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Experimental quantum simulation of superradiant
phase transition beyond no-go theorem via
antisqueezing

Xi Chen'?35 7Ze Wu'235, Min Jiang1'2'3, Xin-You Li*™, Xinhua Peng 123 g Jiangfeng Du 123

The superradiant phase transition in thermal equilibrium is a fundamental concept bridging
statistical physics and electrodynamics, which has never been observed in real physical
systems since the first proposal in the 1970s. The existence of this phase transition in cavity
quantum electrodynamics systems is still subject of ongoing debates due to the no-go the-
orem induced by the so-called A2 term. Moreover, experimental conditions to study this
phase transition are hard to achieve with current accessible technology. Based on the plat-
form of nuclear magnetic resonance, here we experimentally simulate the occurrence of an
equilibrium superradiant phase transition beyond no-go theorem by introducing the anti-
squeezing effect. The mechanism relies on that the antisqueezing effect recovers the sin-
gularity of the ground state via exponentially enhancing the zero point fluctuation of system.
The strongly entangled and squeezed Schrédinger cat states of spins are achieved experi-
mentally in the superradiant phase, which may play an important role in fundamental tests of
quantum theory and implementations of quantum metrology.
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ARTICLE

he study of superradiant phase transitions (SPT), driven by

the singularity of quantum fluctuation at the critical point,

has undergone tremendous developments in recent years!.
SPT was proposed in the Dicke model, describing the collective
interaction between N two-level systems and a quantum field, in
the thermodynamics limit N — %3, When N = 1, the Dicke
model is reduced to a Rabi model, in which the SPT has also been
predicted theoretically by replacing the thermodynamics limit
with the classical oscillator limit Q/w — oo (Q and w being the
frequency of spin and field, respectively)4-6. SPT is a special kind
of quantum phase transitions, which happens along with chan-
ging the system parameters at zero temperature. When the cou-
pling strength between the two-level system and the quantum
field is increased across the quantum critical point, the ground
state of the system changes abruptly, corresponding to the phase
transition from a normal phase to a superradiant phase with a
boost of ground-state photon number. Specifically, in the normal
phase, the ground state of the cavity field is not occupied, while in
the superradiant phase the ground state is macroscopically
occupied and becomes twofold degenerate, corresponding to a
spontaneously 7, symmetry breaking. This leads to the appear-
ance of important quantum effects in the supper-radiant phase,
including spin-field entanglement, distinguishable quantum
superposition with large-amplitude, and so on”-8. These quantum
effects can play important roles in quantum metrology and
quantum computation. Thus, the SPT is not only fundamentally
interesting in statistical physics and electrodynamics but also has
potential applications for quantum information science®.

The cavity or circuit quantum electrodynamics (QED)
systems!®11, allowing to manipulate the light-matter interaction
at the quantum level, offer an important platform of realizing
Dicke model/Rabi model. However the required critical para-
meter regime and ultralow-temperature ground state preparation
for implementing equilibrium SPT are normally hard to be
satisfied with current technologies of cavity QED. More impor-
tantly, the existence of the equilibrium SPT in the cavity QED
systems is still challenged by a no-go theorem!2-20. Specifically,
for describing the dipole atom-field interactions in the cavity
QED system, the standard Dicke and Rabi Hamiltonians have
neglected the squared term of electromagnetic vector potential
(ie., A2 term), which will forbid the occurrence of equilibrium
SPT. This is because the A2 term, via adding a coupling-
dependent potential of the cavity field, leads to the disappearance
of the singularity of the quantum fluctuation in the whole para-
meter space. The corresponding debate on whether or not the A2
term should be included in the effective models for light-matter
interactions continues as of today from 1970s. Recent work put
forward a SPT scheme with a hybrid circuit QED system immune
to the no-go theorem?!22 by an auxiliary squeezing term, where
the Rabi Hamiltonian can be naturally realized by the interaction
between a superconducting qubit and a resonator, and the aux-
iliary term can be introduced by the quadratic optomechanical
coupling between two superconducting resonators. However,
current optomechanical techniques cannot provide the strong
quadratic optomechanical interaction at the single-photon level
and other parameter condition for ground state SPT?3. Con-
sidering these experimental difficulties in real cavity QED sys-
tems, quantum simulation provides an alternative and flexible
technique for the experimental investigation of SPT, as well as the
no-go theorem. For example, the dynamics of QRM?*-26 and
nonequilibrium SPT of Dicke model have been experimentally
simulated on various quantum simulation platforms, e.g., Bose-
Einstein condensates2’-2? and trapped ions®0. Very recently, the
quantum phase transition of the standard QRM has been simu-
lated with trapped ions3!. However, the effect of the no-go the-
orem has not been experimentally studied so far.

In this work, by employing a nuclear magnetic resonance
(NMR) quantum simulator, we simulate the effective quantum
Rabi model including the A2 and antisqueezing terms
(approaching the classical oscillator limit Q/w — o) by a well-
defined spin-to-oscillator mapping scheme. We experimentally
demonstrate the recovering of the SPT in the Rabi model with A2
term by introducing the antisqueezing effect. Our work doesn’t
try to directly solve the long-lasting theory debate on whether or
not the A2 term should be included in the effective model. Based
on its excellent controllability, the NMR system provides a good
testbed for quantum simulations and other quantum
protocols3%33, Interestingly, we experimentally show that the
antisqueezing effect not only leads to the re-appearance of SPT
when including the A2 term, but also to the SPT’s reversal, i.e., to
the transition from normal phase (NP) to superradiant phase (SP)
along with decreasing spin-field coupling strength. This originally
comes from the exponentially enhanced ZPF induced by the
antisqueezing effect that recovers the singularity of the ground
state of the system. The optimized parameter condition including
the necessary antisqueezing strength for a phase transition is
identified by presenting experimentally the antisqueezing-
dependent phase diagram of the ground state. In the SP, we
experimentally obtain strong spin-oscillator entanglement and
squeezed Schrodinger cat states of spins exhibiting a negative
Wigner distribution, large-amplitude separation of peaks, and
distinct interference fringes. These states could be used for fault-
tolerant quantum computation3*3°> and quantum metrology>°
approaching the Heisenberg limit, aside from providing funda-
mental insights into the nature of decoherence and the quantum-
classical transition3”. Our work also provides the important
family of antisqueezing with a new type of applications, besides
widely known ones in quantum precision measurement3® and
enhancing light-matter interaction3-4°.

Results
Physical model. The Rabi model with Hamiltonian

. Q
Hy =26, + wata+Ma' + a)e, (1)

describes a two-level system with frequency Q interacting with an
oscillator mode with frequency w, and A denotes the coupling
strength. Here a (a") is the annihilation (creation) operator of the
oscillator mode, and 6, 6, are the Pauli operators for the two-
level system. This model has the Z, (or parity) symmetry asso-
ciating with a well-defined parity operator IT = ¢, where N =
a'a+ (1/2)(6, + 1) is the total excitation number of the system.
As shown in the regime I of Fig. 1b, the ground-state SPT is
predicted theoretically in the classical oscillator limit Q/w — oo,
characterized by a vanishing of the lowest excitation energy*.
However, this SPT will disappear when the A2 term H, =
(ar?/ Q)(El—l—flf)2 (=1 decided by the Thomas-Reiche-Kuhn
sum rule) is included in the actual cavity QED systems (ie.,
I:IQED = Hy + H,), corresponding to the regime II of Fig. 1b.
This is also known as the no-go theorem 12-20, Here we introduce
an antisqueezing effect into the actual cavity QED systems, i.e.,
considering the Rabi Hamiltonian with the A2 term and an
antisqueezing term H, = —&(a+ &T)Z: H=Hy+H,+H,,.
Note that formally, adding the H,, simply renormalizes the
prefactor of the A2 term. However, in the simulated system, H,
and H,, have a different physical meaning and a different
parameter dependence on the changed parameter A during
checking the occurrence of SPT. In the following, we will also
discuss the different effects of A2 term and the antisqueezing term
on the SPT from the experimental results. As shown in the regime
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Fig. 1 Theoretical model, phase diagram, physical system, and quantum circuit for implementing SPT. a N+1 spins are used to simulate the quantum
Rabi model consisting of a two-level system coupled to a Boson field with 2N harmonic levels with coupling strength 1. The red arrows and dashed line-
potential indicate the antisqueezing effect. b Phase transition property in the limit Q/w — oo, described by the lowest excitation energy and the order
parameter @ in the parameter regimes from | to IV defined by the values of £ and a. The occurrence and disappearance of SPT are indicated by tick and
cross, respectively. The solid and dashed lines correspond to the NP and SP, respectively. ¢, Molecular structure of 3C-iodotriuroethylene and the relevant
parameters. The diagonal and off-diagonal elements represent chemical shifts and J-couplings (all in Hz), respectively. d, Quantum circuit for for
implementing SPT including the adiabatic ground state preparation with Ho(/) = [1— s(/)]HO, Ay() = s(/)HS, where [=0,1,2...L, and s(I) slowly changes

from O to 1.

IV of Fig. 1b, the antisqueezing effect can induce the re-
occurrence of SPT beyond no-go theorem. This recovering of SPT
cannot be simply understood as trivially reducing the strength of
A2 term below a given value, i.e., leading to a<1 (see Supple-
mentary Note 3). This is because the physical mechanics of
generating the antisqueezing term and the A2 term are different.
The antisqueezing term can be realized by the quadratic opto-
mechanical coupling?!:22, and it provides a modification on the
potential of the bosonic field with a A — independent strength &.
However, the A2 term originally comes from the quantized light-
matter interaction in the cavity QED system, whose coefficient
aA2/Q) is A — dependent and would be altered when one checks
the occurrence of SPT by changing the coupling strength A.
Instead, the antisqueezing term induces the occurrence of SPT
via recovering the singularity of zero-point fluctuation (ZPF)
of system in the case of including A2 term. The regime IV of
Fig. 1b theoretically shows the re-appearance of SPT via the
singularity of the excitation energy and the sudden change of the

order parameter @ = (w/Q)<&T&> at the critical point A =

1+ al — 4¢/w with A = 21/v/Qu. Specifically, the rescaled

ground-state occupation of oscillator @ = (1/ 4)(Af — /1;2)
becomes nonzero from ® =0 at the critical point (see Supple-
mentary Note 1). The regime III of Fig. 1b demonstrates that the
antisqueezing effect could dramatically reduce the critical point of
SPT in the case of a =0.

To experimentally demonstrate the ground-state SPT in the
NMR platform, we simulate the Rabi model including the A2 and
antisqueezing terms by using N+1 spins, where N spins simulate
the oscillator and 1 spin simulates the two-level system, as shown
in Fig. la. Based on the generators of SU(2), the mapping process

from spins to the oscillator is defined as

a=A 5, dl=A /541, @)

where 3, = —Zf-il 217261 +(2Y —1)/2, and IN=1Q - -®
1 is the identity matrix of 2Nx2N dimensions. Here the
definitions of operators A, and the well-defined spin-to-
oscillator mapping process are shown in Methods. This mapping
process has some similarities to Holstein-Primakoff transforma-
tion, and it is exact in the limit of N—oco. We use
13C-iodotriuroethylene dissolved in d-chloroform as a 4-qubit
quantum simulator, consisting of one 13C and three !°F nuclear
spins, as shown in Fig. 1c. The experiments are conducted on
Bruker Avance III 400 MHz spectrometer at room temperature.
In the weak-coupling approximation, the natural Hamiltonian of
the sample is described as

7'[ NN
> 26969, 3)

4
) _ ~(i)
Hggr = 2 w0 + 2
i=1 1<i<j<4 2

where v; represents the chemical shift of the i-th spin, and Jj; is the
scalar coupling strength between two spins. The values of
parameters v; and J;; are given in Fig. 1c. The system, initially
at the thermal equilibrium state, is first prepared to a pseudo-pure
state (PPS) p,,c=[(1— €)/16]1%* +€|0)(0| by using the
selective-transition approach?’. Here ¢ = 107 is the polarization,
and the experimental fidelity of p,,,; is about 0.991. The detailed
initialization process is shown in Supplementary Note 5.

Antisqueezing-enhanced ZPF. Let us first experimentally
demonstrate the antisqueezing-enhanced ZPF in our 4-spin system,
which is the key physical mechanism of recovering ground-state SPT
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Fig. 2 Experimental measured ZPF (red circles) versus the antisqueezing
strength &, demonstrating exponentially enhanced ZPF of the oscillator
by the antisqueezing effect. The theoretical expectation is shown in the

dashed line. The inset plot shows the standard deviation of ZPF for each

data point. The measured Wigner functions of two squeezed vacuum states
are shown in the right side.

in the case of including the A2 term. It is also the nature of
antisqueezing-enhanced light-matter interaction explored in recent
theoretical -4 and experimental 4 works. Theoretically, the anti-
squeezing term H,, will make the ground state of an oscillator
from a vacuum state |0) to the squeezed vacuum state S(r)IO)
with  S(r) = exp[r(a* — &*2)/2] and the squeezing parameter

r=(1/4)In(1 —4¢/w). Then the ZPF, defined as ZPF =

\/ (%) — (%)* with dimensionless quadrature % = (a + a")/2, will

be exponentially enhanced with increasing the antisqueezing strength
& (see the dashed line of Fig. 2). In our experiment, the truncated
squeezing operator in the Hilbert space {|n)} is implemented with a
gradient ascent pulse engineering (GRAPE) pulse with duration
15ms*8. Then, we perform a three-step measurement to obtain the
ZPF of the squeezing vacuum state. (i) The expected values
(a'a + aa") are obtained by measuring the diagonal elements of the
squeezing vacuum state, i.e., separately applying a 71/2 readout pulse

(I)(T[/ 2) = exp(—in/ 40(’)) to each of the four qubits after a pulsed
ﬁeld gradient and then measuring the resulting NMR spectrum of the
corresponding qubit i. (ii) The expected values <& + &T> are obtained
by measuring the fourth qubit with/without a readout operator
0, = Ziom)(n + 1|4+ |15)(0]. (i) The expected wvalues
<&2 + &T2> are obtained by measuring the third qubit with/without a
readout operator U2 Zf oln)(n + 2| + [14){0] + [15)(1]. Here
the operators U, and U, are well-designed to transfer all the mea-
sured elements to the observables that can be read out directly by the
NMR signals, which are also realized by GRAPE pulses. Due to the
used sample in natural abundance, ie., only 1% of the molecules had
a 13C nuclear spin, we read out all four spins via the 13C channel, by
applying SWAP gates and measuring the 13C spin. The experimental
data shown in Fig. 2 are in good agreement with the theoretical
predictions. From the inset of Fig. 2, one can also find that the error
bars, coming from the statistical fluctuation of the NMR spectra,
become smaller along with increasing the antisqueezing effect. This
originates from the amplitude enhancement of ZPF with large anti-
squeezing strength, which can be useful in quantum metrology. To
clearly show the antisqueezing effect, we also present the Wigner
functions of two experimentally reconstructed states by quantum
state tomography*”.

Recovering of SPT in the case of including A2 term. Next we
shall experimentally simulate the equilibrium SPT beyond no-go

theorem induced by the antisqueezing effect. With the
exact squeezing transformatlon, the ground state of the

total system Hamiltonian H=H x+H, +H, is equivalent
to apply a squeezing operation S(¥) on the ground state of
the transformed Hamiltonian HS = §T(?)H§(?) = (Q/2)s, +
wa'a+ A(a' +a)o,. Here the different effect of A2 term
and antisqueezing term on the SPT have been transferred
into the interconnected coefficients w, = e*w, A, =e '),
F=(1/49n(1+ al — 4¢/w), and the constant term in Hamil-
tonian HS has been ignored. Now the problem is transferred to
experimentally preparing the ground state of HS. In our sample,
13C spin is labeled as the two-level system, and three !°F nuclear
spins are used to map the truncated boson mode a with the
defined mapping process in Eq. (2). In the experiments, we
employ the widely used adiabatic method®? to prepare the ground

state of Hl. According to the quantum circuit in Fig. 1d, the
4-spin sample is firstly prepared into the ground state of

Hamiltonian H =Y, 0(1) by applying 7/2 pulses along y axis
on PPS for four spins s1mu1taneously Then the quantum system
is controlled to adiabatically evolve under the instantaneous
Hamiltonian H(l) = [1 — s(D]H, + s(h)H,, with [=1,2,...L
and s(/) changing slowly from 0 to 1. The system will finally
evolve to the ground state of HS, denoted by |G),, after the above
adiabatic evolution. The experimental adiabatic evolution is
implemented by the GRAPE pulse with duration 26 ms. Based on
the prepared ground state |G),, the order parameter of SPT,
expressed as @ = (w/Q)( cosh(27)(a'a), — (1/2) sinh(27) ((ffr2
(@) + sinh? 7), can be obtained by measuring the corresponding
expectations defined with |G),. The detailed measurement process
is shown in Methods.

To show the occurrence of SPT, we present the dependence of

the order parameter @ on A for different frequency ratio Q/w in
Fig. 3a, b, along with the theoretical expectations. Figure 3a shows
that, without antisqueezing effect (§ = 0), the phase transition is
forbidden by the A? term, i.e., the no-go theorem. However, the
SPT is recovered by introducing a fixed antisqueezing effect
((/w=026) in Fig. 3b. Specifically, the experimental order
parameter @ in Fig. 3b changes from almost zero to finite number
at 1 ~ 0.63 with decreasing A, which indicates a reversed SPT.
This reversed SPT originally comes from the nontrivial competi-
tion between the introduced antisqueezing term and the A? term,
and it is quite different from the case of simulating normal SPT in
the Rabi model with an A2 term at different intensities (see
Supplementary Note 3). Along with increasing Q/w, the

dependence of ® on A approaches the case of (}/w — oo, where

the reversed SPT occurs exactly at the critical point A=

\/1 +oc)12 —4&/w (see the inset of Fig. 3b). Notice that the

available Hilbert space for simulating the oscillator is limited in
the experiments, which makes the values of the order parameter
in the SP smaller with growing values Q/w. But the experimental
results are enough to demonstrate the rapid growth of the order
parameter near the critical point. Physically, the occurrence of
SPT in our experiment originally comes from the recovering of
the singularity of ground-state fluctuations due to the
antisqueezing-enhanced ZPF of the system, as shown in
Supplementary Fig. 2.

Actually, we had also performed the corresponding simulation
experiment without postprocessing by physically implementing
the squeezing operation S(7) in different parameter regions, and
obtained the order parameter @ by experimentally preparing the
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Fig. 3 Experimental demonstration of the recovering of equilibrium SPT induced by the antisqueezing effect. a, b The order parameter ® versus

the scaled spin-field coupling strength A for a E=0and for b &/w = 0.26. The inset plot of b shows the comparison between the cases of finite-parameter
(Q/@ = 50) and the classical oscillator limit (Q/w — o, the SPT occurs exactly). The red solid line (blue dotted line) represents the order parameter ® on

A without (with) the experimental implementation of the squeezing operation. The shading of b divides normal phase (NP) and superradiant phase (SP)

according to the exact critical point A = 1+ oc;lz — 4¢/w. The system is in unstable phase (UP) when the rescaled ground-state excitation becomes an
imaginary number, i.e., A< v/ (1/a)(4&/w — 7). The bar graphs of b indicate two von Neumann entropies of system in SP (A= 0.2) and NP (1 = 1) when Q/
w = 25. ¢, The corresponding Wigner functions of experimentally prepared ground states for 1= 0.2, 0.3 (SP) and 1 = 1(NP) when Q/w = 25. Here

a =11 for all figures.

ground state of the original Hamiltonian . The corresponding
experimental results are also plotted in the inset of Fig. 3b as well
as in Supplementary Figure 3a. It is clearly seen that there is a
similar rapid growth of the order parameter ® near the critical
point, indicating the occurrence of SPT, for both the cases with
and without postprocessing. The order parameter ® without
postprocessing in deep superradiant phase will drop down
because the truncated squeezing operator in small-size Hilbert
space with large squeezing parameter r will loss the validity (see
Supplementary Figure 4). The method of the postprocessing
avoids this limit of the restricted Hilbert space in realizing S(7).

Entangled and squeezed Schrodinger cat states in superradiant
phase. Rich quantum resources can be obtained in the super-
radiant phase, such as the quantum entanglement and quantum
superposition of coherent states, i.e., Schrodinger cat states. They
are significant for quantum metrology and quantum computa-
tion, aside from their fundamental nature. In the limit Q/w — oo,
the ground state of our system (including the antisqueezing
term) is theoretically predicted as a squeezed state |G),, =
S(?np)|0)a‘ ¢> in the NP and a spin-oscillator entangled state
G)gp = (1/VDSIDP)I0), V), +D(=P)I0),[4)_] in the SP
with a defined displaced operator D(f) (see Supplementary

Note 1). By quantum state tomography, we experimentally
reconstruct the ground states of the system, when it is in the NP

(;\ = 1) and SP (i = 0.2, 0.3). The bar graphs in Fig. 3b clearly
demonstrate that the strong entanglement is obtained in the SP

via the von Neumann entropy S = —tr(plog,p,) (p, is the
reduced density matrix of oscillator). Moreover, in the SP, the
entangled state |G), becomes a squeezed cat state when we
measure the 13C spin in the (l/ﬁ)(|¢>+i‘¢>_) basis (see
Supplementary Note 2). We plot the corresponding Wigner
functions of three experimentally reconstructed ground states in
Fig. 3¢, which clearly show the appearance of squeezed cat states
in the SP. They have a negative Wigner distribution with distinct
interference fringes and large size for A = 0.3 and 0.2, which is a
key factor for implementing super-resolution metrology with
high probability and fault-tolerant quantum computing. Note
that, the Schrodinger cat states also can be experimentally pre-
pared via the homodyne detection on the fock states®!->2, photon
subtraction on the squeezed state>3>4, and high-order nonlinear
atom-field interaction®> and so on. Here the realization of
quantum superposition of spin coherent states indicates a spon-
taneously 7, breaking, which is evidenced by the nonzero
ground-state coherence (a),.

To fully demonstrate the rich equilibrium dynamics induced by
the antisqueezing effect, we present the experimental ground-
state phase diagram characterized by the rescaled ground-state
excitation @ in Fig. 4a, b. The realization of reversed SPT are
shown again, and it also can be seen from the reduced density
matrix p, reconstructed experimentally by quantum state
tomography. As shown in Fig. 4c, the main contributions to @,
ie., <ELT&>S (diagonal elements) and <&2>S (sub-sub diagonal
elements), approximately change from zero to finite value along
with decreasing A. Figure 4a again shows that the dependence of

NATURE COMMUNICATIONS | (2021)12:6281 | https://doi.org/10.1038/s41467-021-26573-5 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26573-5

Q/o

Fig. 4 Modulated ground-state phase diagram by the antisqueezing. a The measured order parameter @ versus A and Q/w for &/w = 0.26. The inset plot
shows the experimental power-law scaling of ® at the critical point, and the fitted finite-frequency scaling exponent is y = — 0.676. The white dashed line
corresponds to the exact critical point in the limit Q/@ — eo. b The dependence of ® on A and &/w for Q/w = 20. The white (black) dashed line

corresponds to the critical parameter distinguishing NP and SP (SP and UP). ¢, The reduced density matrix p;, = tr,(|G)(G|) for Q/w = 25, obtained by the
experimentally reconstructed ground state of HS. The diagonal elements contribute to <a*a>5, while the sub-sub diagonal elements contribute to <a*2>5 and

<ZJZ>S. Other parameters are the same as that in Fig. 3.

® on A approaches to the case of exactly occurring SPT at the
quantum critical point along with increasing Q/w. Furthermore,
we measure a series of order parameters @ at the critical point for
different values of Q/w, showing the finite-frequency scaling for
the observable @ in the inset of Fig. 4a. The order parameter ®
vanishes with a power-law scaling, and the fitted finite-frequency
scaling exponent y= —0.676 is very close to the universal
exponent — 2/3 of the Rabi and Dicke model, which verifies the
experimental realization of SPT in finite-frequency regime again.
By fixing the value of Q/w, Fig. 4b indicates that &w >1/4 is
required for the occurrence of phase transition, which is
consistent ~ with  the analytical parameter condition

A=\/1+ al’ — 4¢/w of SPT. However, too large antisqueezing

strength will bring the system into an unstable phase (UP), when
the rescaled ground-state excitation becomes an imaginary

=2
number, ie, 14+ ad —4&/w<0, corresponding  to

A</ Ja)(4€/w — 1). In other words, the coupling A cannot be

reduced arbitrarily as the Hamiltonian would become unbounded

from below. With increasing the spin-oscillator coupling A, the
competition between the A2 and the antisqueezing effect will push

the system into SP when 1> /1 + al’ — 4¢/w, and then into NP
when 1<i\/1+ al — 4¢/w. Our experimental results are

basically consistent with the theoretical boundaries of different
phases. This consistency becomes better and better along with
increasing Q/w (see Supplementary Fig. 1), which again predicts
the occurring of SPT in the classical oscillator limit.

Discussion

In summary, from a physical point of view, we have presented a
first proof-of-principle experiment to demonstrate equilibrium
SPT beyond no-go theorem induced by the antisqueezing effect.
Our experiment is not in contradiction with the original no-go
theorem, and it indeed relaxes the limit of A2 term on SPT via
introducing the antisqueezing effects. To understand the re-

appearance of SPT, we experimentally show the enhanced ZPF by
antisqueezing, which ultimately recovers the singularity of the
ground state of the system. The modulated ground-state phase
diagram by the antisqueezing is experimentally obtained by
preparing the ground state of the system with the adiabatic
method and measuring the order parameter by a hybrid method
of combining the experimental data and a theoretical priori.
Associating with the SPT, we also experimentally realize the
strong entanglement and the squeezed cat state of spins, which
provides new possibilities for both quantum metrology and
quantum information processing. Our work is fundamentally
interesting in demonstrating that the A2 term is not the ultimate
limit for experimental observation of equilibrium SPT in the
cavity QED system. The current scheme is suitable not only for
NMR systems but will also works well in other physical systems,
such as trapped ions °® and NV centers °”. They open new routes
for experimentally exploring the novel quantum optical effect
with the platform of NMR or other spin systems.

Methods

Spin-to-oscillator mapping scheme. Generally, N qubits can be used to simulate a
boson mode with 2N levels by arranging all spin states as the binary form of the
corresponding excitation number:

10) >[4y Py - - 1) = 100 - - 00),
‘I)HlTNTN—l - ¢1¢0> =100---01),
|2N -1 H“LN‘LN—] ko) = 1111,

This scheme makes sure the spin space is fully utilized and the spin matrices are
exactly the same as the mapped oscillator operators. The mathematical form of this
mapping scheme has some similarities to Holstein-Primakoff transformation. We
will first give the mapping representation of the truncated number operator

N X N _
afa=—Y 220 +=— ®)

where the superscript (i) denotes the i-th qubit. Eq. (5) can be proved by the
mathematical induction.
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Proof. Proof of Eq. (5). Obviously, the equation establishes when N = 1. Assume
Eq. (5) is true for N=k. Now for N=k + 1,

diag{0,--- , 21 — 1}
= diag{0,--- ,2* ~1} ® 1 + 2} 1% ® (“"’f(w)
= <2ka1— 5 2"*26‘;)) ®l
i=1

k-1 (ﬂ@k ® &gkﬂ) _ “®(k+1))

©)

[ (e
- _ ,-; 21720(21) +2+2 1,
where 1% = 1 ® .- ® 1 is the identity matrix of 2k x 2k dimensions. Then the
formula will be true for every natural number N.
To obtain the representations of operators & and ', let’s define 3, = a'a with
izln) = n|n), and the ‘increasing operator’ (‘decreasing operator’) A, / (A_) as
follows

Ay =60 +6960 + - 466N 60,

@)

A =60 4+606% 4. 46062 .. 6,

It is not difficult to find that Ar\n) =|n+1)and A_|n+1) = |n) forall 0 <
n< 2N — 1. The above definitions allow us to construct the truncated creation and
annihilation operators conveniently. Based on these properties, we have

ALy/S.Im) = Van — 1),

®)
AN+ 1N =Vn+ 1n+ 1),
which leads to
a=A_\/%,
)

it =A, /5, 19V,

Thus Eq. (5) and Eq. (9) form the spin-to-oscillator mapping scheme in our
quantum simulation experiments. It is worth noting that the mapping scheme
involves multi-body interactions which is not easy to be simulated. By a
combination of the natural NMR Hamiltonian and radio frequency control pulses,
we implement the mapping scheme in NMR systems>$>°.

Order parameter measurement. In order to demonstrate the occurrence of the
SPT in an effective way with the limited qubits, we adopt an alternative experi-
mental scheme by means of the postprocessing (see Supplementary Note 3). Since

we have ﬁs = ST(?)HS(?), the ground states of I and ﬁs are linked by a
squeezing transformation

1G) = $(PIG),, (10)

where |G) and |G), are the ground states of H and HS, respectively. Then the order
parameter of SPT can be expressed as

® = (0/Q)(Gla'alG)

" . (11)
= (0/Q),(GIS (Ma'aS({)|G),
Together with the following derivation
§'@atas® = ' Patsms Hase
(12)
= cosh(2P)ala — %sinh(Z?) (a'? + &) + sinh?,
we obtain
@ = (w/Q) cosh(27){a'a),
(13)

— (1/2)sinh(27)((a"), + (a),) + sinh’F.

This means the order parameter of SPT can be obtained by measuring the cor-
responding expectations in the ground state |G),.
In short, according to Eq. (5) with N = 3, the value of <u*a>s, corresponding to
<6‘;’> , can be obtained by measuring the diagonal elements of the ground state
s

12

|G),. Similarly, the boson operators a'* + a* can be expressed as

W= o= D@ I
smei0,
+ /3% 4(]100)(010] + |010)(100]) 14

+ V/4x 5(]101)(011] + [011)(101]).

The expectation of the first term is read out directly from the second qubit in
Eq. (14). For the last two terms, i.e., [100)(010] + [010)(100| and

[101)(011| + |011)(101|, we can first transfer them into the observable of the
second qubit (namely 65(2)) by applying a designed operation U, to the system.
Subsequently, the corresponding expectations are obtained by measuring the
second qubit again. Here the operation U, can be implemented by the quantum
circuit shown in Supplementary Figure 5 or an equivalent GRAPE pulse.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
The codes for numerical simulation and data processing are available from the
corresponding authors upon reasonable request.
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