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Introduction
Multiple myeloma (MM) is a malignant neoplasm 
of clonal plasma cells, preceded in nearly all cases by 
an asymptomatic premalignant condition called 
monoclonal gammopathy of uncertain significance 
(MGUS). Incidence of MM is approximately 
4/100,000/year, and MGUS occurs in 3–4% of 
individuals over 50 years of age, with an average rate 
of progression to MM of 0.5–1%/year.1 Patient out-
comes have improved significantly over recent years. 
Kumar and colleagues showed a 50% improvement 
in overall survival in patients diagnosed after 1997 
compared with those diagnosed before, with a clear 
role played by the advent of immunomodulatory 
drugs and proteasome inhibitors.2 Outcomes have 
likely improved further, and numerous additional 
therapeutic agents are now available.

The role of the immune system in myeloma is 
becoming increasingly understood. Therapies tar-
geting the immunological components of myeloma 
genesis offer a means of continuing to improve dis-
ease outcomes while avoiding or further reducing 
dependence on traditional chemotherapeutics. 
Furthermore, evidence suggests that immune sur-
veillance may play a critical role in the prevention of 

disease progression, therefore early use of immune-
focused therapies may have the potential to halt 
progression altogether.

In this review, we discuss the current understand-
ing of the effects on the immune system seen in 
MM and its premalignant stages, how these affect 
disease progression, and the therapies available or 
under development.

Dysfunctional immunity in myeloma
Within the bone marrow (BM), a complex inter-
play of interactions occurs between malignant 
plasma cells and normal BM components. In this 
section, we will describe myeloma’s immunosup-
pressive effects on various cell types and subsets, 
and how these facilitate immune evasion. These 
are summarized in Figure 1.

T-cells
T-cells form a crucial part of the adaptive immune 
system. They express unique antigen-specific 
T-cell receptors (TCRs), however they rely on 
antigen presentation by major histocompatibility 
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complex (MHC) class I (for CD8+ cells) or class 
II (CD4+ cells) molecules for activation.

Allogeneic stem cell transplantation (allo SCT) 
provided the initial evidence of the role of T-cells 
in myeloma. Graft-versus-host disease (GvHD), 
especially chronic disease, is associated with 
improved survival post-allo SCT,3 with a 5-year 
overall survival (OS) of 78.8% for those with 
chronic GvHD reported, compared with 42.6% 
without. The anti-tumour properties of donor 
lymphocyte infusions (DLIs) also correlate with 
the induction of GvHD and the quantity of lym-
phocyte dose.4

Quantitative and qualitative T-cell changes are 
seen at varying stages of myeloma development. 
The peripheral blood CD4+/CD8+ T-cell ratio is 
reduced in MGUS and MM, and progresses with 
disease progression and increasing tumour bur-
den, which have been shown to be independently 
associated with poor prognosis.5 Th1 cells are 
increased in both BM and peripheral blood com-
pared with Th2 cells, and Th17 cells, a proin-
flammatory subset, are particularly prominent in 
BM samples.6 Tumour-specific clonal T-cell 
expansions may develop, more often with CD8+ 
than CD4+. Michalek and colleagues7 stimulated 
the development of tumour-specific T-cell clones 
in patients using dendritic cells (DCs) loaded 
with myeloma cell apoptotic bodies. These T-cells 
demonstrated cytotoxic effects against autologous 
tumour cells in vitro. Clonal CD8+ T-cell expan-
sions are seen more frequently in patients with 
low tumour burdens, and T-cell populations from 
the BM of MGUS patients respond to autologous 
malignant cell exposure by vigorous cytokine pro-
duction, which is not replicated using T-cells 
from myeloma patients, suggesting impaired 
functionality with disease progression.8 These 
studies cannot determine whether the impaired 
T-cell repertoire predisposes to disease progres-
sion or is caused by it, however experimental data 
suggest that immune surveillance may be involved 
in the prevention of progression. For example, 
T-cells specific for SOX-2, a gene critical for 
embryonic renewal of stem cells, were identified 
in around 25% of MGUS patients but absent in 
myeloma patients. Immunity to SOX-2 prevented 
the in vitro clonal growth of MGUS cells, suggest-
ing that the loss of anti-SOX-2 immunity may 
facilitate the clonal escape of MGUS cells and 
disease progression.9

T-cell dysfunction in myeloma is multifactorial. 
DCs, the central antigen-presenting cells (APCs), 
are impaired in MM. MM cells may induce T-cell 
anergy by presenting tumour-specific antigens 
without co-receptor expression. Brown and col-
leagues showed reduced expression of the B7-1 
(CD80) costimulatory molecule on MM cells 
alongside downregulation of its counter receptor 
molecule CD28 on expanded T-cell clones, lead-
ing to T-cell anergy.10 These tumour cells still 
expressed CD86 (B7-2) which interacts with cyto-
toxic T-lymphocyte associated antigen-4 (CTLA-
4), noted to be upregulated in the T-cells. CTL4 
binding dampens effector T-cell activation and 
regulates immune homeostasis. Interactions 
between programme cell death receptor-1 (PD-1) 
and its ligand (PD-L1) are another mechanism of 
immune suppression. PD-L1 is expressed by vari-
ous nonlymphoid cells and tumour cells. PD-1/
PD-L1 binding suppresses the activation and pro-
liferation of autoreactive T-cells, inducing T-cell 
exhaustion, reduced cytokine production and 
impaired cell lysis. PD-L1 also binds to B7-1, 
mediating T-cell inhibition.11 Increased levels of 
PD-L1 in myeloma cells alongside T-cell exhaus-
tion has been demonstrated, and PD-L1 blockade 
in mice was shown to improve survival post-stem 
cell transplant and whole-cell vaccination.12

TIGIT (T-cell immunoglobulin and immunore-
ceptor tyrosine-based inhibitory motif domain) is 
another inhibitory immune receptor expressed on 
T-cells and natural killer (NK) cells. Increased 
TIGIT expression on T-cells has been noted in 
patients with MM during disease progression. 
These T-cells exhibited a dysfunctional phenotype 
and demonstrated impaired proliferation and 
cytokine production. Addition of a monoclonal 
antibody against TIGIT led to improved T-cell 
function and suppressed MM development.13

Studies focused on specific T-cell subsets have 
provided further information. Regulatory T-cells 
(Tregs) are immunosuppressive and required for 
normal immune homeostasis. CD4(+)CD25(+/
high)FoxP3(+) Tregs are elevated in the periph-
eral blood of myeloma patients, with levels cor-
relating with disease burden, and also seen in 
MGUS, suggesting a possible role in early mye-
loma genesis. Furthermore, myeloma cells have 
been shown to induce the formation of immuno-
suppressive Tregs in vitro.14 NK T-cells express 
both TCRs and NK cell surface markers, 
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recognizing antigens via CD1d molecules. 
Invariant NK T-cells (iNKTs) involved in tumour 
immunosurveillance, have been shown to be 
functionally impaired in myeloma patients with a 
reduced ability to produce interferon gamma 
(IFN-γ), possibly relating to the loss of CD1d 
expression by MM cells. Stimulation of iNKT 
cells by the α-galactosyl ceramide ligand can pro-
duce strong anti-tumour responses against MM 
cells in vivo.15

NK cells
NK cells are a critical component of the innate 
immune system, and unlike T-cells, do not require 
antigen exposure to mount a response. Their effec-
tor function is determined by a balance between 
signals produced by inhibitory and activating 
receptors recognizing their respective ligands on 
tumour cells, or virally infected cells. Disruption of 
this balance enables immune evasion.

The most well characterized inhibitory receptors 
are the killer immunoglobulin-like receptor (KIR) 
superfamily, recognizing MHC (polypeptide 
related sequence) Class I antigens. Others include 
CD94/NKG2A (CD159a), ILT2, PD-1 and 
TIGIT. Activating receptors include NKG2D 
(CD314), which recognizes the MHC-related 
ligands MICA and MICB, the natural cytotoxicity 
receptors (NCRs), CD94/NKG2C (CD159c), 
CD16 (FcγRIIIA), the SLAM-related 2B4 
(CD244) receptor, and DNAM-1 (CD226), 
which is regulated by TIGIT and CD96 
(TACTILE).16 Low-dose bortezomib was shown 
to increase expression of NKG2D and DNAM-1 
ligands on myeloma cell lines, sensitising the cells 
to NK-mediated lysis,17 suggesting a possible syn-
ergism between proteasome inhibition and NK 
cell therapies.

One of the most important inhibitory signals is 
HLA-E, which suppresses NK and T-cell activity 
through its interaction with NKG2A. Genetic vari-
ation in HLA genes means that around 40% express 
high levels of HLA-E and 60% express low levels. 
The impact of HLA-E expression was assessed in 
the MM Research Foundation CoMMpass study. 
Patients with high HLA-E expression were found to 
have a significantly shorter duration of progression-
free survival (PFS) than those with medium or low-
level expression. Mass cytometry in these patients 
also identified expansions of immune-suppressive 

T-cells with high levels of PD-1 and TIGIT expres-
sion, as well as a subset of Tregs, which were not 
seen in the groups with medium or low-level HLA-E 
expression.18

MM cells and Tregs produce high levels of trans-
forming growth factor (TGF)-β, which downreg-
ulates NK-activating receptors and impairs NK 
cytotoxicity. Elevated interleukin (IL)-10 levels 
inhibit IFN-γ and tumour necrosis factor (TNF)-
α production, elevated IL-6, produced by both 
MM and bone marrow stromal cells (BMSCs) 
may inhibit NK activity, and elevated BM prosta-
glandin E2 levels inhibit activating signals via 
NCR, NKG2D and CD16.16 Additionally, mye-
loid-derived suppressor cells (MDSCs) downreg-
ulate NK activity via the NKp30-activating 
receptor, membrane-bound TGF-β and TIGIT-
mediated signalling.16,19,20

Presence of stress-induced MICA/B ligands on 
tumour cells activates NK cytotoxicity via 
NKG2D. Metalloproteinase-mediated cleavage 
of MIC generates soluble MIC ligands (sMICs). 
These cause internalization of NKG2D and other 
NK-activating receptors, leading to impaired 
cytotoxic activity.21 MIC shedding has been seen 
in myeloma following exposure to doxorubicin 
and melphalan chemotherapy.22 Surface plasma 
cell MICA expression is known to decrease with 
progression from MGUS to MM,23 alongside 
other activating ligands. Conversely, there is evi-
dence for upregulation of inhibitory ligands, for 
example, HLA Class I antigens.24 In fact, MM 
cells from advanced disease states are so immu-
nosuppressive to NK cells that they can evade 
killing by NK cells from normal healthy donors.25

A further immune-evasive mechanism utilised by 
myeloma cells is surface expression of sialylated 
glycans, which bind to Siglecs (sialic acid-bind-
ing lectin receptor)-7 on NK cells (and Siglecs-9 
on macrophages). Both treatment of MM cells 
with a sialytransferase inhibitor and use of NK 
cells lines with low Siglecs-7 expression, pro-
duces a significant increase in NK-medicated cell 
death.26

Finally, NK cells in MM may show an exhausted 
phenotype, with downregulation of activating 
receptors, for example, NKG2D, NKp46 and 
DNAM-127 and increased expression of PD-1, 
leading to disrupted cytotoxicity and cytokine 
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production,28 and further increasing the ability of 
the malignant cells to escape immune surveillance.

Dendritic cells
DCs are professional APCs forming a critical link 
between the innate and adaptive immune system. 
High levels of circulating IL-6 in MM impairs 
the generation and function of DCs, stimulating 
CD34+ cells to differentiate into monocytic cells 
with potent phagocytic ability but no antigen-
presentation activity. DCs isolated from MM 
patients have been shown to be unable to present 
tumour epitopes, unlike DCs from donors or 
those generated in vitro from CD14+ patient 
monocytes without exposure to excess IL-6.29 
Use of an IL-6 receptor alpha-chain knockdown 
DC vaccine in a murine model lead to increased 
production of tumour-specific CD8+ T-cells, 
increased cytokine production and improved 
PFS.30

Hypersialylation of MM cells may additionally 
impair DC functioning, via binding to Siglec-7/-9 
receptors on the DCs, leading to blunted T-cell 

activation, which can be ameliorated by inhibiting 
sialic acid expression.31

Macrophages
Tumour-associated macrophages (TAMs) are 
derived by recruitment and activation of circulat-
ing monocytes by cytokines and chemokines pro-
duced by tumour cells and BMSCs. Activated 
macrophages are polarized into M1 or M2 mac-
rophages. M1 macrophages are proinflammatory 
and produce high levels of TNF-α and IL-12, 
often in response to infections. TAMs usually 
resemble M2 macrophages, which are immuno-
suppressive, for example through expression of 
PD-L1, and stimulate angiogenesis favouring 
tumour growth.32 Myeloma cells produce 
chemokines, for example, PGE2 which may 
attract and polarize macrophages to the M2 phe-
notype. IL-12, produced by M1 macrophages can 
downregulate myeloma cell angiogenesis and 
impair tumour growth.33 Moreover, predomi-
nance of M2 macrophages has been linked to 
resistance to daratumumab/immunomodulatory 
drug (IMiD) combinations.34 Strategies to 

Figure 2. The activity of the monoclonal antibodies, daratumumab and elotuzumab, synergism with the 
immunomodulatory drugs and cyclophosphamide, and the role of checkpoint inhibition.
ADCC, antibody-dependent cellular cytotoxicity); CDC, complement-dependent cytotoxicity); ADCP, antibody-dependent 
cellular phagocytosis; FCgtammaR1, FC gamma receptor 1; IL, Interleukin; TNF, tumour necrosis factor; IFN, interferon; 
PD-L1, programmed death- ligand 1; PD-1, programmed death-1; MAPK/ERK, mitogen activated protein kinases/
extracellular signal-regulated kinases.
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repolarize macrophages could aid restoring 
responsiveness to daratumumab and other mono-
clonal antibodies.

MDSCs
This heterogenous group of cells is characterized 
by myeloid origin, immaturity and potent sup-
pression of T-cell responses. MDSCs rapidly 
expand in response to infection, inflammation and 
malignancy, preventing massive T-cell over-acti-
vation and cytokine release.35 This occurs partly 
by upregulation of inducible nitric oxide synthase 
(iNOS), leading to increased nitration of tyrosine 
residues in T-cells, preventing phosphorylation 
and inhibiting T-cell function. These cells are pre-
sent at five-times normal levels in patients with 
newly diagnosed myeloma, providing yet another 
means of tumour escape from immune surveil-
lance. Phosphodiesterase-5 (PDE-5) inhibitors, 
(e.g. sildenafil or tadalafil) downregulate iNOS 
production and can inhibit the suppressive effect 
of MDSCs on T-cell immunity.36

BM stromal cells and adipocytes
BMSCs produce numerous cytokines and 
chemokines responsible for regulation of plasma 

cell migration, homing to the bone marrow niche, 
proliferation and survival, for example, CXCL-12 
which binds plasma cell CXCR4 and facilitates 
migration, alongside IL-6, VCAM and CD44.37 
Elevated IL-6 is a poor prognostic feature, and 
high levels of the soluble IL-6 receptor correlate 
with poor responses to chemotherapy.38 As men-
tioned previously, IL-6 has implications for 
T-cell, NK cell and DC immunity, and blocking 
IL-6 has been shown to improve tumour-specific 
responses in a murine model.30

Therapeutics
Many of the agents used as standard of care in 
MM, alongside the novel targeted therapies have 
an immunomodulatory component to their 
mechanism of action. Here we will discuss the 
various classes of agents in turn, with a particular 
focus on the monoclonal and bispecific antibod-
ies and cellular therapies under development. 
These are summarized in Figures 2 and 3, and 
key clinical trials in Table 1.

Immunomodulatory drugs
The IMiDs are thalidomide and its derivatives 
lenalidomide and pomalidomide. In vitro exposure 

Figure 3. Therapeutic options for targeting myeloma epitopes, in this case, BCMA; CAR T-cells, bispecific 
T-cell engagers, bispecific antibodies and antibody–drug conjugates.
BCMA, B-cell maturation antigen; CAR-T, chimeric antigen receptor- T cells; BiTES, Bispecific T-cell engagers.
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of stem cells to IMiDs leads to growth and activa-
tion of DCs in a mouse model.61 Lenalidomide and 
pomalidomide have been shown to enhance tumour 
antigen uptake and presentation by DCs, inhibit 
Tregs, and increase IL-2 and IFN-γ production, all 
leading to improved T-cell responses.62,63

IMiDs act via binding to cereblon, a component of 
the E3 ubiquitin ligase, resulting in ubiquitination 
and proteasome-mediated degradation of the 
Ikaros family zing finger protein transcription fac-
tors 1 and 3, and reduced transcription of MYC 
and IRF4, required for survival and proliferation.64 
Reduced levels of IKZF1/3 result in the upregula-
tion of IL-2 and IFN-γ, stimulating NK growth 
and activity. A study using IL-2-primed peripheral 
blood mononuclear cells treated with thalidomide 
demonstrated significantly increased lysis of MM 
cell lines, independent of MHC class, and inhib-
ited by depletion of CD56 positive cells, strongly 
suggesting NK-mediated killing.65

Checkpoint inhibitors
PD-L1 is highly expressed on MM cells, as well as 
certain immune-suppressive cells within the 
tumour microenvironment (TME). Presence of 
PD-L1 impairs both T-cell and NK cell immunity, 
and levels of soluble PD-L1 have been shown to be 
independently associated with worse outcomes fol-
lowing upfront treatment.66 A phase II study of 48 
patients combined the PD-1 antagonist pembroli-
zumab with pomalidomide and dexamethasone in 
patients with RRMM (relapsed refractory MM), 
reporting 60% overall response rate (ORR), 19% 
very good partial response (VGPR) and 8% com-
plete response (CR).39 Studies of nivolumab, as a 
single agent however, failed to show efficacy.67 
Lenalidomide reduces the expression of both 
PD-L1 by myeloma cells and corresponding PD-1 
by NK cells and cytotoxic T-cells, and has been 
shown to act synergistically with PD-1 blockade to 
improve NK and T-cell-mediated cytotoxicity in 
vitro,68 offering a rationale for the enhanced effi-
cacy seen compared with single-agent nivolumab. 
However, a phase III trial comparing pembroli-
zumab/lenalidomide/dexamethasone with lenalid-
omide/dexamethasone in front-line therapy was 
halted early due a treatment-related mortality of 
3% in the intervention arm (KEYNOTE-185),40 
and a similar study comparing pembrolizumab/
pomalidomide/dexamethasone with pomalido-
mide/dexamethasone (KEYNOTE-183) was 
found to have an unfavourable risk–benefit 

profile.41 The United States Food and Drug 
Administration (US FDA) placed clinical trials 
using pembrolizumab on hold in July 2017 follow-
ing the deaths in KEYNOTE-185, although this 
was partially lifted in December 2017 allowing 
ongoing recruitment in some studies. To date, 
PD-1 inhibition in MM has failed to replicate the 
successes seen in Hodgkin lymphoma and lung 
cancers.

Monoclonal antibodies
Monoclonal antibodies recognize specific tumour 
epitopes in order to generate an immune response 
and facilitate cell killing. Recent years have seen a 
marked expansion in monoclonal antibodies for 
use in MM.

Daratumumab is a fully humanized anti-CD38 
monoclonal antibody that kills myeloma cells 
through antibody-dependent cellular cytotoxicity 
(ADCC), which relies upon binding of NK cell 
CD16 (FcγRIIIA), complement-dependent cyto-
toxicity (CDC) and antibody-dependent cellular 
phagocytosis (ADCP). Single-agent daratu-
mumab yielded an ORR of 29% in RRMM.42 The 
addition of lenalidomide has been shown to 
improve the ADCC of daratumumab in preclini-
cal studies, and in our experience, low doses of 
cyclophosphamide augment macrophage-depend-
ent ADCP, which will be discussed further under 
the heading of cyclophosphamide.69,70 Phase III 
trials of daratumumab with either lenalidomide/
dexamethasone (POLLUX) or bortezomib/dexa-
methasone (CASTOR) in transplant-eligible 
patients have shown impressive responses in 
RRMM with a 12-month PFS of 83.2% versus 
60.1% for standard of care, and 60.7% versus 
26.9% respectively.43,44 Nontransplant candidates 
also have excellent responses with upfront daratu-
mumab, in combination with bortezomib/melpha-
lan/prednisolone in the ALCYONE trial, and 
lenalidomide/dexamethasone in the MAIA trial, 
presented as a late breaking abstract at ASH 
2018.41,71 Based on the ALCYONE data, daratu-
mumab is licensed upfront in elderly patients in 
Europe.

Elotuzumab is a humanized anti-SLAMF7 (sig-
nalling-lymphocyte-activating molecule F7) mon-
oclonal antibody, also reliant upon NK-mediated 
ADCC and macrophage-mediated ADCP. Single-
agent elotuzumab has not demonstrated signifi-
cant efficacy; however, responses have been seen 
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in combination with IMiDs or proteasome inhibi-
tors, for example, the ELOQUENT-2 study with 
lenalidomide/dexamethasone reported a 27% 
reduction in risk of death or disease progression at 
3 years in the elotuzumab arm.45

Evidence of progressive NK cell impairment with 
disease progression suggests that these agents 
might be more efficacious upfront. Efforts to 
ameliorate the NK defects present in MM are 
described in a later section.

Bispecific T-cell engagers, bispecific antibodies 
and bispecific engagers
Bispecific antibodies offer several potential advan-
tages over monospecific antibodies. They can 
simultaneously inhibit multiple survival and pro-
liferation pathways or redirect immune cells to 
the tumour through expression of T-cell/NK-cell 
activating receptors, or increase tumour specific-
ity via expression of more than one tumour-spe-
cific antigen, thereby reducing off-target toxicity.

Bispecific antibodies are classified as immuno-
globulin (Ig)G-like, and non-IgG-like molecules, 
by the presence or absence of an Fc region. IgG-
like bispecifics are capable of Fc-mediated func-
tions, that is, ADCC, ADCP or CDC. They are 
larger, more stable with a longer half-life. Bispecific 
T-cell engagers (BiTEs) are a form of non-IgG-
bispecific antibody, an scFv-based antibody, com-
prising only the variable heavy and light chain 
regions. They are smaller with improved tumour 
specificity and tissue penetration, but a shorter 
half-life necessitating frequent administration or 
continuous infusion.72

BiTEs target a tumour epitope and a T-cell anti-
gen, usually CD3. Recognition of the tumour 
epitope leads to T-cell engagement, activation, 
and cytotoxicity directed against the tumour 
cell, independent of TCR specificity, MHC 
complex expression, and antigen presentation. A 
phase I trial of the CD19-CD3 BiTE, blinatu-
momab in combination with salvage autologous 
stem cell transplant (ASCT) is due for comple-
tion in 2019 (ClinicalTrials.gov identifier: NCT 
03173430). MM cells typically do not express 
CD19, however various groups have isolated 
CD19-positive cells resembling B-lymphocytes, 
which give rise to MM cell colonies in vitro, and 
may act as myeloma stem cells,73,74 hence the 
rationale for blinatumomab use.

BCMA (B-cell maturation antigen) has been the 
focus of the majority of BiTEs to date.75–77 BCMA 
is a member of the TNF-receptor superfamily 
required for differentiation of B-cells into plasma 
cells. The BI 836909 BiTE,76 showed promising in 
vitro data and was acquired by AMGEN as AMG-
420. Early phase I results are encouraging: Of 35 
patients, 6 CRs have been achieved, with minimal 
residual disease (MRD) negativity in all patients 
receiving a dose of 400 µg/d. Serious adverse events 
(SAEs) occurred in 49%, with infection the most 
common at 29%. There were three patients (9%) 
who developed cytokine release syndrome (CRS), 
which was grade 3 in one patient and grade 1 in the 
other two patients.46 Another AMGEN BCMA 
BiTE under development is AMG-701, similar to 
AMG-420, but with an extended half-life.78

Other bispecific antibodies under investigation 
include the tetravalent NK-engager AFM26, 
which targets MM BCMA and CD16a on NK 
cells to induce NK-mediated cell killing.79 The 
requirement of CD16a for effective ADCC is 
hampered in approximately 80% of patients by 
the presence of a low affinity CD16a polymor-
phism. AFM26 interacts with NK cells with high-
avidity, irrespective of this polymorphism.80 An 
anti-CD16a/BCMA/CD200 antibody further 
increases specificity to tumour cells by binding 
both BCMA and CD200 on MM cells.81

Antibody–drug conjugates
Antibody–drug conjugates are also in trial 
stages. GSK285916 is an anti-BCMA antibody 
linked to the antimitotic agent monomethyl 
auristatin F. In a phase I study of GSK285916 
monotherapy in 35 patients with RRMM, ORR 
was 60% with CR or stringent complete response 
(sCR) in 14%, PFS was 12 months and median 
duration of response of 14.3 months. The most 
common adverse events (AEs) reported were 
thrombocytopenia (63% overall, 35% grade 
3–4), blurred vision (51%, 3% grade 3, no grade 
4 events), which was due to the effect of the 
monomethyl auristatin F, and cough (40%, 
grade 1–2 only). The most common SAEs were 
pneumonia or lung infection (15%) and infu-
sion-related reactions (6%). Overall, 11% had 
AEs leading to trial discontinuation and 66% 
required dose-reductions.47,48,82 Both the US 
FDA and European Medicines Agency have 
since granted breakthrough status and PRIME 
designation respectively.
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Cyclophosphamide
While cyclophosphamide is known to be an alkyla-
tor, it also has additional, valuable, immune-mod-
ulatory properties, which may enhance the activity 
of other immune based therapies. Metronomic 
dosing of cyclophosphamide selectively reduces 
Tregs,83 allowing expansion of effector T-cells and 
enhanced NK activation, and may repolarize mac-
rophages from the M2 to M1 phenotype.

The anti-CD38 monoclonal antibody daratu-
mumab acts through ADCC and macrophage-
dependent ADCP. In our experience, cyclo- 
phosphamide augments daratumumab-induced 
ADCP, possibly via upregulation of Fc receptor 
gamma 1 (CD64) and reduction in CD47 (a ‘don’t 
eat me’ antigen) expression by tumour cells.69 This 
was confirmed by work in which macrophages 
were conditioned using culture media from mye-
loma cells exposed to low-dose cyclophosphamide, 
then incubated with MM cells and daratumumab. 
Enhanced daratumumab-induced ADCP of MM 
cells was demonstrated, alongside reduced MM 
CD47 expression.70

Cellular therapies
The first cellular therapies took the form of allo 
SCT and DLIs. Chronic GvHD confers protec-
tion against relapse,3 and DLIs can induce a graft-
versus-tumour effect.4 However, the increased rate 
of CR associated with allo SCT is offset by a high 
transplant-related mortality, partly attributable to 
GvHD. These data have prompted investigators 
to develop autologous T-cell therapies, aiming to 
preserve the anti-tumour effect but reduce or 
eliminate GvHD.

Adoptive T-cell therapies. Autologous T-cells are 
extracted from peripheral blood or BM (marrow 
infiltrating lymphocytes; MILs), then primed by 
antigenic stimuli, or genetically altered. The lym-
phocytes are expanded in vitro, usually by CD3/
CD28 ligation, then reinfused into the patient.

Nonengineered. Studies of nonengineered T-cells 
have not demonstrated significant utility.84–86 
MILs offer a theoretical advantage as their expo-
sure to MM cells in the BM is increased, and 
tumour-specific populations are likely to be more 
prevalent. MILs also express the adhesion mole-
cule CXCR4, to improve homing to the marrow.49 
A trial of MILs post-salvage ASCT in RRMM 

reported 27% CR, 27% partial response (PR) and 
23% stable disease, although the proportion of 
response attributable to the MILs versus ASCT is 
uncertain.49 Phase II trials are ongoing.

Engineered. Engineering a T-cell population 
enables delivery of far larger doses of tumour- 
specific T-cells. Autologous T-cells are transfected 
in vitro with viral vectors carrying the gene of 
interest, either a TCR, or a chimeric antigen recep-
tor (CAR).

TCR T-cells. T-cells are engineered to encode 
TCRs against specific tumour antigen peptide-
MHC complexes. One study using NY-ESO-1/
LAG-1 TCR T cells in 20 patients reported 
responses in 80%, median PFS of 19.1 months 
and OS of 32.1 months. A total of 7 SAEs occurred 
(cytopenias, hypotension, hyponatraemia and 
GvHD) all of which resolved. Overall, three 
patients had diarrhoeal illnesses due to confirmed 
gastrointestinal GvHD.50 TCR T-cells require the 
presence of certain HLA antigens and can be cir-
cumvented by tumour MHC-downregulation. 
They have been largely superseded by CAR T-cells.

CAR T-cells. CAR T-cells are engineered TCRs 
with an extracellular domain comprised of a sin-
gle chain variable fragment of a tumour-specific 
monoclonal antibody. CAR T-cells can recognize 
a specific tumour epitope in the absence of MHC 
presentation and are independent of HLA type. 
In first generation CAR T-cells a transmembrane 
domain connects the antigen-recognition domain 
to the T-cell-activating CD3-zeta domain. Bind-
ing of the tumour epitope by the CAR therefore 
causes direct cytotoxic T-cell activation.

These first generation CAR T-cells were able to 
elicit a weak, short-lived T-cell response. Second 
and third generation CAR T-cells have an addi-
tional one or two, respectively, costimulatory 
domains (usually CD28 or 4-1BBB) which 
enhance cytokine production and cytolytic 
capacity.87

The major toxicity of CAR T-cell therapy is CRS, 
due to the potent T-cell response generating a 
burst of IL-6, IFN-γ and other cytokines. This can 
cause hypotension, hypoxia, neurological dysfunc-
tion, multiorgan failure and fatality. Tocilizumab, 
an anti-IL6 receptor antagonist, and supportive 
care form the mainstay of management.88
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CD19 CAR T-cells are US FDA-approved for 
use in relapsed refractory B-cell precursor-ALL 
and non-Hodgkin lymphoma. Use in MM was 
trailed in order to target postulated CD19-
positive myeloma stem cells. A total of 10 patients 
received salvage ASCT and CD19 CAR T-cells. 
ORR was 80% but all the patients progressed 
with a median PFS of 185 days.51 A study using 
10 times the dose of CD19 CAR T-cells post 
front-line ASCT is ongoing (ClinicalTrials.gov 
identifier: NCT02794246), and another using 
CD19 and BCMA-CAR T-cells post-ASCT has 
reported an ORR of 100% in nine evaluable 
patients, with increased MRD negativity post-
CAR T-cell infusion (37.5% post-ASCT to 
66.7% post-CAR T-cells).89

Other antigen targets have been trialled in mye-
loma with varying degrees of success. CD44v6, 
CD70, CD38, CD138, kappa light chain, 
SLAMF7, and GPRC5D (G protein-coupled 
receptor class C group 5 member D)90 are exam-
ples. The challenge of target selection is identi-
fying an epitope which is present in high 
concentration on MM cells in a significant pro-
portion of myeloma patients, but not present on 
normal haematopoietic cells or other tissues. 
Very few epitopes meet these criteria. CD38 for 
examples, is present on malignant and benign 
plasma cells, T-cells, B-cells, NK cells, DCs, 
erythrocytes and many others. Targeting such 
antigens leads to ‘on target/off tumour’ effects. 
Drent and colleagues optimized the affinity of 
their CD38-CAR T-cells to bind to strongly 
CD38-positive myeloma cells, but to have inad-
equate affinity to bind to cells with lower levels 
of expression. This produces T-cell-mediated 
MM cell lysis with the sparing of normal haema-
topoietic cells.91

The most promising work has been using anti-
BCMA-CAR T-cells. BCMA is expressed by late 
memory B-cells, plasmablasts, mature plasma 
cells and myeloma cells, but not haematopoietic 
stem cells or nonhaematopoietic cells.92 The first-
in-human clinical trial of anti-BCMA-CAR 
T-cells, run by the National Cancer Institute 
(NCI), used fludarabine/cyclophosphamide fol-
lowed by a CAR T-cell infusion in 12 patients 
with RRMM. Of these, 10 received a low dose, 
obtaining mostly stable disease. Of the two 
patients receiving the higher dose, one achieved 
stringent CR for 17 weeks and the other, VGPR 
for 66 weeks, but both had severe CRS.53

Bluebird Bio received breakthrough status by the 
US FDA for the bb2121 BCMA-CAR. 21 
patients with RRMM, two thirds with adverse 
cytogenetics, were infused with bb2121, an anti-
BCMA-CAR expressing the same single chain Fc 
portion as the NCI trial used, but with a 4-1BB 
costimulatory domain. The latest results were 
presented at ASCO 2018. At doses of ⩾150 × 106 
the ORR was 94% with a CR of 56%. Overall, 
71% of patients had CRS which was generally 
mild, and only one fifth required tocilizumab. 
Median PFS has not yet been reached. Rates at 6 
and 9 months are 81% and 71% respectively, and 
a deepening of response over time has been noted, 
with several patients converting to CR from initial 
VGPR.54 A modification of the bb2121 CAR, 
termed bb21217, is treated with the phosphoi-
nositide-3 kinase inhibitor bb007 during ex vivo 
culture. This enriches the product for memory-
like T-cells, leading to increased persistence and 
efficacy of the CAR T-cell product. Early results 
have shown responses in six out of seven evalua-
ble patients, with MRD negativity demonstrated 
in all of the three responses tested.55

Legend Biotech’s LCAR-B38M anti-BCMA- 
CAR has two different heavy chain variable 
domains which recognize separate epitopes of the 
BCMA antigen. Initial data showed an ORR of 
100% at a median 17 months follow up in 19 eval-
uable patients.56 The LEGEND-2 trial 
(ClinicalTrials.gov identifier: NCT03090659) 
recently reported results on 57 patients who 
received LCAR-B38M CAR T-cells. Grade 3  
AEs occurred in 65%, with leukopenia (30%) and 
thrombocytopenia (23%) most commonly 
reported. CRS occurred in 90% but the majority of 
cases were grade 1–2 (83%). ORR was 88% with a 
CR of 68% and 63% of patients achieving MRD 
negativity. At a median follow up of 8 months, 
median PFS was 15 months.57

Finally, preclinical studies are trying to overcome 
the challenge of heterogenous BCMA expression 
and antigen escape which limit effectiveness of 
current BCMA targeted therapies. APRIL (A 
proliferation-inducing ligand), a member of the 
TNF superfamily of ligands, binds simultane-
ously to both BCMA and TACI (transmembrane 
activator and calcium modulator and cyclophilin 
interactor), both of which are consistently upreg-
ulated on myeloma cells. Schmidts and colleagues 
have generated monomeric and trimeric APRIL 
CAR T-cells, of which the trimeric form 
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(TriAPRIL-CAR) displayed superior binding to 
soluble BCMA and TACI and lead to tumour 
eradication in a murine MM model.93

NK cells. NK activity is tightly regulated by the 
overall balance between numerous activating and 
inhibitory stimuli. KIR-ligand mismatch, indicat-
ing nonself, is associated with reduced relapse 
rate following T-cell depleted alloSCT.94 An IgG 
monoclonal antibody directed against three dif-
ferent KIRs (IPH2101) augments NK-mediated 
lysis of HLA-C-expressing tumour cells in vitro,95 
but failed to show clinical benefit in a phase II 
trial in smouldering myeloma.96 A recombinant 
version, lirilumab is presently being tested in 
combination with elotuzumab (NCT02279394).

Daratumumab relies partly upon NK cells for 
ADCC, and efficacy is improved by the addition 
of IMiDs, which upregulate NK activities.43 
However, due to CD38 expression on NK cells, 
daratumumab significantly depletes NK cells 
during treatment and for up to 6 months after.97 
Several groups are working on NK cell adoptive 
transfer to enhance the activity of daratumumab, 
using approaches to mitigate fratricide such as 
CD38-deletion, use of low CD38 expressing NK 
cells or pretreatment of NK cells with Fab frag-
ments to block CD38.98,99

The anti-SLAMF7 monoclonal antibody elotu-
zumab induces ADCC and also activates NK cells 
via an indirect mechanism dependent on the 
SLAMF7-associated adaptor protein, EAT-2. 
Elotuzumab binding to the NK cell SLAMF7 
engages EAT-2, activating the MAPK/Erk path-
way. As myeloma cells lack EAT-2, elotuzumab-
binding does not stimulate the proliferation of MM 
cells. Again, elotuzumab showed improved clinical 
benefit when administered with lenalidomide,45 
possibly due to further upregulation of NK activity.

Use of NK cells to stimulate a graft versus MM 
effect via KIR-mismatch is also being tested. A 
phase I study in RRMM used multiple NK cell 
infusions with lenalidomide or bortezomib-based 
regimens without significant toxicity. Disease 
stabilized in four out of five patients, with one 
response maintained after 12 months.58 Another 
group used cord-derived NK cells with lenalido-
mide and ASCT in 33 patients, producing 83% 
CR or VGPR at 3 months, with no toxicities 
reported.59

CAR NK cells offer an additional possible ave-
nue. The combination of daratumumab with 
CD38-negative NK cells engineered with the 
CS1 CAR (SLAMF7) is under investigation, in 
order to target two myeloma-specific epitopes 
while avoiding daratumumab-induced NK 
destruction.100 A CD38 CAR NK cell line is cur-
rently being explored, using an affinity optimized 
scFv, similar to that reported by Drent and col-
leagues91 to facilitate differentiation between 
CD38-positive NK cells and myeloma cells 
respectively. In vitro results, presented at ASH 
2018, have shown high cytotoxicity against MM 
cells, with in vivo results awaited.101 Initial murine 
model data regarding an NKG2D-CAR NK cell 
line have also recently been presented, with fur-
ther work ongoing.102

Vaccines
Vaccines are designed to elicit production of 
tumour-directed T-lymphocytes by the host 
immune system. The greatest success has been 
seen after allo- or ASCT, when disease burden is 
low, and lymphoid reconstitution is occurring with 
low Treg levels and expansion of CD8+ cells.103 
Vaccines can be based on specific, or multiple 
tumour peptides, whole cells, or incorporating 
DCs as potent APCs. DCs loaded with/fused to 
tumour antigens may bypass the DC functional 
defects seen in myeloma and have provided the 
most promising results to date. For example, a 
DC–tumour cell fusion vaccine in RRMM pro-
duced a significant rise in myeloma-specific T-cells 
and disease stabilization for at least 2 months in 
70%, with serial vaccination shown to deepen 
responses post-ASCT.60 Hypersialyation is a fea-
ture of MM104 which impacts DC function. 
Sialyltransferase inhibition to enhance DC 
response may provide a possible means to improve 
responses to vaccination;31 however, given the pro-
found impact of myeloma on the immune system, 
whether this approach will prove clinically useful 
remains uncertain.

Conclusion
Our understanding of the mechanisms that 
underpin immune evasion by MM cells has 
increased significantly in recent years, and the 
development of novel agents that disrupt and tar-
get these mechanisms represents a paradigm shift 
in how we approach the treatment of myeloma.
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A wealth of new treatments exists, although in most 
cases their use is currently limited to the relapsed 
refractory setting, with many still in clinical trials. 
Given the worsening immune dysfunction that 
occurs with disease progression, it is likely that the 
greatest benefit will be seen with earlier treatment. 
This may be particularly relevant for patients with 
high-risk genetic features, those with a suboptimal 
response to front-line therapy, early relapse within 
1 year or those who remain MRD-positive despite 
intensive therapies, for whom improved treatment 
options are desperately needed. The optimal 
sequence of available therapies is also unknown, 
and how best to manage patients who are refractory 
to or relapse after front-line therapy involving 
immunomodulatory agents has recently been high-
lighted as an area of unmet clinical need.105

The most promising results to date have been 
obtained with CAR T-cell therapies. However, 
these treatments are associated with significant 
challenges including treatment delays, potential 
for severe toxicity, manufacturing issues, logistics 
required to administer such therapies, and the 
significant associated costs. These challenges may 
ultimately limit widespread application of CAR 
T-cell therapies, therefore interest in the develop-
ment of ‘off-the-shelf’ alternatives with increased 
tolerability is growing.

Ultimately, we hope that more effective primary 
therapy may produce long-lasting, durable remis-
sions, or possibly even cure in a significant frac-
tion of patients.
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