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Diabetic kidney disease (DKD) has been the leading cause of chronic kidney dis-
ease for over 20 years. Yet, over these two decades, the clinical approach to this 
condition has not much improved beyond the administration of glucose-lowering 
agents, renin-angiotensin-aldosterone system blockers for blood pressure control, 
and lipid-lowering agents. The proportion of diabetic patients who develop DKD 
and progress to end-stage renal disease has remained nearly the same. This un-
met need for DKD treatment is caused by the complex pathophysiology of DKD, 
and the difficulty of translating treatment from bench to bed, which further 
adds to the growing argument that DKD is not a homogeneous disease. To better 
capture the full spectrum of DKD in our design of treatment regimens, we need 
improved diagnostic tools that can better distinguish the subgroups within the 
condition. For instance, DKD is typically placed in the broad category of a non-in-
flammatory kidney disease. However, genome-wide transcriptome analysis stud-
ies consistently indicate the inflammatory signaling pathway activation in DKD. 
This review will utilize human data in discussing the potential for redefining the 
role of inflammation in DKD. We also comment on the therapeutic potential of 
targeted anti-inflammatory therapy for DKD.
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INTRODUCTION

The number of immuno-oncology (IO) medications in 
the development pipeline in 2020 grew to 4,720, a 22% 
increase compared to 3,876 in 2019, and a 233% increase 
when compared to 2017 numbers [1]. Surprisingly the 
number of disease targets in the pipeline also jumped 
from 265 in 2017 to 504 in 2020. This quantum leap in 
IO medications is driven by progress in histological 
analysis. Over the last decade, the researchers have been 
able to secure the needed volume of data from tumor 
specimens and normal adjacent tissue during cancer 
operations to now proceed with multi-omics analysis in 
a substantial way. The disease-specific expression of IO 
targets even within the same cancer type has now be-

come visible thanks to this technique, which in turn, can 
pave the way for a truly personalized oncological thera-
py.

Clinical findings such as the estimated glomerular fil-
tration rate (eGFR) and the urinary albumin excretion 
(UAE) can be used to diagnose diabetic kidney disease 
(DKD) in diabetic patients without kidney biopsy [2-5]. 
These clinical indicators for DKD are helpful to recog-
nize the DKD; however, it has limitations. A kidney bi-
opsy can refine the diagnosis, but the existing diabetic 
nephropathy classification provides only an organ inju-
ry severity scale of the kidney [6], not indications of the 
various mechanisms involved in DKD pathogenesis. It 
is the reason that our understanding and treatment op-
tions for DKD are limited and DKD is main reason of 
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renal replacement therapy [7-10].
DKD’s diverse pathophysiological pathways activate 

a wide range of intracellular signaling and transcrip-
tional factors such as nuclear factor kappa-B (NF-κB), 
Janus kinase-signal transducers and activators of tran-
scription (JAK/STAT), and mitogen- activated kinase 
(MAPK). Which and how these pathophysiological fac-
tors involve the progression of DKD at with which point 
in the sequence of events remain unclear. Though DKD 
arises from metabolic derangements, pathophysiologi-
cal feature of DKD in diabetes patients is accompanied 
by chronic and sterile inflammation such as the ob-
servation of significant inflammatory cell infiltration 
in kidney biopsy results. Inflammation continues to 
present itself as an important pathophysiological factor 
that needs to be examined for its potential as a causative 
factor, not simply an insignificant byproduct. In this re-
view, we will discuss the role of inflammation in DKD 
initiation and progression in human DKD. We also 
comment on the therapeutic potentials which targeting 
for anti-inflammatory therapy in DKD.

THE ROLE OF INFLAMMATION IN THE PATHO-
PHYSIOLOGY OF DKD 

The pathogenesis of DKD is complex, and multiple 
pathways involve several years before clinical diagno-
sis of DKD. The pro-inflammatory and pro-fibrotic 
processes during DKD development and progression 
result from metabolic alterations, hyperfiltration, reac-
tive oxidative stress (ROS), immune and inflammation 
activation, and subsequent fibrosis [11-15]. DKD usually 
is classified as a non-inflammatory glomerular disease; 
however, genome-wide transcriptome analysis studies 
consistently indicate the strong presence of inflamma-
tory signaling pathways [16]. This evidence is supported 
by recent single nucleus RNA sequencing results with 
type 2 diabetes (T2D) patient’s kidney biopsy specimens. 
Diabetic kidney had an approximate 7- to 8-fold in-
crease in leukocytes compared to controls, and among 
total 347 immune cells consisted of 49% T cells, 21% B 
cells, 23% monocytes, and 7% plasma cells. The expres-
sion of TNFRSF21 was upregulated in the infiltrating 
diabetic CD14+ monocyte subset, interleukin 1 receptor 
type 1 (IL1R1) was increased in CD16+ monocytes and 

antigen-presenting cells, and interleukin 18 receptor 1 
(IL18R1) was increased in CD4+ and CD8+ T cells [17]. 
Sodium-glucose cotransporter 2 (SGLT2) inhibitors and 
incretin therapies, including glucagon-like peptide 1 
receptor (GLP-1R) agonists and dipeptidyl peptidase 4 
(DPP4)-inhibitors, also act not only by lowering glucose 
level, but also by blocking the mechanism of kidney in-
jury related with innate immune cell activation and in-
flammatory response [18-21]. To better understand the 
role of inflammation in the pathophysiology of DKD, we 
approach immune activation in DKD patients, includ-
ing innate and adaptive immune responses. We also dis-
cuss the inflammatory response in DKD from human 
studies (Fig. 1). 

Pattern recognition receptors

Toll-like receptors 
Membrane Toll-like receptors (TLRs) and cytoplasmic 
Nod-like receptors (NLRs) are the two major sensors of 
immune cells that have a pivotal role in initiating the 
innate immune response by sensing pathogen-associ-
ated molecular patterns (PAMPs) and damage-associat-
ed molecular patterns (DAMPs). TLRs are expressed in 
various immune cells such as macrophages, dendritic 
cells, T cells, B cells, and natural killer cells. TLRs also 
are expressed on non-immune cells, including kidney 
tubular epithelial cells, endothelial cells, podocytes, and 
mesangial cells [22]. TLR1, 2, 4, 5, and 6 are located on 
the cell surface and detect PAMPs and DAMPs such as 
bacterial lipopolysaccharide, lipopeptides, flagellin, bac-
terial DNA, double-stranded RNA, and high-mobility 
group box 1 proteins [23]. Once triggered, TLRs signal 
via MyD88/interleukin (IL) receptor-associated kinases 
1 and 4, activating MAPK, NF-κB, and interferon reg-
ulatory factor. In DKD patients, TLR2 and TLR4 have 
been reported to contribute to the inflammatory patho-
genesis. Systemic monocytes have higher expression 
levels of TLR2 and TLR4 in type 1 diabetes (T1D) and 
T2D patients, and these TLR expressions are correlated 
positively with hemoglobin A1C and insulin resistance 
levels [24-26]. Renal tubular TLR4 is overexpressed and 
associated with interstitial macrophage infiltration in 
T2D patients [27]. This tubular TLR4 expression is cor-
related negatively with renal function. Glomerular TLR4 
is increased in T2D patients with UAE or overt DKD and 
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has prognostic value in chronic kidney disease (CKD) 
progression [28].

Nod-like receptors
NLRs are expressed in the cytoplasm and sense intra-
cellular PAMPs and DAMPs. NLRs, including nucleo-
tide-binding oligomerization domain-, leucine rich re-
peat-, and pyrin domain-containing 1 (NLRP1), NLRP3, 
NLRP6, NLRP12, and NLRC4 (C for CARD, caspase ac-
tivation and recruitment domain), oligomerize to form 
inflammasome complexes with an adaptor protein ASC 
(apoptosis-associated speck-like protein containing a 
caspase-activating recruitment domain) and an effector 
protein, pro-caspase 1. These initiate inflammatory cas-
cades that lead to activation of caspase 1 and secretion of 
IL-1β and IL-18 [29]. NLRP3 is the best studied example 
of NLRs in diabetes and DKD. Hyperglycemia and its 
related metabolic rearrangement could act as DAMPs 
detected by NLRP3 [30,31]. NLRP3 is activated by several 
ligands, including fatty acid, uric acid, uromodulin, ex-
tracellular adenosine triphosphate, hyperglycemia, se-
rum amyloid A, and mitochondrial reactive oxygen spe-

cies [32-35]. Renal resident mononuclear cells (MNCs), 
such as macrophages and dendritic cells, contain all 
parts of the NLRP3 inflammasome and are able to se-
crete mature pro-inflammatory cytokines; therefore, 
renal MNCs undergo caspase-1-dependent pyroptosis 
[36,37]. In addition to MNCs, non-immune cells in the 
kidney including tubular epithelial cells, podocytes, glo-
merular endothelial cells, and mesangial cells contain 
a substantial amount of NLRP3 [30,38-40]. A beautiful 
study evaluating the role of NLRP3 in non-hematopoi-
etic cells undergoing chimeric bone marrow transplan-
tation revealed that NLRP3 is important in exacerbating 
diabetic nephropathy [38]. The transcripts of NLRP3 
inflammasome components and pro-inflammatory 
cytokines increased in systemic monocytes of patients 
with T2D, and these transcript levels are attenuated 
by metformin treatment [41,42]. In the human diabetic 
kidney, glomerular mRNA for NLRP3, caspase-1, IL-1β, 
and IL-18 was increased [43]. Podocytes and endothelial 
cells were identified as the primary source of IL-1β in 
glomerulosclerosis in human DKD. Interestingly, inhi-
bition of IL-1β by anakinra, an IL-1 receptor antagonist, 

Figure 1. Activation of Inflammation in diabetic kidney disease. Activation of Inflammation in diabetic kidney disease. Var-
ious inflammatory factors such as pattern recognition receptor (PRR), inflammatory cytokines, chemokines, innate immune 
cells, complement pathways, and adaptive immune cells are linked to activate the immune and inflammatory responses in di-
abetic kidney disease. ATP, adenosine triphosphate; AGE, advanced glycation end product; CSF-1, colony-stimulating factor-1; 
TLR, Toll-like receptor; NLRP, nucleotide-binding oligomerization domain-, leucine rich repeat-, and pyrin domain-contain-
ing; IL, interleukin; TNF-α, tumor necrosis factor α; IFN-γ, interferon-γ; TGF-β, transforming growth factor-β; EC, endothe-
lial cell; TEC, tubular epithelial cell; CCL, C-C motif chemokine ligand; CX3CL1, C-X3-C motif chemokine 1; eGFR, estimated 
glomerular filtration rate.
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to prevent gout attacks improved serum creatinine in a 
small number of enrolled diabetic patients with moder-
ate to severe CKD [44]. 

Innate immune cells 
Briefly, macrophages and dendritic cells infiltrate into 
the diabetic kidney, and the number of macrophages 
and dendritic cells correlated with histologic damage 
and clinical measures such as UAE and kidney function 
decline [45,46]. We face critical questions in assessment 
of this process. First, how are these innate immune cells 
activated by metabolic alteration and glomerular hyper-
filtration under diabetic conditions? The inflammatory 
response could be induced by multiple aberrant meta-
bolic products in diabetes, including hyperglycemia-in-
duced cell death, mitochondrial ROS, hyperuricemia, 
and lipid metabolites that serve as DAMPs sensed by 
TLRs and NLRs to trigger innate immune cells [47,48]. 
Dysregulated metabolic products could evoke immune 
cells directly and affect various non-immune cells in 
the kidney to secrete chemokines and cytokines or re-
cruit immune cells indirectly. The second question in-
volves the source of expanded innate immune cells in 
the diabetic kidney. The proliferation and maintenance 
of MNCs require colony-stimulating factor-1 (CSF-1), 
which acts exclusively through the c-fms receptor. The 
serum level of macrophage CSF is elevated in hemodi-
alysis patients [49], and CSF-1 is secreted from proximal 
tubular epithelial cells in the CKD model, including 
DKD [50-52]. Given these findings, increased systemic 
and renal CSF-1 in diabetes contributes to the prolifer-
ation and activation of renal MNCs. Homing of circu-
lating macrophages to kidneys also is an issue in DKD. 
The response to increased expression of adhesion mole-
cules such as intercellular adhesion molecule 1 (ICAM-1) 
and monocyte chemoattractant protein 1 (MCP-1)/C-C 
motif chemokine ligand 2 (CCL2) is reported to promote 
immune cell infiltration in the diabetic kidney [53-55]. 
The last consideration is the diversity of innate immune 
cells and the difficulty in defining the status of immune 
cells. The renal MNCs population is not divided simply 
as macrophages and dendritic cells since classic, spe-
cific surface markers such as CD11b, F4/80, and CD68 
for macrophages or CD11c, myosin heavy chain II, and 
CD80/86 for dendritic cells are co-expressed on renal 
MNCs. This suggests difficulty in differentiating func-

tion between macrophages and dendritic cells. This is 
because the in vivo environment is regulated by complex 
and plastic chemokines, cytokines, and intercellular 
cross-talking. Sub-identification and functional charac-
terization of human renal MNCs are limited by lack of 
information on specific receptors for the differentiating 
subset. This creates an obstacle for developing the treat-
ment target for renal and systemic MNCs in DKD [56]. 

Inflammatory cytokines
Inflammatory cytokines are polypeptide molecules pro-
duced by immune cells, endothelial cells, epithelial cells, 
and fibroblasts in autocrine, paracrine, and juxtacrine 
manners. IL-1, IL-18, IL-6, tumor necrosis factor (TNF), 
and IL-17 are major pro-inflammatory cytokines that 
have been studied in DKD development and progression 
[57,58]. The sterile inflammatory response is dependent 
on IL-1α signaling via the IL-1 receptor. IL-1β and IL-18 
amplify the immune response by acting as costimulato-
ry molecules for T cells and B cells. Urinary and plasma 
IL-1 levels in T2D patients are associated with podocyte 
and proximal tubular epithelial cell injury markers [59]. 
IL-18 is a member of the IL-1 superfamily and stimu-
lates interferon-γ (IFN-γ) release and modulates innate 
and adaptive immune cells. Both serum and urinary lev-
els of IL-18 were significantly increased in type 2 DKD 
patients [60,61]. Renal tubular IL-18 expression was in-
creased in type 2 DKD patients, and this overexpression 
was induced by transforming growth factor-β-mediated 
MAPK pathway activation [62]. Serum IL-18 level in Jap-
anese diabetic patients with normoalbuminuria showed 
a predictive role for developing albuminuria and rapid 
loss of eGFR [63].

IL-6 acts as a costimulatory molecule and acute phase 
reactant in targeting T cells and B cells for activation. 
Serum level of IL-6 is increased in patients with DKD 
[64,65] and correlates with glomerular basement mem-
brane width in diabetic glomerulopathy [66]. In a cohort 
of patients with T2D, circulating IL-6 level correlated 
with atherosclerotic changes, and urinary IL-6 was asso-
ciated with DKD progression [67]. Urinary inflammatory 
cytokines, especially IL-6 and IL-10, can assist in identi-
fying DKD in T2D patients, even in the absence of UAE 
[68]. IL-6 mRNA is expressed on glomerular cells and 
interstitial cells in type 2 DKD patients, and its expres-
sion might be associated with mesangial proliferation 
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and involvement in renal injury [69]. 
TNF-α has multiple pro-inflammatory actions in 

DKD, including induction and differentiation of in-
flammatory cells, cytotoxicity to kidney cells, activation 
of apoptosis, altered glomerular hemodynamics, in-
creased vascular endothelial permeability, and increased 
oxidative stress. TNF-α activates biological signaling 
through TNFR1 and TNFR2. In patients with DKD, 
the whole-genome DNA methylation maps for human 
kidney highlighted coordinated changes in immune 
signaling through methylation and gene expression, in-
cluding that of TNF-α, and changes in TNF methylation 
correlated with kidney function decline [70]. In patients 
with DKD, serum and urinary concentrations of TNF are 
significantly elevated and closely correlate with the UAE 
[71,72]. Glomerular TNF expression, but neither tumor 
necrosis factor receptor 1 (TNFR1) nor TNFR2 expres-
sion, inversely correlated with eGFR in DKD patients 
enrolled in the NEPTUNE study [73]. Intriguingly, se-
rum TNF levels did not correlate with glomerular TNF 
expression suggests intrarenal TNF production. In a 
cohort of normo- and micro-albuminuric T1D patients 
(the 2nd Joslin Kidney Study), serum soluble TNFR1 and 
TNFR2 were associated strongly with decreased eGFR, 
independent of UAE [74]. Cohorts of incident type 2 
DKD (ACCORD) and progressive type 2 DKD (VA-Neph-
ron-D) revealed associations of doubling in TNFR1 and 
TNFR2 with kidney injury molecule-1 (KIM-1) levels; 
risk of adverse renal outcomes was significant for both 
cohorts [75]. 

IL-17 is the key cytokine produced by CD4+ IL-17+ cells 
known as T helper 17 cells and binds to the IL-17 recep-
tor. IL-17 plays a critical role in clearance of bacterial and 
fungal infection. Dysregulated IL-17 in autoimmune 
disease activates several signaling cascades that lead to 
induction of IL-6, TNF-α, CCL2, and CCL5. Acting as 
chemoattractants, these cytokines and chemokines re-
cruit immune cells, such as monocytes and neutrophils, 
to the site of inflammation. The role of IL-17 has been 
studied well in T1D development. Patients with T1D 
present with elevated plasma level of IL-17, increased 
circulating IL-17-producing T cells, and islet anti-
gen-specific Th17 cells [76]. Plasma IL-17 level decreased 
with progression from normal glucose tolerance to T2D 
with DKD [77]. However, CD4+ IL-17+ T cells were found 
in T2D patient kidneys, and the number of CD4+ IL-17+ 

T cells was correlated positively with deterioration in 
eGFR [78]. In this aspect, systemic and local IL-17 pro-
duction can differ in DKD. 

Chemokines and their receptors 
The name chemokine derives from the ability of these 
small cytokines or signaling proteins to recruit cells 
by chemotaxis. Chemokines exert biological effects by 
binding receptors on the surface of target cells. Chemo-
kines are activated in non-immune kidney cells in re-
sponse to hemodynamic and metabolic alteration and 
play a critical role in inflammatory cell recruitment, 
migration, and cellular adhesion in DKD [79]. CCL2 
(MCP-1), CCL5 (RANTES), and C-X3-C motif chemok-
ine 1 (CX3CL1, Fractalkine) have been studied as major 
pro-inflammatory chemokines in DKD. CCL2, which is 
produced by renal tubular epithelial cells and podocytes 
in diabetic kidneys, recruits mononuclear cells and 
memory T cells to the sites of inflammation [80]. We 
investigated the impact of CCL2 polymorphism (-2518 
A/G genotype, A carriage) on DKD progression in T2D 
patients [81]. In logistic regression analysis, the carriage 
of the A allele retained a significant association with 
progression to end-stage renal disease (ESRD). Urine 
CCL2 level in T2D patients was significantly higher 
than that in healthy adults and gradually increased with 
CKD stage [82,83]. Tubulointerstitial CCL2 expression 
significantly increased in T2D kidneys. Moreover, uri-
nary level of CCL2 was well correlated with the number 
of CD68-positive infiltrating cells in the interstitium. In 
contrast, serum CCL2 level remained similar to those of 
healthy volunteers. The CCL2 receptor, C-C chemokine 
receptor 2 (CCR2), is expressed on MNCs and differ-
entiated podocytes. CCL2 exerts influence on the actin 
cytoskeleton through CCR2 on podocytes, affecting foot 
process effacement and subsequent albuminuria devel-
opment [84,85]. CCL5 recruits monocytes and T cells and 
plays an active role in homing leukocytes into inflam-
matory sites. In the Finnish Diabetes Prevention Study, 
progression to T2D in overweight individuals and in 
those with impaired glucose tolerance was significantly 
higher in subjects with the highest RANTES concentra-
tion and lower in subjects with the highest macrophage 
migration inhibitory factor levels [86]. Biopsy specimens 
from patients with T2D and overt nephropathy showed 
strong upregulation of CCL2 and CCL5, mainly in tu-
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bular cells. There was a strong correlation between the 
expression of these chemokines and NF-κB activation 
in the same cells [87]. CX3CL1-CX3CR1 axis activation in 
T2D patients has been studied in relation to atherogenic 
chemokines since they are associated with angiogenesis, 
cardiovascular mortality, and monocyte adhesion to ad-
ipocytes [88,89]. Plasma CX3CL1 level was significantly 
higher in T2D patients compared with non-diabetics 
[90,91]. In addition, plasma CX3CL1 level correlated 
positively with inflammatory chemokines and cytokines 
in T2D patients.

Complement system
The complement system is a potent effector in the in-
nate immune system and is involved in various infec-
tion and inflammatory diseases such as autoimmune 
disease, atypical hemolytic uremic syndrome, and par-
oxysmal nocturnal hematuria. The complement system 
is constituted of many soluble and membrane-bound 
proteins, mostly proteases that respond to danger sig-
nals and generate excess immune effectors. In the kid-
ney, proximal tubular epithelial cells express comple-
ment C3 and membrane-bound C3 convertase, which 
could activate intrarenal complement pathway in vari-
ous kidney diseases [92-94]. 

Two critical roles of the complement pathway in DKD 
pathogenesis are activation of the lectin pathway in re-
sponse to glycated proteins on the cell surface and dys-
functional complement regulatory proteins by glycation 
under long-lasting hyperglycemia [95]. A cohort study of 
95,202 individuals from the general population followed 
for 10 years revealed that high baseline concentration 
of complement C3 was associated with increased risk of 
diabetic retinopathy, nephropathy, and neuropathy [96]. 
Differential transcriptome analysis of early diabetic kid-
neys and matched non-diabetic controls revealed five 
distinct canonical pathways. Among these pathways, the 
complement pathway was most significantly changed in 
early DKD [97]. In a cohort of 326 T2D patients followed 
for 15 years, higher mannose-binding lectin (MBL) val-
ue was associated with a 2.6 hazard ratio for develop-
ment of proteinuria and kidney function decline [98]. 
The same group published data from 1,564 T1D patients 
with a median follow-up of 5.8 years; MBL values signifi-
cantly correlated with UAE and predicted the onset of 
end-stage kidney disease [99]. Urine samples from T2D 

patients with proteinuria were analyzed using targeted 
mass spectrometry and showed a low risk of ESRD with 
high urine CD59, an inhibitor of terminal complement 
complex formation (hazard ratio [HR], 0.50; 95% confi-
dence interval [CI], 0.29 to 0.87) [100]. In biopsy speci-
mens from T2D patients, C1q deposits were associated 
with interstitial fibrosis and tubular atrophy (IFTA), 
interstitial inflammation, and vascular lesions. In com-
parison, patients with C3c deposits scored high in IFTA 
and global sclerosis [101]. Patients with C1q deposition 
had a significantly higher urinary protein level and sig-
nificantly lower eGFR. Renal tubular C5a expression in-
creased in DKD patients, and the expression intensity of 
C5a correlated with DKD progression [102]. 

Adaptive immune cells 
T cell and B cell infiltration in the diabetic kidney has 
not been observed as widely as innate immune cell infil-
tration. Recent study results have shed light on the role 
of adaptive immune cells in metabolic disease, includ-
ing DKD; particularly, increase of Th1 and Th17 cells 
and decrease of Treg cells in response to hyperglycemia 
are distinct features of adaptive immune cells in DKD. 
Enhanced activation of circulatory Th1 and suppressed 
Th2 profiles were reported in patients with T2D with 
proteinuria [103]. In people with T2D, circulating Th1 
and Th17 increased proportional to albuminuria. Serum 
cytokines characteristic of Th1 (IFN-γ, TNF-α, IL-2) and 
Th17 (IL-17) subsets were increased in people with DKD 
in correlation with albuminuria [104]. We demonstrated 
that marked increase of CD4+, CD8+, and CD20+ cells in 
the glomerular and tubulointerstitial area and the num-
ber of CD4+ and CD20+ cells correlated with the amount 
of proteinuria in T2D patients (Fig. 2) [105]. Juxtaglomer-
ular T cell infiltration appears to play a role in hemody-
namic alteration in T1D related with local angiotensin 
system activity [106,107].

NEW TRIALS FOR REGULATING INFLAMMA-
TION IN DKD 

Pentoxifylline (PTX) is a methylxanthine derivative with 
diverse effects, including preventing platelet aggrega-
tion, improving blood flow, and immune modulation 
[108,109]. The mechanism of action of PTX is inhibit-
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ing phosphodiesterases 3 and 4 that primarily regulate 
intracellular secondary messenger cyclic adenosine 
monophosphate (cAMP). Increased cAMP by PTX ac-
tivates protein kinase A, leading to attenuated produc-
tion of inflammatory cytokines including IL-1, IL-6, 
and TNF-α [110,111]. The PREDIAN trial [112] evaluated 
the renoprotective effects of PTX and  renin-angioten-
sin system (RAS) blockade therapy in 169 white patients 
with T2D, stage 3 or 4 CKD, and UAE greater than 30 mg/
day for 2 years. The PTX (1,200 mg/day) treatment group 
had decreased proteinuria and urinary concentration 
of TNF-α and slowed eGFR decline (2.1 mL/min/1.73 m2 
in the PTX group vs. 6.5 mL/min/1.73 m2 in the placebo 
group). The unresolved questions of PTX clinical trials 
stem from the small number of patients and short study 
duration. The hard renal outcome, ESRD or renal death, 
also was not evaluated. An ongoing clinical trial with 
PTX (NCT03625648) targets high-risk patients accord-
ing to the “heat map” of the Kidney Disease Improving 
Global Outcomes in patients with T2D and CKD stage 3 
or 4 [113]. The primary outcome of this study is time to 
ESRD or all-cause mortality in 2,510 enrolled patients. 
The results could answer questions regarding the cur-
rent issues of PTX in DKD (Table 1). 

The effects of barcitinib, a selective JAK-1 and -2 in-
hibitor, on proteinuria in T2D patients were evaluat-
ed. Barcitinib reduced the proteinuria in combination 
with RAS inhibitor treatment in a phase 2 study over 
24 weeks. In a dose-dependent manner, barcitinib de-
creased albuminuria by 20% to 30% compared with pla-

cebo with no eGFR change [114]. Inflammatory biomark-
ers such as urine CCL2, serum TNFR1, TNFR2, vascular 
cell adhesion molecule (VCAM-1), VCAM-2, and serum 
amyloid A level were decreased in the barcitinib treat-
ment group. 

Apoptosis signal-regulating kinase 1 (ASK1) is a 
stress-responsive mitogen-activated protein kinase 
kinase kinase that signals through a cascade of down-
stream kinases including p38 and c-Jun N-terminal ki-
nase. ASK1 regulates target gene expression including 
genes for inflammatory cytokines [115,116]. Selonsertib 
is a selective, small molecule ASK1 inhibitor that has 
been evaluated for efficacy in preventing eGFR decline 
in T2D patients over 48 weeks. Mean eGFR for the two 
groups did not differ significantly at 48 weeks; howev-
er, clinical researchers found that selonsertib inhibited 
creatinine secretion. After a post hoc analysis, the rate 
of eGFR decline was reduced 71% for the 18 mg group 
compared with the placebo group between 4 and 48 
weeks (difference 3.11 ± 1.53 mL/min/1.73 m2 annualized 
over 1 year; 95% CI, 0.10 to 6.13; nominal p = 0.043). The 
UAE did not differ between selonsertib treatment and 
the placebo group [117].

CCL2 has been investigated as the anti-inflammatory 
target in DKD. Emapticap pegol (NOX-E36), the anti-hu-
man CCL2 blocking aptamer, specifically binds and in-
hibits the pro-inflammatory cytokine CCL2. 

Emapticap was evaluated in a phase 2a study to con-
firm the safety and tolerability, as well as, the renopro-
tective and anti-diabetic effect in T2D patients with 

Figure 2. Kidney lymphocytes infiltra-
tion in type 2 diabetic human kidneys. 
Immunostaining for CD4+, CD8+ T 
cells, and CD20+ cells in control pa-
tients and type 2 diabetes mellitus 
(DM) patients. In comparison, there is 
significant infiltration of CD4+, CD8+ 
T cells, and CD20+ cells to interstitium 
in diabetic kidney. Adapted from Moon 
et al., with permission from Karger 
Publishers [105].

Glomerulus

CD4+ cells

CD8+ cells

CD20+ cells

Control Type 2 DM

Interstitium Glomerulus Interstitium
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albuminuria taking RAS inhibitors treatment. After 12 
weeks, albuminuria was reduced by 29% relative to base-
line (p < 0.05) but with no significant difference from 
placebo [118]. A post hoc analysis excluding patients with 
major protocol violations showed increased UAE differ-
ence between the two treatment arms to 32% at 12 weeks 
(p = 0.014) and 39% at 20 weeks (p = 0.010).

CCX140-B is a selective inhibitor of CCR2 that was 

evaluated for an effect on proteinuria in T2D patients 
with albuminuria. This inhibitor was taken in combina-
tion with RAS inhibitors in a phase 2 study for 52 weeks. 
UAE changes from baseline during 52 weeks were –2% 
for placebo, –18% for 5 mg CCX140-B, and –11% for 10 
mg CCX140-B. The albuminuria-lowering treatment ef-
fect persisted throughout the 52 weeks of study [119].

Vascular adhesion protein-1 (VAP-1) is an endothelial 

Table 1. Targeting inflammation as therapeutics in human diabetic kidney disease 

Agent,  
Clinical trial 
stage

Mechanism of 
 action

Inclusion criteria/
study duration

Primary outcome Results

Pentoxifylline, 
Phase 4 
(NCT03625648)

Non-specific 
phosphodiesterase 
3 and 4 inhibitor

Type 2 DM 
eGFR 15–60  
mL/min/1.73 m2

Time to ESRD or 
death

On going 

Barticinib,  
Phase 2 
(NCT01683409)

JAK-1,-2 inhibitor Type 2 DM 
eGFR 20–70  
mL/min/1.73 m2 and 
UACR 300–5,000 
mg/g/24 weeks

Change from 
baseline in UACR 
at week 24

Barcitinib decreased albuminuria by 
20%–30% compared with placebo. 

Serinsertib  
(GS-4997), Phase 
2 (NCT02177786)

Selective, small 
molecule, ASK1 
inhibitor

Type 2 DM 
15 ≤ eGFR < 60  
mL/min/1.73 m2 and 
UACR > 100 mg/g 
/48 weeks

Change in eGFR 
from baseline at 
week 48

Mean eGFR for selonsertib and placebo 
groups did not differ significantly at  
48 weeks. After a post hoc analysis, 
rate of eGFR decline was reduced 71% 
for the 18 mg group compared with 
placebo between 4 and 48 weeks. 

Ematicap pegol 
(NOX-E36),  
Phase 2 
(NCT01547897)

Anti-human CCL2 
blocking aptamer

Type 2 DM
eGFR > 25 mL/
min/1.73 m2 and 
UACR > 100 mg/g 
/12 weeks

Effect of NOX-E36 
on albuminuria as 
measured by UACR

After 12 weeks, albuminuria reduction 
by 29% relative to baseline, but no 
significant difference with placebo. A 
post hoc analysis, increased the UACR 
difference between the two treatment 
arms to 32% at week 12.

CCX 140-B,  
Phase 2 
(NCT01447147)

Selective CCR2 
inhibitor

Type 2 DM
eGFR ≥ 25 mL/
min/1.73 m2 and 
UACR 100–3,000 
mg/g

/52 weeks

Evaluate the safety 
and tolerability of 
CCX140-B 

Adverse events rate are not higher in 
CCX 140-B compared to placebo. CCX 
140-B decrease albuminuria of 18% as 
compared to the placebo group. 

ASP8232,  
Phase 2 
(NCT02358096)

VAP-1 inhibitor Type 2 DM/
25 ≤ eGFR < 75  
mL/min/1.73 m2 and 
UACR 200–3,000 
mg/g 
/12 weeks

Mean change of log 
transformed UACR 
from baseline to 
end of treatment

UACR decreased by 17.7% in the 
ASP8232 group and increased by 2.3% 
in the placebo group. 

DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; JAK, Janus kinase; UACR, 
urinary albumin to creatinine ratio; ASK1, apoptosis signal-regulating kinase 1; CCL2, C-C motif chemokine ligand 2; CCR2, 
C-C chemokine receptor 2; VAP-1, vascular adhesion protein-1.
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surface sialoglycoprotein that has two functions. VAP-1 
is induced under inflammatory conditions and acts as 
an adhesion molecule for granulocyte and lymphocyte 
trafficking [120,121]. VAP-1, also known as amine oxidase 
copper-containing 3, possesses mono-amine oxidase ac-
tivity and interacts with leukocyte adhesion molecules 
including Siglec-9 and -10. These are active in endothe-
lial cells of vascularized tissues in the kidney. The sol-
uble end products of its enzymatic cleavage are hydro-
gen peroxide and reactive aldehydes that lead to protein 
cross-linking and eventual oxidative stress [122]. ASP8232 
is a small molecule inhibitor of VAP-1 evaluated for its 
effect on reducing albuminuria in T2D patients over a 
12-week phase 2 study period [123]. UAE decreased by 
17.7% in the ASP8232 group and increased by 2.3% in the 
placebo group; the placebo-adjusted difference between 
groups was –19.5% (95% CI, –34.0 to –1.8; p = 0.033).

 
CONCLUSIONS

Agents targeting inflammation in combination with 
RAS blockade therapy are a trend in recent clinical tri-
als for DKD [3,124]. However, the difficulty in selecting 
appropriate patients who can benefit from anti-in-
flammatory treatment undermines most attempts to 
properly evaluate this treatment strategy. Additionally, 
not all DKD patients benefit from JAK-1, -2 inhibitor 
or anti-human CCL2 blocking aptamer. Some specific 
populations at certain stages of DKD respond efficiently 
to those treatments; however, the current clinical diag-
nostic approaches do not select for such patients. We 
need new biomarkers that determine the inflammation 
threshold for predicting progression to DKD and serve 
as indicators of DKD onset even in early diabetic pa-
tients. We summarized the DKD human data related to 
inflammation in this review. The evidence level is low 
due to the small number of patients studied. Integrating 
genetic data with kidney tissue level transcriptomic and 
proteomic data will be a powerful tool to search for bio-
markers and treatment candidates. Based on this view-
point, we hope future studies will expand and refine our 
understanding of the development and progression of 
DKD, so as to ultimately reduce the need for renal re-
placement therapy in DKD.
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