regime is qualitatively identical to SIS-network models without state 
dependent mobility, with the infection levels being topologically homogeneous. However, the connected, isolated 
and anti-aligned regimes exhibit behavior not observed in conventional network models, with regions of relative 
high and low infection levels forming stable domain-like structures. As either rationality parameter increases we 
observe a rapid reconfiguration from a singular distribution of infection levels over all locations to one with sub-
stantial variance with two identifiable peaks. Such a distinction can be compactly characterized by the standard 
deviation of the distribution, p I( )i , functioning here as an effective order parameter62. Figure 3a illustrates the 
discontinuous change in standard deviation from zero to positive values at the region in phase space separating 
the unseparated and connected/isolated and anti-aligned phases. This discontinuous behavior is extremely sensi-
tive to changes in αI and αS, even at low system sizes. This is indicative of an order/disorder phase transition 
where the unseparated regime corresponds to the homogeneous ordered phase and the connected/isolated/
anti-aligned regimes correspond to the disordered phase.

Secondly, we consider the distinction between the phase separating behaviour found in the α α<S I and 
α α>S I  regimes. We proceed by utilising the staggered magnetisation, commonly used to study 

Figure 3.  Heatmaps of each of the order parameters (a) standard deviation σ, (b) staggered magnetisation MN  
and (c) percolation order parameter r̂  for β = 10, γ = 5, ω = 1 on a ×50 50 lattice averaged across 50 runs. A 
vanishing standard deviation (subfigure (a)) is associated with the unseparated regime whilst positive standard 
deviations are associated with phase separation (the connected, isolated and anti-aligned regimes).We note the 
largest standard deviations occur for α ≈ 0S  when the movement of the susceptible population occurs 
irrespective of the presence of infection. The staggered magnetisation (subfigure (b)) distinguishes the anti-
aligned regime (yellow) from the other phase separated regimes (light blue) and the unseparated regimes (dark 
blue). r̂  (subfigure (c)) can be used to distinguish two distinct phases in the upper left quadrant previously 
referred to as the connected regime (yellow region) and the isolated regime (blue region). r̂  is undefined in the 
white regions (the unseparated regime).
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anti-ferromagnetic systems, to identify the underlying checkerboard structure of the anti-alignment observed in 
the α α>I S region. The staggered magnetisation compares a system to an ideal anti-ferromagnetic system, a Néel 
anti-ferromagnet63, which in our case, consists of an ×L L two dimensional grid of alternating +1 and −1 values. 
Given a standard raster ordering of the locations, such that the m-th and n-th co-ordinates in the x and y dimen-
sions map to the +m nL( )-th location, the staggered magnetisation MN  for our epidemic system is thus defined 
as

∑ ∑= − = + .
=

−

=

−
+M I i x yL( 1) ,

(8)
N

x

L

y

L
x y

i
0

1

0

1

Figure 3b demonstrates that the staggered magnetisation MN  is capable of distinguishing the anti-aligned 
phase from the other phase separated regimes. This is due to the strong checkerboard pattern of higher and lower 
infection levels which most closely resembles the Néel anti-ferromagnet. We observe this to hold despite the 
presence of boundary defects between domains of equally stable, but incompatible configurations of the checker-
board pattern. In contrast, in the other phase separated regimes where we observe larger domains forming ‘dot-
ted’ or ‘snaking’ patterns, locations are much more likely to have a similar level of infection to their neighbors, 
resulting in a significantly lower staggered magnetisation.

The distinction between the connected and isolated regimes is more nuanced since the transition occurs 
between two phase separated populations with broad distributions of infection levels. Consequently, we instead 
turn to measures of percolation64–66 to characterize the regimes using statistics of cluster formations within the 
emergent structures. For the purposes of this study we define a cluster as a contiguous region of sites with infec-
tion levels above the population mean value. In order to avoid artifacts related to the square topology we consider 
sites to be contiguous to one another if they are laterally or diagonally adjacent such that each location is contig-
uous to eight others. Once clusters are identified the system is amenable to the methods used to study percolation 
on binary lattices67. A key quantity in such studies is the probability that a selected site belongs to a cluster of size 
r, p r( ), which can be normalized by considering =r̂ r L/ 2. A related order parameter from the study of percolation 
on such lattices, r̂ , is illustrated, where relevant, over the rationality phase space in Fig. 3c. Such a measure is 
undefined for the unseparated regime due to its singular distribution, but the connected and isolated phases show 
very noticeably different values of this percolation order parameter with a separating boundary running diago-
nally through the phase space. This transition is much smoother than that bounding the unseparated phase. 
Consequently, in Fig. 4, we demonstrate increasingly rapid growth of r̂ , and thus emergence of the connected 
phase, as αS is increased along a line of constant α = − .27 5I  through the rationality phase space, as larger lattice 
sizes are considered and finite size effects become negligible. Inset are typical configurations associated with the 
order parameter r̂  illustrating the rapid onset of system wide connected regions of high infection at higher levels 
of αS from local, isolated, regions at lower αS.

The existence of a phase transition between these two regimes can also be observed in model free measures of 
criticality, namely the Fisher information which is proven to diverge at a phase transition68–71. This divergence is 
due to its direct relationship to the rate of change of a corresponding order parameter68. The Fisher information 
is defined as the expectation

θ θ= ∂θF E P X( ) [( log ( ; )) ], (9)X
2

Figure 4.  Normalized mean cluster size of a randomly selected location r̂  as a function of αS for α = .27 5I  
with β = 10, γ = 5, ω = 1, on three different lattice sizes. This slice across α = − .27 5I  intersects the connected 
and isolated regimes. Inset are simulation snapshots on a ×50 50 lattice after 20,000 timesteps with Δ = .t 0 001 
for three values of αS which demonstrate examples of the spatial patterns observed in regions (a) α < 20S  (the 
isolated regime), (b) α< <20 30S  (near criticality), (c) α > 30S  (the connected regime).
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where for the present system =X I. However, the full phase probability distribution αP I( ; )x  is impractical to 
work with, due to its high dimensionality, so instead we exploit the inequality θ θ≤F F( ) ( )T X , where T  is a statistic 
of X with equality holding if and only if T  is a sufficient statistic of X. Then, under some relatively weak assump-
tions, a divergence in θF ( )T  implies a divergence in θF ( )X  and thus the existence of a phase transition. Utilizing r̂  
as a statistic of I, we compute the Fisher information of r̂  about αS, αˆF ( )r

S , for the same line of constant 
α = − .27 5I  as in Fig. 4 with increasing lattice sizes, illustrated in Fig. 5. As the lattice size increases the Fisher 
information of the statistic r̂  peaks at larger and larger values indicative of a divergence in the infinite system limit 
and thus a phase transition. Shown inset are the distributions ˆp r( ) demonstrating a rapid change in configurations 
across the transition, with a concentration of probability at small cluster membership at lower αS and a concen-
tration of probability at large cluster membership at higher αS.

Finally, we demonstrate the interaction between the canonical parameters influencing the endemic infection 
levels of an epidemic under the SIS compartmental model, namely β and γ, and the behavioral parameters αS and 
αI. This is achieved by varying β from pre-critical to post-critical values given fixed γ = 5 and determining the 
resulting phase diagrams in the behavioral space using order parameters σ, r̂  and MN . The results are shown in 
Fig. 6. For β γ<  we observe no spatially inhomogeneous behavior, consistent with the absence of an epidemic at 
pre-critical parameter choices. It is known that such systems will have a typical infection phase transition inde-
pendent of its topology at β γ =/ 150 and accordingly the system sustains endemic infection levels uniformly at 
β = 5 for all values of αS and αI.

As β is increased further, the phase separated regimes (isolated/connected/anti-aligned) grow in size until for 
very large values of β the phase space is dominated by the unseparated phase due to the high levels of infection 
which saturate the dynamics. Consequently we observe that at low (but post-critical) and high β, a large discrep-
ancy between αS and αI is required to observe phase separation, but at intermediate values separation appears at 
much smaller differences in population behavior.

Discussion
In this article we have proposed and investigated a dynamic spatial interaction model applicable to studies of epi-
demics and social disorders. The model explicitly allows for state dependent mobilities which co-evolve with the 
underlying phenomenon leading, here, to a rich range of behaviors not observed in models without this feature.

This model offers two significant contributions, one methodological and one phenomenological.
Methodologically, we have incorporated the BLV framework, that has independently found success in model-

ling social phenomena ranging from urban and economic growth55,72–75 to ecological or crime dynamics30,76, into 
the framework of epidemic modelling. The application to epidemic modelling was first postulated by Wilson49, 
which has since remained an unexplored avenue of investigation. This methodology has several important ben-
efits to the study of social phenomena where explicit mechanisms remain elusive yet a need for plausible models 
exist. It achieves this by constructing distributions of behavior that include the minimum number of assumed 
extraneous features which also match the data and/or underlying phenomena at hand, often characterized as 
being the ‘least-biased’. Given a set of constraints from data or well rationalized utility functions, the implication 
is that any other choice introduces unjustified assumptions into the model. It is also highly flexible due to its close 
relationship to economic rationality models and the relative simplicity of modifying or augmenting the set of 
utility functions which determine the values and number of Lagrange multipliers. In turn the framework is trivial 
to incorporate into any compartment model, not just the SIS dynamics considered here.

Figure 5.  Fisher information of r̂  with respect to αS, the probability that a randomly selected site belongs to a 
cluster of normalized area r̂ . We compute αˆF ( )r

S  for α = − .27 5I , β = 10, γ = 5, ω = 1 on three different lattice 
widths L. The distribution for calculating the Fisher Information is an aggregate of 5000 time series from 
randomized initial conditions with an identical number of bins. We observe that the maximal Fisher 
information corresponds with the maximal growth in r̂  shown in Fig. 4.
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Finally, we discuss the phenomenological implications resulting from the results we have presented. We have 
implemented a model dynamic that allows for modified individual behavior in response to the evolving state of 
the epidemic or social phenomena. This may be particularly relevant in cases of severe outbreaks, especially those 
that lead to or coincide with civil unrest where mobility patterns may be maximally influenced by pertinent local 
factors rather than regular travel patterns. A consequence of such a dynamic is the emergence of distinct phases 
related to the spatial structure of infectious spread in the endemic steady state. These regimes are separated by 
sharp transitions in the rationality phase space. As with the sharp onset of disease spread at the epidemic phase 
transition, such a phenomenon is of great interest and importance as it implies that large scale, qualitatively dis-
tinct, behavior can be highly sensitive to very small changes in human decision-making. Significantly, we observe 
such phenomena even in cases where the dominant mixing preferences are identical but only the relative levels of 
rationality ( αS  and αI ) differ. For instance our results imply that a population where all individuals exhibit 
infection avoiding behaviour may still exhibit phase separation should the rationality parameters of the suscepti-
ble and infectious individuals differ sufficiently.We emphasize that in the proximity of these thresholds, small 
changes in the perception of local risks and benefits experienced by human decision-makers can trigger sudden 
and significant changes in the global system behavior. These changes can be of importance to real world applica-
tions such as the rapid (re-)deployment of medical teams however calibration of these models to real-world data 
sets is required to produce detailed recommendations.

Further work may focus on the extension of such a model to more complicated compartmental models, such 
as Susceptible-Infected-Recovered-Susceptivle (SEIRS) or Susceptible-Exposed-Infected-Recovered-Susceptivle 
(SEIRS) compartmental models, where infection avoidance behaviours could be considered only for individuals 
who have been infected in the past, allowing for an in depth analysis of the range of transient behaviours present 
in such a model. Additionally, we may consider more realistic topologies including more complicated spatial 
structures and/or include long range, migration-like, transport of individuals across the system.
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