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Abstract

Background: N-acetylglucosaminyltransferase-III (GnT-III) is a glycosyltransferase encoded by Mgat3 that catalyzes the
addition of b1,4-bisecting-N-acetylglucosamine on N-glycans. GnT-III has been pointed as a metastases suppressor having
varying effects on cell adhesion and migration. We have previously described the existence of a functional feedback loop
between E-cadherin expression and GnT-III-mediated glycosylation. The effects of GnT-III-mediated glycosylation on E-
cadherin expression and cellular phenotype lead us to evaluate Mgat3 and GnT-III-glycosylation role during Epithelial-
Mesenchymal-Transition (EMT) and the reverted process, Mesenchymal-Epithelial-Transition (MET).

Methodology/Principal Findings: We analyzed the expression profile and genetic mechanism controlling Mgat3 expression
as well as GnT-III-mediated glycosylation, in general and specifically on E-cadherin, during EMT/MET. We found that during
EMT, Mgat3 expression was dramatically decreased and later recovered when cells returned to an epithelial-like phenotype.
We further identified that Mgat3 promoter methylation/demethylation is involved in this expression regulation. The impact
of Mgat3 expression variation, along EMT/MET, leads to a variation in the expression levels of the enzymatic product of GnT-
III (bisecting GlcNAc structures), and more importantly, to the specific modification of E-cadherin glycosylation with
bisecting GlcNAc structures.

Conclusions/Significance: Altogether, this work identifies for the first time Mgat3 glycogene expression and GnT-III-
mediated glycosylation, specifically on E-cadherin, as a novel and major component of the EMT/MET mechanism signature,
supporting its role during EMT/MET.
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Introduction

Glycosylation is considered the most abundant post-translation-

al modification and occurs when oligosaccharides (glycans) are

covalently attached to other biomolecules such as proteins or lipids

[1]. Glycosylation can have a prominent role in several

fundamental biological processes such as embryogenesis, develop-

ment, growth, differentiation and also in diseases such as cancer

[2,3,4]. Glycosylation is catalyzed by several glycosyltransferases

that act in a step-wise manner. Functional glycomics, in particular,

is currently allowing the understanding of the role played by

glycosyltransferases and glycans in cell biology and function of

organisms [5].

N-acetylglucosaminyltransferase III (GnT-III) is a glycosyltrans-

ferase encoded by the Mgat3 gene that catalyzes the transfer of N-

acetylglucosamine (GlcNAc) in a b1,4 linkage to mannose on N-

glycans forming a bisecting GlcNAc structure [6]. GnT-III is

considered a key glycosyltransferase in N-glycan biosynthetic

pathway since the introduction of the bisecting GlcNAc residue

precludes further processing and elongation of N-glycans catalyzed

by GnT-V, suppressing the formation of b1,6 GlcNAc branching

structures [7]. In a tumour context, GnT-III and GnT-V have

generally a dual role where GnT-III and its bisecting GlcNAc

structures act as metastases suppressors whereas GnT-V and its

b1,6 GlcNAc branching structures are associated with increased

malignancy and metastasis [8].
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The detailed molecular mechanism and the most important

molecular targets underlying this antagonistic role of GnT-III and

GnT-V in cancer development and progression have recently been

addressed [8,9,10]. Focusing on the role of GnT-III as an

important metastases suppressor, Yoshimura et al. have demon-

strated that GnT-III gene transfected into B16 mouse melanoma

cells with high metastatic capacity led to a suppression in the

formation of b1,6 GlcNAc branching structures catalyzed by

GnT-V, together with a significant decrease in lung colonization

after mice intravenous administration of GnT-III transfectants

[11]. Further on, the same group showed that in those GnT-III

transfectants from mouse melanoma cells, E-cadherin was

modified with bisecting GlcNAc structures showing a delayed

turnover rate and an increased cell-cell adhesion, which might

explain the metastatic impairment induced by GnT-III overex-

pression [12]. The anti-metastatic role of GnT-III was also

described by Isaji et al., in a report showing that modification of

Integrin a5b1 with bisecting GlcNAc structures, catalyzed by

GnT-III, inhibits cell spreading and migration on fibronectin [13].

According with these results, it was proposed that GnT-III

prevents tumour metastasis by at least two mechanisms:

enhancement of cell-cell adhesion (through E-cadherin glycosyl-

ation) and down-regulation of cell-ECM adhesion (through

Integrin glycosylation) [9]. Moreover, it was also demonstrated

that the addition of bisecting GlcNAc structures catalyzed by

GnT-III to mammary tumour cell glycoprotein receptors inhibits

growth factor signalling reducing growth and retarding mammary

tumour progression [14]. Recently, our group has proposed a

mechanistic model where E-cadherin expression regulates the

Mgat3 gene transcription leading to increased expression of GnT-

III enzyme that in turn glycosylates E-cadherin by adding

bisecting GlcNAc structures [15], which promotes its stability

and function at the cell membrane (unpublished results).

Interestingly, when this functional feed-back loop between E-

cadherin and GnT-III is disturbed, by performing GnT-III

knockdown, we observed a dramatic alteration in the cell

morphology with formation of filopodia and lamellipodia

extensions, together with a delocalization of E-cadherin from the

cell membrane into the cytoplasm [15].

E-cadherin is a well-accepted marker of phenotypic plasticity

[16], and is the central target and the most common endpoint of

Epithelial to Mesenchymal Transition (EMT) signalling pathways

[17]. This is valid for EMT, but also to the apparent reverse

process known as Mesenchymal to Epithelial Transition (MET),

that occurs during embryonic development, tissue regeneration,

wound-healing and thought to occur in cancer initiation/

progression [18,19,20]. The most commonly used epithelial

molecular markers include E-cadherin, occludin, cytokeratins,

whereas N-cadherin and vimentin are classically considered

mesenchymal markers [21]. EMT is also characterized by

increased production of transcription factors such as Snail, Slug,

Twist, ZEB1, ZEB2, and/or E47, some of which also known as

EMT inducers. During EMT/MET, cells alternate between pure

epithelial and mesenchymal phenotypes characterized by modifi-

cations in cell adhesion, polarity, migration and cell shape [16,17].

This EMT/MET associated cell plasticity is mirrored by many

features induced by overexpression of GnT-III (associated with

epithelial phenotype) and GnT-V (associated with mesenchymal

features) [15,22].

Altogether, some reports as well as our previous results show an

effect of GnT-III mediated glycosylation on cellular phenotype

and E-cadherin cellular expression [10,15,23]. We therefore

hypothesize that during EMT/MET, E-cadherin could be post-

translationally regulated by GnT-III-mediated glycosylation.

In the present study, we analyzed the expression profile and the

genetic mechanism controlling Mgat3 gene expression as well as

the GnT-III-induced glycosylation levels, in general and specifi-

cally on E-cadherin, during EMT/MET. We found that during

EMT, Mgat3 gene suffered a dramatic decrease in expression that

was significantly recovered when cells re-acquired an epithelial-

like phenotype (MET). E-cadherin was specifically targeted and

regulated by GnT-III mediated glycosylation during EMT/MET.

We propose here, for the first time, Mgat3/GnT-III mediated

glycosylation as a novel and major mechanism of E-cadherin

regulation during EMT/MET.

Results

TGF-b1 induces EMT in EpH-4 non-tumourigenic
mammary epithelial cells and TGF-b1 removal initiates
the MET program

The EpH-4 cell line derives from a normal mammary gland of a

mid-pregnant BALB/c mouse that underwent spontaneously

immortalization [24]. To induce EMT, we have selected a

previously described approach, using a pleiotropic cytokine, in

particular the transforming growth factor-b1 (TGF-b1) [25]. TGF-

b1 supply during 7 days efficiently induced EMT in original

epithelial EpH-4 cells (E), and thus mesenchymal EpH-4 cells (M)

were generated (Figure 1A). Removal of TGF-b1 from the culture

medium led to phenotypic reversion from mesenchyme back to

epithelia (RE), after four days. The MET process was terminated

at day four after which bright field microscopy revealed a

widespread recovery of the epithelial-like phenotype (Figure 1A).

Three distinct time-points were created for biological material

collection (DNA, RNA, protein and fixed cell monolayers)

corresponding to EpH-4 cells with distinct phenotypical features

(E, M and RE). To understand whether the observed phenotypic

alterations were due to EMT and MET induction, we next

analysed the mRNA expression by qRT-PCR of several classical

epithelial (CDH1 and Ocln) and mesenchymal (Vim) markers, as

well as a well-known EMT inducer (Zeb2). We have observed a

slight decrease in CDH1 mRNA expression upon EMT, which was

recovered with MET (Figure 1B). Ocln, encoding occludin, was

shown to decrease with EMT (E vs. M p = 1.34E-05), being

recovered in MET (M vs. RE p = 4.07E-02). The opposite

variation was observed for Vim encoding vimentin (E vs. M

p = 1.60E-02 and M vs. RE p = 5.20E-02) (Figure 1B). Zeb2 mRNA

showed a significant increase in EMT (E vs. M p = 1.91E-02) and

no significant variation in MET (Figure 1B).

Given that CDH1 mRNA expression was only slightly decreased

when comparing EpH-4 E and M cells, we next analyzed the

expression of the encoded protein, E-cadherin, by western blot.

We observed that E-cadherin expression decreased with EMT and

was partially recovered with MET (Figure 2A and 2B), however

these variations were not statistically significant. By immunoflu-

orescence, we observed an E-cadherin de-localization from the cell

membrane (E cells) to the cytoplasm in M cells, pointing to a lack

of functionality of this protein as a cell-adhesion molecule in M

cells (Figure 2C). In EpH-4 RE cells, E-cadherin was recovered to

the cell membrane (Figure 2C).

Overall, our results point to the occurrence of EMT as

demonstrated by morphological alterations observed by bright

field microscopy; the expression of classical mesenchymal markers

and the de-localization of the classical epithelial marker E-

cadherin to the cytoplasm, commonly associated with its loss of

function. Moreover, we observed a phenotypic reversion to an

epithelial phenotype (although not complete), which was accom-

Mgat3, a Relevant Gene of EMT/MET
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Figure 2. EMT/MET model validation. Panel A shows the Western blot for E-cadherin. Panel B illustrates the quantification of E-cadherin across
the EMT/MET induction (n = 3 biological replicas). Data was normalized for E cells. Results are described as mean6standard error mean of 3 biological
replicas. No significant differences were observed concerning E-cadherin expression (ns stands for non-significant, p.0.05). Panels A and B show that
E-cadherin expression is decreased in M cells (in comparison to E cells) and partially recovered in RE cells (in comparison to M cells). Panel C
represents the immunofluorescence for E-cadherin during EMT/MET induction (2006). NC stands for negative control (no E-cadherin antibody used).
Panel C illustrates the variation of E-cadherin localization during the EMT/MET induction: E cells display the classical E-cadherin expression at the cell
membrane; M cells show a decreased expression of E-cadherin which is only observed in some points of intercellular contacts and in the cytoplasm;
RE cells display E-cadherin expression in the cell membrane.
doi:10.1371/journal.pone.0033191.g002

Figure 1. EMT/MET model validation. Panel A shows bright field microscopy still images of the EpH-4 cell line (4006) during EMT and MET
induction. E stands for epithelial cells, M stands for mesenchymal cells, and RE stands for reverted epithelial cells. E and RE cells display a cuboid
shape associated with the epithelial phenotype while M cells exhibit a fibroblastic morphology associated with the mesenchymal phenotype. Panel B
illustrates the quantification of CDH1, Ocln, Vim and Zeb2 relative mRNA expression (n = 3 biological replicas). Data was normalized for results
obtained for E cells. Single asterisk corresponds to p#0.05 and double asterisks stands for p#0.001. CDH1 expression, an epithelial marker, was not
significantly altered during EMT/MET induction; Ocln expression, an epithelial marker, was significantly decreased in M cells (in comparison to E cells)
and recovered in RE cells (in comparison to M cells); Vim expression, a mesenchymal marker, was significantly increased in M cells (in comparison to E
cells) and decreased in RE cells (in comparison to M cells) and; Zeb2 expression, a classical EMT inducer, was significantly increased in M cells in
comparison with E cells, supporting EMT occurrence.
doi:10.1371/journal.pone.0033191.g001
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panied by an epithelial transcriptional program together with a

recovery of E-cadherin at its classical membranous localization.

Mgat3 gene expression is significantly down regulated
during EMT being significantly recovered in MET and is
associated with Mgat3 promoter methylation/
demethylation

Mgat3 mRNA expression was evaluated by qRT-PCR during

EMT/MET. We observed a significant decrease in Mgat3 mRNA

expression upon EMT (p = 8.10E-04), followed by a full recovery

upon MET (p = 1.25E-02) (Figure 3A). To understand whether this

down-regulation could be related with a classical inactivating

mechanism, we have analysed the methylation status of Mgat3

promoter region.

Due to the lack of a described mouse Mgat3 promoter in the

literature, we pursued the classical approach of analysing the

bioinformatically predicted CpG islands within the gene locus,

given the known association between CpG islands and promoter

regions [26] (Figure 3B). We observed that the methylation pattern

of Mgat3 CpG island 1 was significantly altered with EMT

(Figure 3C): 1) three CpG sites became completely methylated

(CpG sites 4, 7 and 8); 2) two CpG sites became completely

demethylated (CpG sites 3 and 11). We also observed that the CpG

island 1 methylation pattern observed for EpH-4 cells E and RE

reproduced the Mgat3 mRNA expression levels (Figure 3A and C).

Concerning CpG island 2, no significant alterations were detected

during the EMT/MET. Overall this CpG island was permanently

methylated throughout the experiment (Figure 3D). To confirm

that methylation of Mgat3 promoter was a specific feature of this

gene, potentially leading to its expression downregulation, we also

analysed the methylation status of the promoter of Mgat5,

encoding the GnT-V glycosyltransferase, for which RNA

expression did not vary during the EMT/MET experiment

(Figure 3E and F). The methylation status of Mgat5 did not change

along EMT/MET (Figure 3G).

Figure 3. Mgat3 and Mgat5 RNA expression and methylation status of their predicted promoter-associated CpG islands. Panel A
illustrates the quantification of Mgat3 relative mRNA expression (n = 3 biological replicas). Data was normalized for E cells for each biological replica.
Single asterisk corresponds to p#0.05 and double asterisks stands for p#0.001. Results are described as mean 6 standard error mean of three
biological replicas. Panel A shows that Mgat3 expression was significantly decreased in M cells (in comparison to E cells) and recovered in RE cells (in
comparison to M cells). Schematic representation of Mgat3 genomic locus is represented in panel B. White squares correspond to exonic untranslated
regions and black squares to exonic translated regions. Black line stands for intronic regions. Grey squares represent the position of the
bioinformatically predicted CpG islands (classified as 1 and 2). Panel C and D show the schematic representation of the methylation status of several
CpG dinucleotides evaluated within CpG islands 1 (C) and 2 (D) of Mgat3 across the EMT/MET experiment (E, M and RE). White circles correspond to
unmethylated CpGs, grey circles correspond to partially methylated CpGs, black circles correspond to methylated CpGs, white circles with a question
mark correspond to unknown methylation status. Panel C shows methylation pattern alterations across several CpG sites within Mgat3’s CpG island 1
in E, M and RE cells. Panel E illustrates the quantification of Mgat5 relative mRNA expression (n = 3 biological replicas). Same legend as in A applies. No
significant variation of Mgat5 RNA expression was observed during EMT/MET. Schematic representation of part of the Mgat5 genomic locus is
represented in panel F. Same legend as in panel B applies. Schematic representation of the methylation status of several CpG dinucleotides evaluated
within the annotated Mgat5 CpG island is represented in panel G. Same legend as in panels C and D applies. The results showed no variation of the
methylation status of Mgat5 promoter during EMT/MET.
doi:10.1371/journal.pone.0033191.g003

Mgat3, a Relevant Gene of EMT/MET
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These results highlighted a novel regulatory mechanism

controlling Mgat3 expression involving CpG island promoter

methylation associated with EMT and MET.

Evaluation of the levels of expression and cellular
localization of bisecting GlcNAc structures during EMT/
MET

Taking into consideration the results at the transcriptional level

of Mgat3 gene during EMT/MET, we analyzed the product of the

activity of the GnT-III enzyme, the bisecting GlcNAc structures

(Figure 4). We performed E-PHA lectin blot analysis, which

specifically recognizes the product of GnT-III. The results showed

that the total levels of expression of bisecting GlcNAc structures

significantly decrease during EMT (p = 3.3E-03), with E cells

displaying a significant increased expression of bisecting GlcNAc

structures than M cells (Figure 4A, 4B). The total levels of

expression of bisecting GlcNAc structures was dramatically

recovered in RE cells when compared with M cells (p = 8.0E-04).

The evaluation of the cellular localization of the product of

GnT-III (bisecting GlcNAc structures), by performing E-PHA

lectin IF, clearly showed that during EMT there was a remarkable

decrease in the levels of expression of these structures, as observed

in M cells, that were recovered in RE cells. In terms of cellular

localization, the expression of the GnT-III product in E cells was

mainly in the cell membrane with rare cytoplasmic staining; in M

cells very few E-PHA lectin staining was observed restricted at the

cytoplasm in a perinuclear location, and in RE cells E-PHA lectin

staining was observed both at the cell membrane and cytoplasm

(Figure 4C).

These results showed that high levels of expression of bisecting

GlcNAc structures are associated with epithelial phenotypes (E,

RE) and that these structures localize at the cell membrane only in

these phenotypes.

E-cadherin is a specific target of regulation by GnT-III
mediated glycosylation during EMT/MET

As the expression of bisecting GlcNAc structures and E-cadherin

was observed at the cell membrane in epithelial phenotypes (E and

RE), we next evaluated the co-localization of both molecules by

performing double-labelled immunofluorescence (Figure 5A). The

results showed that in both E and RE cells there was a co-

localization of bisecting GlcNAc structures (green colour) and E-

cadherin (red colour) at the cell membrane. During EMT, when

cells acquire a mesenchymal phenotype, the co-localization

disappears and cells show few bisecting GlcNAc structures in the

cytoplasm in a perinuclear position (that may correspond to the

Golgi apparatus), whereas E-cadherin expression is limited only to

the focal points of intercellular contact (Figure 5A).

Figure 4. Expression levels and cellular localization of the product of GnT-III enzyme during EMT/MET induction. Panel A shows the
lectin blot analysis using E-PHA lectin, showing the total expression levels of bisecting GlcNAc structures during EMT/MET. Panel B illustrates the
quantification of E-PHA lectin normalized to actin (n = 2 biological replicas). Single asterisk corresponds to p#0.05 and double asterisks stands for
p#0.001. Bisecting GlcNAc structures significantly decrease when comparing E and M cells and their expression is significantly recovered in RE cells.
Panel C represents the immunofluorescence for E-PHA lectin during EMT/MET induction (4006). Bisecting GlcNAc structures are preferentially
localized in the cell membrane of E cells. M cells exhibit a clear decrease in expression of the bisecting GlcNAc structures that was only observed in
focal areas in the perinuclear region. In RE cells, there was a significant increase in the E-PHA staining showing an increase in the expression levels of
bisecting GlcNAc structures that are localized in the cell membrane and in the cytoplasm.
doi:10.1371/journal.pone.0033191.g004

Mgat3, a Relevant Gene of EMT/MET
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We next examined whether the EMT/MET marker, E-

cadherin, would be a target of regulation by the GnT-III

glycosyltransferase (Figure 5B, 5C). For doing so, we performed

E-cadherin IP followed by E-PHA lectin blot analysis to evaluate

the specific modification of E-cadherin with bisecting GlcNAc

structures, catalyzed by GnT-III during EMT/MET. We

performed a normalization of the densities between E-PHA lectin

band and the correspondent E-cadherin band in order to allow the

comparison of the levels of E-cadherin glycosylation by GnT-III

along EMT/MET. The results clearly demonstrated that during

EMT E-cadherin suffered a significant decreased modification

with bisecting GlcNAc structures of about 50% (p = 5.1E-02)

(Figure 5C). On the contrary, during the reverted process (MET)

E-cadherin glycosylation with bisecting GlcNAc structures was

recovered for levels on average higher than those of the starting

point (parental epithelial cells).

These results demonstrate that E-cadherin is being specifically

glycosylated by GnT-III and that this post-translational modifica-

tion varies significantly during EMT/MET.

Discussion

The transition between epithelial and mesenchymal states

requires alterations in cell morphology, cellular architecture,

adhesion, and migration capacity [16,17]. Current interest in

these processes (EMT/MET) stem from their developmental

importance and their involvement in several adult pathologies

including cancer [21], therefore it is crucial to unravel the

mechanisms involved in these transitions.

In the present manuscript, we describe for the first time that

transcription of Mgat3 gene, that encodes the GnT-III glycosyl-

transferase, significantly varies along EMT/MET and that its

expression is controlled by promoter methylation. Further, we also

showed that the product of GnT-III, the bisecting GlcNAc

structures, specifically glycosylates and regulates E-cadherin

functions.

GnT-III, has been considered a key glycosyltransferase during

the N-glycan biosynthetic pathway [6], and has been also pointed

as a metastases suppressor gene [11]. This role in the suppression

of tumour invasion and metastases appears to be through

glycosylation and regulation of a critical tumour suppressor gene,

E-cadherin [12,15,27], as well as through regulation of Integrin-

mediated cell-ECM adhesion [13]. Previously, we have described

the existence of a functional feed-back loop between E-cadherin

and GnT-III, where we found that E-cadherin expression

regulates the transcription of Mgat3 gene, which in turns leads to

glycosylation of E-cadherin with bisecting GlcNAc structures [15],

promoting its cell surface stability and function (unpublished

results). The perturbation of this stable loop either by GnT-III

knockdown or by increased competition with GnT-V enzymatic

activity was shown to lead to alterations in cell morphology and E-

cadherin subcellular localization [15]. These results pointing to a

regulation of E-cadherin function through glycosylation [10], led

us to postulate that Mgat3 expression and GnT-III enzymatic

product could interfere with E-cadherin during EMT/MET, a

process in which changes in E-cadherin function are described to

be pivotal [16,17,28].

Figure 5. GnT-III-mediated E-cadherin glycosylation during EMT/MET. Panel A shows the co-immunofluorescence for E-cadherin and E-PHA
(4006 for E, M, RE and 6306 for M*) illustrating that E-cadherin and bisecting GlcNAc structures co-localize in the cell membrane in E and RE. In
mesenchymal cells (M and M*), it was observed a significant decrease in both the expression of E-cadherin and bisecting GlcNAc structures. M cells
shows residual E-cadherin expression at the focal points of intercellular contacts (red, E-cadherin) and some green staining (E-PHA reactivity) could be
observed in the perinuclear region (Golgi compartment). Immunoprecipitation of E-cadherin followed by E-PHA lectin blot is represented in panel B.
Panel C represents the normalization of bisecting GlcNAc structures (E-PHA reactivity) that are modifying E-cadherin. Amounts of N-glycan structures
were determined from the ratios of densities of E-PHA reactivity after normalization to E-cadherin. Results are described as mean 6 standard error
mean of two biological replicas. Single asterisk corresponds to p#0.05 and ns stands for non-significant, p.0.05. The modification of E-cadherin with
bisecting GlcNAc N-glycan structures in E, M and RE are expressed as the fold increase, compared with the E cells. Panels B and C show that E-
cadherin is specifically glycosylated with bisecting GlcNAc structures in E, losing this glycoform in M and recovering again in RE.
doi:10.1371/journal.pone.0033191.g005

Mgat3, a Relevant Gene of EMT/MET
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Using a TGF-b1-induced EMT/MET cell line model, we

describe for the first time that Mgat3 gene was significantly down

regulated in mesenchymal (M) cells and was significantly recovered

in cells that re-acquired an epithelial-like phenotype after

removing TGF-b1 (RE cells). This suggests that Mgat3 gene

expression and the GnT-III enzymatic product may be critical to

maintain the cellular epithelial and differentiated phenotype, while

the sharp drop at the mesenchymal state may pinpoint the need

for Mgat3 down regulation to the acquisition of this phenotype.

Moreover, we have also provided compelling evidence of

increased CpG island methylation at the Mgat3 promoter,

underlying the down regulation of Mgat3 expression in M cells

(Figure 6).

Changes in glycogenes expression leads to alterations in the

glycosyltransferases expressions levels that have major impact in

the remodelling of cell surface glycosylation of glycoproteins, with

consequent impact on several cellular mechanisms such as cell

adhesion [5,29]. The observed similar expression variation of the

Mgat3 gene and the product of GnT-III, the bisecting GlcNAc

structures, along EMT/MET further support that, on one hand

the expression of bisecting GlcNAc structures is crucial for the

preservation of epithelial cell phenotype, as previously described

by Iijima et al [27], and the absence or low levels of bisecting

GlcNAc structures are needed for cells to acquire mesenchymal

features.

Moreover, our current results are consistent with our previous

report that MCF-7/AZ cells with Mgat3 knockdown, displayed a

remarkable modification of the cellular phenotype with disruption

of the cell-cell contacts, increased lamellipodia and filopodia

formation and E-cadherin internalization to the cytoplasm

(mesenchymal features) [15].

Given the previously described bi-directional crosstalk between

E-cadherin and GnT-III glycosylation [15], in the present study

we examined the specific modification of E-cadherin with bisecting

GlcNAc structures during EMT/MET. We found that, although

the variation of the CDH1/E-cadherin during EMT/MET was

not significant, E-cadherin was glycosylated with bisecting GlcNAc

glycoforms and they co-localized at the membrane preferentially

in E and RE cells.

Altogether, the results herein presented, lead us to propose that

loss and recovery of Mgat3 expression and GnT-III mediated

glycosylation is a pivotal mechanism during EMT/MET with

major consequences on E-cadherin subcellular localization. We

showed a novel perspective over the regulation of E-cadherin

function along EMT/MET by demonstrating that E-cadherin

glycosylation with bisecting GlcNAc structures, catalysed by GnT-

III enzyme, has major consequences in the regulation of its

function in the EMT/MET biological processes.

These cause-consequence events, involving changes in Mgat3

expression, GnT-III enzymatic product, E-cadherin protein

glycosylation and subcellular localization are likely to uncover a

mechanism controlling the transition between epithelial and

mesenchymal states, therefore revealing a novel regulatory path

during EMT/MET (Figure 6).

Figure 6. Proposed model. Panel A illustrates the following: in epithelial cells, CDH1, Mgat3 and Mgat5 are transcribed. Partial promoter
methylation of Mgat3 and no methylation of CDH1 and Mgat5 promoters were observed. The transcription levels of Mgat3 generate sufficient GnT-III
enzyme levels that catalyze the addition of bisecting GlcNAc structures, specifically on E-cadherin. No information is available concerning the status
of the remaining molecules in the adhesion complex (catenins). Panel B illustrates the following: in mesenchymal cells, Mgat3’s promoter is
methylated in some CpG sites which were associated with a significant decrease of Mgat3 transcription. No significant changes were observed in
terms of both promoter methylation status and transcription of CDH1 and Mgat5. There was a significant decrease of GnT-III-mediated E-cadherin
glycosylation. In reverted epithelial cells, Mgat3’s promoter methylation status returns to its status in original epithelial cells accompanied with a
significant increase of Mgat3 transcription, in comparison to mesenchymal cells. Concomitantly there was an increased GnT-III-mediated E-cadherin
glycosylation, resembling that observed in original epithelial cells.
doi:10.1371/journal.pone.0033191.g006
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Materials and Methods

TGF-b-induced EMT/MET in a non-tumourigenic
mammary epithelial cell line

EpH-4 cell line [24] (classified as E for epithelial) was cultured in

D-MEM/F12 GlutamaxTM (Invitrogen, Oregon, USA) supple-

mented with fetal bovine serum (Lonza, Switzerland), penicillin-

streptomycin (Invitrogen, Oregon, USA) and recombinant human

insulin (Invitrogen, Oregon, USA). Mesenchymal cell cultures

(classified as M) were obtained by supplementing the normal

culture medium with transforming growth factor-b1 (TGF-b1,

Sigma-Aldrich-Aldrich, Missouri, USA) during 7 days [25].

Reverted-epithelial cell cultures (classified as RE) were obtained

by replacing the TGF-b1 enriched medium in mesenchymal cell

cultures by normal culture medium for another 4 days.

RNA expression quantification
RNA was extracted from 3 biological replicas of EpH-4 cell line

stages (E, M and RE) using the mirVana miRNA Isolation Kit

(Invitrogen, Oregon, USA), according to the kit’s instruction

manual. Using TaqMan Gene Expression Assays (Applied Biosystems,

California, USA), we have quantified the mRNA expression levels

of Mgat3, CDH1, Ocln, Zeb2, and Vim. Approximately 1000 ng of

total RNA were reversed transcribed to single stranded cDNA

using Superscript II Reverse Transcriptase and random hexamer

primers (Invitrogen, Oregon, USA). Quantitative Real-Time-PCR

(qRT-PCR) was carried out in triplicates using source RNA from 3

biological replicas of the EMT/MET experiment, for the target

genes Mgat3, CDH1, Ocln, Zeb2, Vim and for the endogenous

control GAPDH using as probe sets Mm00447798_s1, Mm

00486909_g1, Mm.PT.47.16166845, Mm.PT.47.13169136, Mm

01333430_m1 and 4352932E (Applied Biosystems, California,

USA and Integrated DNA Technologies, Iowa, USA) respectively

and an ABI Prism 7000 Sequence Detection System. Data was

analysed by the comparative 2(-DDCT) method [30]. For all data

comparisons, the Student’s T-Test was used (two tailed, unequal

variance).

Mgat3 and Mgat5 methylation status analysis
DNA from 3 independent biological replicas of EpH-4 cells (E,

M and RE) was extracted using the kit Invisorb Spin Tissue Mini Kit

following the manufacturer’s instructions (STRATEC Molecular,

Berlin, Germany). Approximately 300 ng of DNA from each and

every sample were then subjected to complete bisulfite conversion

and subsequent cleanup using the Epitect Bisulfite Kit following

manufacturer’s instructions (Qiagen, Hilden, Germany). Bisulfite

treated DNA was amplified using primers flanking the Mgat3

promoter CpG island (Sigma-Aldrich-Aldrich, Missouri, USA),

specifically designed for bisulfite treated DNA sequences without

CpG sites. The bisulfite PCR products were sequenced for

methylation status determination. Mgat3 promoter methylation

analysis was carried out within the two CpG islands bioinforma-

tically predicted to exist within Mgat3 genomic locus [26,31].

Mgat5 promoter methylation analysis was carried out within the

single CpG island bioinformatically predicted to exist within Mgat5

genomic locus [26,31]. The criteria used for CpG island prediction

was as follows: 1) genomic area with $500 bp; 2) a percentage of

GC $55 and; 3) the observed/expected CpG dinucleotides $0.65.

Using the Ensembl database [31] and the web tool ‘‘CpG Island

Searcher’’ [26] and the described criteria, two distinct CpG islands

were predicted within/in the vicinity of Mgat3 genomic locus: CpG

island 1, located at chr15: 80003669–80004712; CpG island 2,

located at chr15: 80041789–80042386. In particular, the meth-

ylation status was analysed at 13 CpG sites for CpG island 1 (chr15:

80004555–80004661) and at 15 CpG sites for CpG island 2 (chr15:

80042610–80042820). Concerning Mgat5, the predicted CpG

island was located at chr1:129.101.324–129.102.322. In particu-

lar, the methylation status was analysed at 17 CpG sites

(chr1:129.101.638–129.101.814). Only results defining the find-

ings obtained for all biological and technical replicas are herein

presented.

Western-blot, Immunoprecipitation and Lectin Blot
Analysis

EpH-4 cells (E, M and RE) were washed with PBS and then

lysed in cold PBS containing 1% TritonX-100, 1% NP40, protease

inhibitor cocktail (Roche 1tablet/50 ml buffer) and phosphatase

inhibitor cocktail (Sigma-Aldrich, 1:100 dilution). Total protein

was quantified using a BCA protein assay kit (Pierce).

Equal amounts of total cell protein lysates (25 mg) from each cell

were subjected to 7.5% SDS-PAGE electrophoresis and then

transferred to nitrocellulose membranes. After blocking with 5%

nonfat milk (for western-blot) or with 5% BSA in PBS (for lectin

blot), the membranes were incubated with primary antibodies

against human E-cadherin (clone 36, BD Transduction Labora-

tories and Cell Signaling). For the lectin blot analysis, membranes

were incubated with E-PHA lectin (Vector Laboratories). Next,

membranes were washed four times with PBST solution, followed

by incubation with horseradish peroxidase-linked secondary

antibody for the E-cadherin blot analysis. For the lectin blots,

the immunoreactive bands were visualized using the Vectorstain

ABC kit (Vector Laboratories). Blots were then probed with anti-

actin antibody (Santa Cruz Biotechnology) for loading control

analysis. Results were obtained from two independent experiments

using two different biological replicas.

For immunoprecipitation analysis, equal amounts of total

protein from each cell lysate were precleared with 25 ml of

protein G-sepharose beads (Sigma-Aldrich) for 1–2 h. After

centrifugation, the supernatant was incubated overnight with

5 mg of monoclonal antibody against E-cadherin (BD Biosciences

and Cell Signalling). After that, incubation with protein G-

sepharose for 2 h was performed. Next, the beads were washed

three times with immunoprecipitation buffer. The immune

complexes were released by boiling for 5 min at 95uC in Laemmli

sampling buffer and the immunoprecipitates were subjected to

7.5% SDS–PAGE; the separated proteins were transferred to a

nitrocellulose membrane. The blots were then probed with the

primary antibody against E-cadherin. For the bisecting GlcNAc

analysis on E-cadherin IP, membranes were probed with E-PHA

lectin. The results were visualized with ECL detection reagent

(Amersham Biosciences). The experiment was reproduced three

times using protein extract from two different biological replicas.

For all data comparisons, the Student’s T-Test was used (two

tailed, unequal variance).

Immunofluorescence
EpH-4 cells at the three different stages (E, M, RE) were plated

on six-well plates with coverslips on the bottom of each well. Cells

from each stage (E; M; RE) were fixed with Methanol and blocked

with BSA 10% in PBS.

For E-cadherin staining, cells were incubated with anti-E-

cadherin monoclonal antibody (BD Biosciences and Cell Signal-

ling) for 1 h at room temperature. After three washes with

phosphate-buffered saline (PBS), cells were incubated with Alexa

Fluor 488 anti-mouse secondary antibody (Invitrogen) for 1 h at

room temperature.

For E-PHA staining and in the same way, EpH-4 E, M and RE

cells were incubated for 1 h at room temperature with biotinylated
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Phaseolus vulgaris erythroagglutinin (E-PHA, which binds to bisecting

GlcNAc structures, product of GnT-III) lectin (Vector Laborato-

ries). Following three washes with PBS, the cells were incubated

with streptavidin-FITC for 1 h at room temperature.

For E-cadherin and E-PHA double-staining a double-labeled

immunofluorescence, EpH-4 E, M and RE cells were incubated

with anti-E-cadherin monoclonal antibody (BD Biosciences and

Cell Signalling) followed by Alexa Fluor 594 anti-mouse secondary

antibody. Then cells were incubated with E-PHA biotinylated

lectin followed by streptavidin-FITC incubation.

The nuclear staining for all the immunofluorescence experi-

ments was performed and images were then visualized in a

fluorescence microscope (Zeiss).

Each experiment was reproduced two times using protein

extract from two different biological replicas.
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