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Abstract 19 

The Augmented Hebbian Reweighting Model (AHRM) has been effectively utilized to model the 20 

collective performance of observers in various perceptual learning studies. In this work, we have 21 

introduced a novel hierarchical Bayesian Augmented Hebbian Reweighting Model (HB-AHRM) 22 

to simultaneously model the learning curves of individual participants and the entire population 23 

within a single framework. We have compared its performance to that of a Bayesian Inference 24 

Procedure (BIP), which independently estimates the posterior distributions of model parameters 25 

for each individual subject without employing a hierarchical structure. To cope with the 26 

substantial computational demands, we developed an approach to approximate the likelihood 27 

function in the AHRM with feature engineering and linear regression, increasing the speed of the 28 

estimation procedure by 20,000 times. The HB-AHRM has enabled us to compute the joint 29 

posterior distribution of hyperparameters and parameters at the population, observer, and test 30 

levels, facilitating statistical inferences across these levels. While we have developed this 31 

methodology within the context of a single experiment, the HB-AHRM and the associated 32 

modeling techniques can be readily applied to analyze data from various perceptual learning 33 

experiments and provide predictions of human performance at both the population and individual 34 

levels. The likelihood approximation concept introduced in this study may have broader utility in 35 

fitting other stochastic models lacking analytic forms. 36 

Keywords: Perceptual Learning, Augmented Hebbian Reweighting Model, Hierarchical Bayesian 37 

Model, Pytensor, Likelihood Approximation 38 
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INTRODUCTION  40 

Perceptual learning is a powerful process that can significantly enhance human performance 41 

in various perceptual tasks (Dosher & Lu, 2020; Fahle & Poggio, 2002; Green, Banai, Lu, & 42 

Bavelier, 2018; Lu & Dosher, 2022; Lu, Hua, Huang, Zhou, & Dosher, 2011; Sagi, 2011; Seitz, 43 

2017; T. Watanabe & Sasaki, 2015). It can lead to improvements in tasks such as orientation, 44 

spatial frequency, and motion direction judgements, taking performance from near chance to high 45 

proficiency (Ball & Sekuler, 1982; Fiorentini & Berardi, 1980; Poggio, Fahle, & Edelman, 1992). 46 

Contrast sensitivity can increase by over 100% (Dosher & Lu, 1998; Huang, Zhou, & Lu, 2008), 47 

and response times can decrease by approximately 40% (Petrov, Van Horn, & Ratcliff, 2011). 48 

Perceptual learning is increasingly being applied in rehabilitation and the development of 49 

perceptual expertise (Cavanaugh, 2015; L. Gu et al., 2020; Hess & Thompson, 2015; Huang et al., 50 

2008; Huxlin et al., 2009; Levi, 2020; Lu, Lin, & Dosher, 2016; Maniglia, Visscher, & Seitz, 2021; 51 

Roberts & Carrasco, 2022; F.-F. Yan et al., 2015). 52 

Two main theories, representation enhancement and selective reweighting, have been proposed 53 

to explain performance improvements in visual perceptual learning (Ahissar & Hochstein, 2004; 54 

Dosher & Lu, 1998, 2009b; Fahle, 1994; Karni & Sagi, 1991; Mollon & Danilova, 1996; 55 

Sotiropoulos, Seitz, & Seriès, 2011; Talluri, Hung, Seitz, & Seriès, 2015; T. Watanabe et al., 2002; 56 

T. Watanabe & Sasaki, 2015; Zhang et al., 2010). Representation enhancement suggests that 57 

perceptual learning improves performance by altering the responses or tuning characteristics of 58 

neurons in early visual cortical areas. On the other hand, selective reweighting involves the up-59 

weighting of relevant and down-weighting of irrelevant representations from early visual cortical 60 

areas during perceptual decision without changing the representations themselves. While both 61 

processes can contribute to perceptual learning (Kourtzi, Betts, Sarkheil, & Welchman, 2005; 62 
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Roelfsema, van Ooyen, & Watanabe, 2010; Seitz & Watanabe, 2005; T. Watanabe & Sasaki, 63 

2015), selective reweighting appears to be the dominant component (Dosher & Lu, 2020). This 64 

conclusion is also supported by physiological and brain imaging studies, which indicate that early 65 

sensory representation enhancement accounts for only a small fraction of behavioral performance 66 

improvements (Ghose, Yang, & Maunsell, 2002; Schoups, Vogels, Qian, & Orban, 2001), while 67 

evidence of neural plasticity is strongest in higher visual areas (Adab & Vogels, 2011; Law & 68 

Gold, 2008; Y. Yan et al., 2014). Notably, representation enhancement remains primarily a verbal 69 

theory, and most existing computational models of visual perceptual learning are based on 70 

selective reweighting. These models aim to enhance the readout of sensory information during 71 

perceptual decision making (Dosher, Jeter, Liu, & Lu, 2013; Dosher & Lu, 1998; Jacobs, 2009; 72 

Law & Gold, 2009; Petrov, Dosher, & Lu, 2005; Poggio et al., 1992; Sotiropoulos et al., 2011; 73 

Vaina, Sundareswaran, & Harris, 1995; Weiss, Edelman, & Fahle, 1993; Zhaoping, Herzog, & 74 

Dayan, 2003).  75 

 76 
Figure 1. The Augmented Hebbian Reweighting Model (AHRM) with representation, bias, 77 
feedback, and decision modules.  78 
 79 

The Augmented Hebbian Reweighting Model (AHRM; Figure 1) is the first full computational 80 

process model of perceptual learning (Petrov et al., 2005). It comprises representation, bias, 81 
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feedback, and decision modules. The representation module computes activations in multiple 82 

orientation- and frequency-selective channels from stimulus images. The decision module weights 83 

and sums activations along with a bias module and yields a response on each trial. The learning 84 

module updates the weights to the decision module on every trial using augmented Hebbian 85 

learning, which moves the “late” post-synaptic activation in the decision module towards the 86 

correct response when feedback is available, and operates on the early decision activation when 87 

there is no feedback (Dosher & Lu, 2009a; Petrov et al., 2005; Petrov, Dosher, & Lu, 2006). 88 

The AHRM has successfully modeled various phenomena in perceptual learning, including 89 

perceptual learning in nonstationary environments with and without feedback (Petrov et al., 2005, 90 

2006), basic mechanisms of perceptual learning, asymmetric transfer of learning in high and low 91 

external noise, and effects of pretraining mechanisms (Lu, Liu, & Dosher, 2010), co-learning of 92 

multiple tasks (Huang, Lu, & Dosher, 2012), interaction between training accuracy and feedback 93 

(Liu, Lu, & Dosher, 2010; Liu, Lu, & Dosher, 2012), and trial-by-trial and block feedback (Liu, 94 

Dosher, & Lu, 2014). It has also led to the development of several related models (Dosher et al., 95 

2013; Jacobs, 2009; Law & Gold, 2009; Sotiropoulos et al., 2011; Talluri et al., 2015).  96 

Despite its success, fitting the AHRM to data presents a significant challenge. The AHRM is 97 

a sequential stochastic learning model, that, with a given set of parameters, must be simulated to 98 

generate performance predictions with sequential trial-by-trial updates of the decision weights. 99 

Simulations typically involve running the model hundreds to thousands of times to generate 100 

average predictions and confidence bands for a given set of parameter values. For a fixed set of 101 

parameter values, each run of the model leads to a different sequence of responses and somewhat 102 

different weight changes due to stochastic trial-by-trial variations resulting from internal and 103 

external noises and different random trial sequences. Fitting the AHRM with typical curve fitting 104 
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procedures (e.g., maximum likelihood, least squares, Bayesian) is not feasible because the fitting 105 

process requires simulations of many potential parameter sets (tens to hundreds of thousands). 106 

Instead, estimation of the AHRM parameters is generally done using hierarchical grid-search 107 

methods. These methods evaluate a matrix of spaced parameter values and then narrow down 108 

regions of the parameter space that are more promising, making it difficult to obtain the optimal 109 

solutions.  110 

In this study, we introduce three modeling technologies to facilitate AHRM fitting: 111 

1) A Hierarchical Bayesian AHRM (HB-AHRM): This approach incorporates 112 

population, subject, and test levels to estimate the joint posterior hyperparameter and 113 

parameter distribution across all subjects while considering covariance within and 114 

between subjects. 115 

2) Vectorization with PyTensor: Leveraging PyTensor library and GPU acceleration, 116 

these techniques drastically speed up simulations by optimizing the computation of 117 

mathematical expressions involving multi-dimensional arrays. 118 

3) Likelihood function approximation:  We developed an approach to approximate the 119 

likelihood function in the AHRM with feature engineering and linear regression. 120 

Based on simulated predictions of the AHRM over a large parameter grid, we 121 

encoded the functional relationship between the likelihood and parameters, greatly 122 

accelerating model computations.  123 

Hierarchical models enable effective combination of information across subjects and groups 124 

while preserving heterogeneity (Kruschke, 2014; Rouder & Lu, 2005). These models typically 125 

consist of sub-models and probability distributions at multiple levels of the hierarchy and can 126 

compute the joint posterior distributions of the parameters and hyperparameters using Bayes' 127 
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theorem based on all available data (Kruschke, 2014; Kruschke & Liddell, 2018). Hierarchical 128 

models are valuable for reducing the variance of estimated posterior distributions by decomposing 129 

variabilities from different sources using parameters and hyperparameters (Song et al., 2020) and 130 

shrinking estimated parameters at lower levels towards the modes of higher levels when there is 131 

insufficient data at the lower level (Kruschke, 2014; Rouder et al., 2003; Rouder & Lu, 2005). 132 

The HB-AHRM consists of three levels: population, subject, and test. In this framework, all 133 

subjects belong to a population and may, in principle, run the same experiment (called “test”) 134 

multiple times. The distributions of AHRM parameters at the test level are conditioned on the 135 

hyperparameter distributions at the subject level, which, in turn, are conditioned on the 136 

hyperparameter distribution at the population level. The HB-AHRM also includes covariance 137 

hyperparameters at the population and subject levels to capture the relationship between and within 138 

subjects.  139 

PyTensor is a Python library used to define, optimize, rewrite, and evaluate mathematical 140 

expressions, particularly those involving multi-dimensional arrays. It combines elements of a 141 

computer algebra system and an optimizing compiler. PyTensor is particularly useful for tasks 142 

where complex mathematical expressions need repeated evaluation, and speed is critical. The 143 

library provides a loop mechanism called scan, which can process inputs efficiently. We used 144 

PyTensor to represent all variables in the HB-AHRM and applied the scan function, significantly 145 

speeding up simulations from 22.2 to 1.6 seconds for 300 repeated runs of the experiment in Petrov 146 

et al. (2005) based on one set of AHRM parameters.  147 

Although PyTensor improved simulation speed, computing the HB-AHRM still involves 148 

evaluating of hundreds of thousands of parameter sets. Because of the tremendous computational 149 

load, we developed a method to approximate the likelihood function in the AHRM with feature 150 
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engineering and linear regression. It involves simulating AHRM predictions in a large parameter 151 

grid using parallel computing with GPU processors, taking <24 hours for a 64,000	mesh	grid. We 152 

then employed feature engineering and linear regression to learn the relationship between the 153 

likelihood function and AHRM parameters, which took about 30 minutes. The differentiable 154 

functional relationship enabled efficient exploration of a large parameter space in fitting the 155 

models (<1 ms per sample).  156 

In this paper, we provide an overview of the AHRM as a generative model of trial-by-trial 157 

human performance in perceptual learning. We also introduce a Bayesian inference procedure 158 

(BIP) used to independently estimate the posterior distribution of AHRM parameters for each 159 

subject. Subsequently, we present the HB-AHRM, designed to collectively estimate the joint 160 

posterior distribution of hyperparameters and parameters at multiple levels of the hierarchy. We 161 

discuss the simulation technologies, including PyTensor, and the method for likelihood function 162 

approximation. These procedures are applied to data from Petrov et al. (2005). Our analysis 163 

involves comparing the goodness of fit the BIP and HB-AHRM, and evaluating the variability of 164 

estimated AHRM parameters, learning curves and weight structures. In addition, we conducted a 165 

simulation study to evaluate parameter recovery and HB-AHRM’s ability in predicting the 166 

performance of a new simulated observer with no or limited training data.  167 

THEORETICAL DEVELOPMENT 168 

The Augmented Hebbian Reweighting Model (AHRM)  169 

In this section, we briefly describe the augmented Hebbian reweighting model (AHRM). More 170 

details of the model can be found in the original paper (Petrov et al., 2005). 171 

Representation module. For subject 𝑖	in test 𝑗, the stimulus image consists of a signal image 𝑆!"# 172 

and an external noise image 𝑁!"#	in each trial 𝑡. The representation module encodes the stimulus 173 
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image into expected activations over a bank of orientation and spatial-frequency channels tuned 174 

to different orientations 𝜑 and spatial frequencies f ,  𝐸5𝜑, 𝑓7𝑆!"# , 𝑁!"#8, through convolution, 175 

halfwave rectification, contrast normalization and pooling over phase and space (Petrov et al., 176 

2005). We consider 35 channels centered at 7 orientations (𝜑Î[0°, ±15°, ±30°,  ±45°]) and 5 177 

spatial frequencies (f Î[1, 1.4, 2, 2.8, 4] cycles per degree). The expected activation is then 178 

combined with internal noise 𝜀$,& (with mean 0 and standard deviation 𝜎')	and passed to a 179 

saturating non-linearity to compute the activation in each channel: 180 

𝐴(5𝜑, 𝑓|𝑆!"# , 𝑁!"#8 = 𝐸5𝜑, 𝑓7𝑆!"# , 𝑁!"#8 + 𝜀$,&,                                           (1) 181 

𝐴5𝜑, 𝑓|𝑆!"# , 𝑁!"#8 = 𝐴)*+ @
,-.!"#

$%&,(|*+,-,.+,-/

,/.!"#
$%&,(|*+,-,.+,-/

, 𝑖𝑓	𝐴′5𝜑, 𝑓|𝑆!"# , 𝑁!"#8

0,																				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
≥ 0  (2) 182 

Task-specific decision module. The decision module weighs the evidence in the noisy activations 183 

from the representation module to generate a response in each trial. Specifically, it first 184 

aggregates the activation pattern 𝐴5𝜑, 𝑓|𝑆!"# , 𝑁!"#8	over the orientation and spatial-frequency 185 

channels using current weights 𝑤$,&(𝑡), a top-down bias b(t), and a Gaussian decision noise e 186 

(mean 0 and standard deviation 𝜎0): 187 

𝑢(𝑡) = ∑ 𝑤$,&(𝑡)$,& 	𝐴5𝜑, 𝑓|𝑆!"# , 𝑁!"#8 − 𝑏(𝑡) + 𝜀.                         (3) 188 

and then computes its output 𝑜(𝑡) as a sigmoidal function of u(t):  189 

𝑜(𝑡) = 𝐺5𝑢(𝑡)8,                                                            (4) 190 

𝐺5𝑢(𝑡)8 = ,-.!"0(-)

,/.!"0(-)
𝐴)*+ .																																																							(5) 191 

The decision variable 𝑜(𝑡)  saturates at ±𝐴)*+ = ±0.5;   the model responds left or 192 

counterclockwise if 𝑜(𝑡) < 0, and right or clockwise otherwise.  193 
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The weights are initiated to be proportional to the preferred orientation of the representation 194 

module relative to the vertical: 𝑤$,&(0) = (𝜑/30°)𝑤!1!#.  195 

Learning module. The weights between the representation and decision modules are updated on 196 

each trial using an augmented Hebbian reweighting rule, in which feedback, 𝐹(𝑡)	 = ±	0.5, is 197 

used as the correct output of the decision module. The change of weight 𝑤$,&(𝑡) in each channel 198 

depends on the activation of the representation  𝐴5𝜑, 𝑓|𝑆!"# , 𝑁!"#8, the correct output of the 199 

decision module and the internal learning rate 𝜂: 200 

𝛿$,& = 𝛼𝐴5𝜑, 𝑓7𝑆!"# , 𝑁!"#8𝐹(𝑡8,																																																													(6a) 201 

∆𝑤$,&(𝑡) = 5𝑤$,&(𝑡) − 𝑤)!18[𝛿$,&]- + ^𝑤)*+ −𝑤$,&(𝑡)_ [𝛿$,&]/,               (6b)  202 

where 𝑤)!1 = −1 and 𝑤)*+ = 1.0. 203 

Adaptive criterion control. The adaptive criterion control module shifts the decision variable on 204 

each trial to compensate for biases in the immediate history of responses by adding a bias 205 

correcting term to the activation at the decision module. It assumes that observers monitor their 206 

own responses and seek to equalize response frequencies—trying to match stimulus probabilities 207 

that are often balanced in experiments. A weighted running average of recent responses 208 

exponentially discounts the distant past response history: 209 

𝑟(𝑡 + 1) = 𝜌𝑅!"# + (1 − 𝜌)𝑟(𝑡),                                             (7a) 210 

𝑏(𝑡 + 1) = 𝛽𝑟(𝑡),                                                            (7b) 211 

where R(t) is the response in the current trial, and r(t) is the weighted running average responses, 212 

and b(t) is the bias. Following Petrov et al. (2005), we set 𝜌=0.02. 213 

In summary, the AHRM has six free parameters (Table 1), internal learning rate 𝛼,  bias 214 

strength 𝛽,	activation function gain	𝛾, standard deviation of decision noise 𝜎0, standard deviation 215 
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of representation noise 𝜎', and initial weight scaling factor 𝑤!1!#. Additional parameters, including 216 

maximum activation level, weight bounds, orientation spacing, and spatial frequency spacing, are 217 

fixed.  218 

Table 1: AHRM parameters and their corresponding symbols in the BIP and HB-AHRM 219 
Parameters	 AHRM	 BIP/HB-AHRM	 			Values	
Learning	rate	 𝛼 𝜃!"1 	
Bias	 strength	 𝛽 𝜃!"2 	

Activation	 function	gain	 𝛾 𝜃!"3 	
Decision	noise	 𝜎0 𝜃!"4 	

Representation	noise	 𝜎' 𝜃!"5 	
Initial	weight	scaling	factor	 𝑤!1!# 𝜃!"6 	
Maximum	 activation	level	 𝐴)*+ 	 0.5 

Weight	bounds	 	𝑤)!1/)*+ 	 ±1 
Orientation	spacing	 ∆𝜑 	 159 

Spatial	frequency	spacing	 ∆𝑓 	 0.5	𝑜𝑐𝑡 
 220 

To simplify notations, we use 𝜃!" 	to denote the AHRM parameters for subject i in test j (see 221 

Table 1 for the correspondence with the original AHRM parameters). For a given subject i in test 222 

j with ARHM parameters 𝜃!" ,	we can compute the probability of obtaining a correct response in 223 

trial 𝑡, 𝑝(𝑅!"# = 1|𝜃!" , 𝑆!"# , 𝑁!"#), and the probability of obtaining an incorrect response in trial 𝑡, 224 

𝑝(𝑅!"# = 0|𝜃!" , 𝑆!"# , 𝑁!"#), from repeated simulations of the AHRM. The two probabilities define 225 

the likelihood function for each of T trials. The likelihood of obtaining all the observed responses 226 

of subject i in test j is the product of all the trial-by-trial likelihoods: 227 

 𝑝5𝑅!",:;7𝜃!"8 = ∏ 𝑝(𝑅!"#|𝜃!" , 𝑆!"# , 𝑁!"#);
#<, ,                                            (8) 228 

Bayesian Inference Procedure 229 

The Bayesian Inference Procedure (BIP) is used to estimate the posterior distribution of 𝜃!" 230 

from the trial-by-trial data 𝑌!" = �(𝑅!",:; , 𝑆!",:;,	𝑁!",:;,)�	of subject 𝑖  in test 𝑗  via Bayes’ rule 231 

(Figure 2a): 232 
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𝑝5𝜃!"7𝑌!"8 =
∏ >(@+,-|B+,,C+,-,D+,-)3
-45 >6(B+,)

∫∏ >(@+,-|B+,,C+,-,D+,-)3
-45 >6(B+,)0B+,

.                                 (9) 233 

Here, 𝑝5𝜃!"7𝑌!"8	is the posterior distribution of AHRM parameters, 𝜃!", given the trial-by-trial 234 

data 𝑌!" , 𝑝(𝑅!"#|𝜃!" , 𝑆!"# , 𝑁!"#)	is the likelihood term, which quantifies the probability of observing 235 

responses 𝑅!"# given 𝜃!", 𝑆!"# ,	and  𝑁!"#,  𝑝G(𝜃!")	is the prior probability distribution of 𝜃!".  236 

 237 
Figure 2. (a) The Bayesian inference procedure (BIP). For a given subject i in test j with 238 
parameters 𝜃!" ,	the likelihood of obtaining response 𝑝(𝑅!"#) in trial 𝑡 is computed from the 239 
AHRM. (b) The HB-AHRM is a three-level hierarchical Bayesian model in which the population 240 
level hyperparameter 𝜂 is modeled as a mixture of Gaussian distributions with mean μ and 241 
covariance 𝛴, hyperparameter 𝜏! at the subject level is modeled as a mixture of Gaussian 242 
distributions with mean 𝜌! and covariance 𝜙, and the probability distribution of parameters 𝜃!" is 243 
conditioned on 𝜏!.  244 
 245 

The prior of  𝜃!" 	is set as a uniform distribution in all its dimension:	 246 

𝑝G5𝜃!"H8 = 𝒰(𝜃GH,)!1, 𝜃GH,)*+),                                               (10) 247 

where 𝜃GH,)!1  and 𝜃GH,)*+  are the lower and upper bounds of the uniform distribution for 248 

dimension 𝑘 (Table 2), which are set based on observed values in prior applications of the model.  249 

The denominator of equation (9) is an integral across all possible values of 𝜃!" . 250 

In the BIP, the AHRM parameters are estimated independently for each subject.  251 

 252 
 253 
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Table 2. Lower and upper bounds of the priors. 254 
𝒌 1 2 3 4 5 6 

𝜽𝟎𝒌,𝒎𝒊𝒏 0 0 0 0 0 0 
𝜽𝟎𝒌,𝒎𝒂𝒙 0.003 3 3 0.3 0.1 0.3 

 255 

Hierarchical Bayesian Augmented Hebbian Reweighting Model (HB-AHRM) 256 

The HB-AHRM is a three-level hierarchical Bayesian model used to estimate the joint 257 

posterior hyperparameter and parameter distribution in all levels, considering covariance within 258 

and between subjects (Figure 2b). The HB-AHRM includes probability distributions at the 259 

population, subject, and test levels. 260 

Population level. The probability distribution of the six-dimensional hyperparameter 𝜂 of the 261 

AHRM parameters (Table 1) at the population level is modeled as a mixture of six-dimensional 262 

Gaussian distributions with mean μ and covariance 𝛴, which have distributions 𝑝(𝜇) and 𝑝(𝛴): 263 

𝑝(𝜂) = 𝒩(𝜂, 𝜇, 𝛴)𝑝(𝜇)𝑝(𝛴).                                                 (11) 264 

Subject level. The probability distribution of hyperparameter 𝜏! for subject 𝑖 at the subject level is 265 

modeled as a mixture of 6-dimensional Gaussian distributions with mean 𝜌! and covariance 𝜙, 266 

with distributions 𝑝(𝜌!|𝜂) and 𝑝(𝜙):  267 

																										𝑝(𝜏!|𝜂) = 𝒩(𝜏! , 𝜌! , 𝜙)	𝑝(𝜌!|𝜂)𝑝(𝜙),                                        (12) 268 

in which 𝜌! is conditioned on 𝜂. 269 

Test level. 𝑝(𝜃!"|𝜏!), the probability distribution of parameters 𝜃!" is conditioned on 𝜏!. The 270 

probability of obtaining the entire dataset is computed using probability multiplication, which 271 

involves all levels of the model and the likelihood function based on the trial-by-trial data: 272 

𝑝"𝑌7:9,7::$𝑋& =(((𝑝(𝑅;<=|𝜃;< , 𝑆;<= , 𝑁;<=)𝑝"𝜃;<$𝜏;&
>

=?7

𝑝(𝜏;|𝜂)𝑝(𝜂)
:

<?7

9

;?7

 273 

= ∏ ∏ ∏ 𝑝(𝑅;<=|𝜃;< , 𝑆;<= , 𝑁;<=)𝑝"𝜃;<$𝜏;&>
=?7 𝒩(𝜏; , 𝜌; , 𝜙)	𝑝(𝜌;|𝜂)𝑝(𝜙)𝒩(𝜂, 𝜇, 𝛴)𝑝(𝜇)𝑝(𝛴):

<?7
9
;?7 ,      (13) 274 
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where 𝑋 = (𝜃,:P,,:Q, 𝜌,:P , 𝜇, 𝜙, 𝛴) are all the parameters and hyperparameters in the HB-AHRM. 275 

Bayes' rule is used to compute the joint posterior distribution of 𝑋, which includes all HB-276 

AHRM parameters and hyperparameters: 277 

		𝑝"𝑋$𝑌7:9,7::& = 	
∏ ∏ ∏ A(B!"#|C!",D!"#,E!"#)A%𝜃;<F𝜏;/$

#%& 𝒩(H!,I!,J)	A(I!|L)A'(J)𝒩(L,M,N)A'(M)A'(N)
(
"%&

)
!%&

	∫∏ ∏ ∏ A(B!"#|C!",D!"#,E!"#)A%𝜃;<F𝜏;/$
#%& 𝒩(H!,I!,J)	A(I!|L)A'(J)𝒩(L,M,N)A'(M)A'(N)

(
"%&

)
!%& PQ

 ,          (14)                                                                                                                                       278 

where the denominator is an integral across all possible values of 𝑋 and is a constant for a given 279 

dataset and HB-AHRM; 𝑝G(𝜇), 𝑝G(Σ), and 𝑝G(𝜙) are the prior distributions of 𝜇, Σ, and 𝜙, with 280 

	𝑝G(𝜇) = 𝒰H(𝜃GH,)!1, 𝜃GH,)*+),                                                   (15) 281 

where 𝒰H(𝜃GH,)!1, 𝜃GH,)*+) denotes a uniform distribution between 𝜃GH,)!1 and 𝜃GH,)*+ in each 282 

of the six dimensions, with 𝜃GH,)!1	 and 𝜃GH,)*+ defined in Table 2. Both	𝑝G(Σ) and 𝑝G(𝜙) are 283 

set with the LKJ distribution with a shape parameter of 2.0 (Lewandowski, Kurowicka, & Joe, 284 

2009).  285 

Equation 14 allows us to estimate the joint posterior distribution of HB-AHRM parameters and 286 

hyperparameters across all tests and subjects. Unlike the BIP, the HB-AHRM hyperparameters 287 

and parameter estimates mutually constrain each other across tests and subjects via the joint 288 

distribution. This allows for more robust and interconnected estimates of HB-AHRM parameters 289 

and hyperparameters. 290 

STUDY 1. RE-ANALYSIS OF Petrov et al. (2005)  291 

Methods 292 

Data. Petrov et al. (2005) investigated perceptual learning in an orientation identification task 293 

involving 13 adult subjects with normal or corrected-to-normal vision. Subjects judged the 294 

orientation (±109 from vertical) of Gabor patches (windowed sinusoidal gratings, peak spatial 295 

frequency=2 c/d) in each trial. The experiment included a nonstationary context where external 296 
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noise images, predominantly oriented left in context L and right in context R, were superimposed 297 

on the target stimuli (Figure 3).  298 

The study consisted of eight daily sessions, each with four blocks of 300 trials, totaling 9600 299 

trials. Subjects were trained in block sequences of either L-8R-8L-8R-6L-R (7 subjects) or R-8L-300 

8R-8L-6R-L (6 subjects) contexts. Context congruency was randomly selected, with the target 301 

Gabor and context either congruent or incongruent in orientation. Gabor contrast was randomly 302 

selected from three fixed levels (0.106, 0.160, and 0.245). The resulting behavioral data shows a 303 

complex pattern related to congruency and contrast. 304 

 305 
Figure 3. An illustration of left and right titled Gabors in context L.  306 
 307 

The study adhered to ethical standards, with written consent obtained from all subjects prior to 308 

the experiment. The research protocol received approval from the institutional review board for 309 

human subject research at the University of California, Irvine, and complied with the principles of 310 

the Declaration of Helsinki. 311 

Likelihood function approximation. Fitting the BIP and HB-AHRM to the data involves using 312 

simulations to evaluate the likelihood of a vast set of model parameters. Due to the significant 313 

computation time, previous studies relied on grid search methods for AHRM evaluation (Petrov, 314 

et al., 2005; 2006). To reduce the computational cost, we approximated the likelihood function 315 

by learning its functional relationship with AHRM parameters based on simulated predictions 316 

over a large parameter grid. This facilitated fitting the BIP and HB-AHRM models.  317 
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We constructed a 6-dimensional mesh grid Θ	(Table 3) to train the functional relationship 318 

between AHRM parameters and the likelihood function. The mesh grid contained 8 × 8 × 8 × 5 ×319 

5 × 5	 = 	64,000 sets of model parameters. The ranges and values of the AHRM parameters were 320 

chosen based on an exploration of model predictions with various parameters. 321 

 322 
Table 3. Mesh grid used in the simulation. 323 

Parameter Values 
𝜶 𝜃!", 0.0001 0.0004 0.0008 0.0012 0.0016 0.0020 0.0024 0.0028 
𝜷 𝜃!"R 0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 
𝜸 𝜃!"S 0.1 0.3 0.6 0.9 1.2 1.5 1.8 2.1 
𝝈𝒅 𝜃!"U 0.05 0.10 0.15 0.20 0.25    
𝝈𝒓 𝜃!"W 0.025 0.050 0.075 0.100 0.125    
𝒘𝒊𝒏𝒊𝒕 𝜃!"Y 0.05 0.10 0.15 0.20 0.25    

 324 

We calculated the likelihood, representing the trial-by-trial probability of a correct response, 325 

for each set of AHRM parameters 𝜃!"	 across six stimulus conditions over 9600 trials. This 326 

computation was based on the average of five simulations, each comprising 300 repeated runs with 327 

the same AHRM parameters and a different trial sequence.  328 

The AHRM was used to generate trial-by-trial response based on the set of parameters and the 329 

stimulus sequence, using Pytensor library’s scan function. Because the exact external noise image 330 

on each trial was not available, we obtained a cache of 1200 expected 35-dimensional activations, 331 

𝐸5𝜑, 𝑓7𝑆!"# , 𝑁!"#8, consisting of 100 random samples of the 12 combinations of 2 (context) ×	3 332 

(Gabor contrast) × 2 (Gabor orientation). In each of the 300 runs, the AHRM starts with the same 333 

initial weights and no decision bias, generating orientation judgements in eight sessions with four 334 

blocks of 300 trials each. The contexts of the blocks were arranged in terms of L-8R-8L-8R-6L-R 335 

or R-8L-8R-8L-6R-L, totaling 9600 trials. Each block of 300 trials consisted of 50 trials in each 336 
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of the 2 (congruency) ×  3 (Gabor contrast) conditions, with a random permutation of the trial 337 

types.  338 

Each simulation took 1.6 seconds, in contrast to 22.2 seconds when using a for loop. 339 

Additionally, we averaged the likelihoods within each block of 300 trials, resulting in one 340 

likelihood for each of the six conditions per block for each set of parameters, and 64,000 341 

likelihoods for the 64,000 sets of AHRM parameters in each of the six conditions per block.  342 

 343 
Figure 4. Approximating the likelihood function with feature engineering and linear regression.  344 
The simulated learning curves show data for incongruent (top) and congruent (bottom) trials at 345 
three contrast levels (colors) over training blocks for each parameter combination. 346 
 347 

In each block of the six experimental conditions, we computed the functional relationship 348 

between the likelihood and AHRM parameters using feature engineering and linear regression in 349 

the Scikit-learn library. Across blocks and experimental conditions, we established a total of 192 350 

functional relationships.  351 

For each relationship, the 64 predictors 𝜃!"( 	included an intercept, the six AHRM parameters 352 

𝜃!", and 57 additional features obtained through comprehensive feature engineering by exploring 353 
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all 21 quadratic and 36 cubic terms created from the six AHRM parameters. For each block of 354 

trials 𝑡1, the linear regression is expressed as: 355 

𝑝(𝑡|𝜃!")=a(𝑡) + ∑ 𝑏H(𝑡)𝜃!"H(YU
[<, .                                                       (16) 356 

The feature engineering and linear regression step took about half an hour. 357 

The functional relationship for the six conditions in 32 blocks is encoded in a 192 x 64 matrix, 358 

where each row represents the coefficients in one experimental condition in one block. This 359 

coefficient matrix allows us to calculate the likelihood function 𝑝5𝑅!"# = 17𝜃!" , 𝑆!"# , 𝑁!"#8	for any 360 

AHRM parameters within the mesh grid range, not just the parameter sets in the mesh grid. 361 

Moreover, the likelihood functions are differentiable, facilitating various inference functions in 362 

PYMC (Abril-Pla et al., 2023). 363 

Estimating the Posterior Distributions. We utilized the Automatic Differentiation Variational 364 

Inference (ADVI) method in the PYMC library to generate representative samples of the 365 

posterior distributions in the BIP and HB-ARHM. In this method, the variational posterior 366 

distribution is assumed to be spherical Gaussian without correlation between parameters and fit 367 

to the true posterior distribution. The means and standard deviations of the variational posterior 368 

are referred to as variational parameters. 369 

We ran ADVI optimization for 300,000 iterations in the BIP and HB-AHRM to ensure good 370 

approximations of the posterior distributions. To generate representative samples of the posterior 371 

distribution in the BIP, we used the ADVI method to generate 100,000 samples for each subject 𝑖. 372 

Similarly, we computed 100,000 representative samples of the joint posterior distribution of  µ (6 373 

 

1 Although the BIP and HBM are formulated to model trial-by-trial data, we use	𝑡 to denote each block of 300 trials 

in the rest of the paper. 
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parameters), Σ (21 parameters), ρ\]  (6 × 13 = 78	parameters), ϕ (21 parameters), and θ\^]	(6 × 374 

13 = 78 parameters). A model is considered “converged” when the Evidence Lower Bound 375 

(ELBO) stabilizes during iterations, indicating that the variational posterior has adequately 376 

approximated the true posterior distribution. 377 

Goodness of Fit. We used the Watanabe–Akaike information criterion (WAIC) to compare the 378 

BIP and HB-AHRM fits. WAIC quantifies the likelihood of the observed data based on the joint 379 

posterior distribution of model parameters while penalizing for model complexity (S. Watanabe 380 

& Opper, 2010). Additionally, we assessed the accuracy of model predictions with 𝑅𝑀𝑆𝐸, the 381 

proportion of variance in the observed data explained by the model (RR), and the uncertainty of 382 

the parameter estimates and model predictions with estimated credible intervals.  383 

The 𝑅𝑀𝑆𝐸 between the predicted and observed quantities is defined as: 384 

  RMSE = ¥∑(y_ − y¦_)R/M,                                                   (17) 385 

where y_ is the observed value, y¦_ is the predicted value, y§ is the mean of all the observarions, 386 

and M is the total number of observations. 387 

The proportion of variance accounted for, RR, is defined as: 388 

RR = 1 − ∑(aR-abR)S/c
∑(aR-ad)S/c

,                                                         (18) 389 

Results 390 

Likelihood function approximation. Figure 5 shows the predicted likelihood function of the 391 

AHRM for one set of parameters: 𝛼 = 0.0008, 𝛽 = 1.8, 𝛾 = 1.2, 	𝜎0 = 0.2, 𝜎' = 0.1, and 392 

𝑤!1!# = 0.17.	 The model predictions exhibit characteristic patterns observed in Petrov et al. 393 

(2005): general learning, persistent switch costs, and within context rapid relearning.  394 
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Figure 6 shows a scatter plot of the approximate likelihoods from feature engineering and linear 395 

regression against likelihoods generated from the AHRM across all 64,000 sets of AHRM 396 

parameters in the mesh grid, with an RR of 0.991 and an RMSE of 0.016, indicating excellent 397 

approximation of the likelihoods by the linear model (Eq. 16). 398 

 399 
Figure 5. Predicted likelihood function of the AHRM for one set of AHRM parameters (𝛼 =400 
0.0008, 𝛽 = 1.8, 𝛾 = 1.2, 𝜎0 = 0.2, 𝜎' = 0.1, 𝑤!1!# = 0.17)	from	the	simulations. 401 

 402 

.  403 
Figure 6. A scatter plot of the approximate likelihoods from feature engineering and linear 404 
regression against likelihoods generated from the AHRM. 405 
 406 
BIP and HB-AHRM Comparison. Both the BIP and HB-AHRM converged, indicated by the 407 

stabilization of ELBO.  408 
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The WAIC values of the BIP and HB-AHRM were -7908.7 ± 92.5 and -8754.1± 153.3, 409 

respectively, with a difference of -845.4 ±179.0. The HB-AHRM provided a significantly better 410 

fit to the data. We will focus on the results from the HB-AHRM in the main body of the paper. 411 

Detailed results from the BIP can be found in Supplementary Materials A. 412 

Posterior Distributions (HB-AHRM). The marginal posterior distributions of the population-level 413 

hyperparameter 𝜂 are depicted in Figure 7. The mean and 94% half width credible interval 414 

(HWCI) of these distributions are listed in Table 4. For most 𝜂 components, except 𝜂W 415 

(representation noise), the HWCI was quite small relative to their respective mean.  416 

The expected correlation matrix derived from the expected covariance hyperparameter 𝛴 is 417 

shown in Table 5. The expected between-subject correlations among 𝜂 components were quite 418 

small, and none of them was significantly different from zero, due to the relatively small range of 419 

performance variations across the 13 subjects. 420 

 421 
Figure 7: Marginal posterior distributions of the population-level hyperparameter 𝜼.  422 
  423 

Table 4. Mean and 94% HWCI of the marginal	distributions of 𝜂. 424 
	 𝜂1	 𝜂2	 𝜂3	 𝜂4	 𝜂5	 𝜂6	

Mean	 0.0014	 1.71	 0.46	 0.10	 0.004	 0.08	

HWCI	 0.0001	 0.13	 0.02	 0.01	 0.002	 0.01	

 425 
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Table 5. Expected correlation matrix at the population level. 426 
1	 0.037	 -0.006	 -0.01	 0.036	 -0.05	

0.037	 1	 -0.031	 0.006	 0.034	 -0.024	

-0.006	 -0.031	 1	 0.023	 -0.044	 -0.006	

-0.01	 0.006	 0.023	 1	 0.024	 0.02	

0.036	 0.034	 -0.044	 0.024	 1	 0.029	

-0.05	 -0.024	 -0.006	 0.02	 0.029	 1	

 427 

The marginal posterior distributions of the subject-level hyperparameter τ\ for a typical subject 428 

(𝑖 = 6) are depicted in Figure 8. The mean and 94% HWCI of these distributions are listed in Table 429 

6. Compared to 𝜂, τY	 components exhibited higher uncertainties, a pattern held across all subjects. 430 

The full table with the mean and HWCI of the marginal distributions for all 13 subjects is available 431 

in Supplementary Materials B.  432 

The expected correlation matrix derived from the expected covariance hyperparameter Φ is 433 

shown in Table 7. The expected correlations between τ\R (bias strength) and τ\U	(decision noise) 434 

was -0.201 and between components τ\U	(decision noise) and τ\Y (initial weight scaling factor) was 435 

0.215, both were however not significantly different from zero. The lack of significant within-436 

subject correlations among τ\ components suggests that they are essentially independent. 437 

 438 
Figure 8: Marginal posterior distributions of the subject-level hyperparameter τ\ for subject 𝑖 =439 
6. 440 
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 441 
Table 6. Mean and 94% HWCI of the marginal posterior	distributions of τY. 442 

	 𝜏61	 𝜏62	 𝜏63	 𝜏64	 𝜏65	 𝜏66	

Mean	 0.0012	 1.71	 0.63	 0.10	 0.004	 0.07	

HWCI	 0.0003	 0.38	 0.05	 0.02	 0.002	 0.03	

 443 

Table 7. Expected correlation matrix at the subject level. 444 
1 -0.085 0.075 0.093 -0.008 0.052 

-0.085 1 0.074 -0.201 -0.029 0.023 

0.075 0.074 1 -0.014 0.006 -0.095 

0.093 -0.201 -0.014 1 0.004 0.215 

-0.008 -0.029 0.006 0.004 1 -0.004 

0.052 0.023 -0.095 0.215 -0.004 1 

 445 

The marginal posterior distributions of the test-level parameter θ i1 for subject 6 are depicted in 446 

Figure 9. The mean and 94% half width credible interval (HWCI) of these distributions are listed 447 

in Table 8. Compared to 𝜂 and τY, θ61 components exhibited much lower uncertainties because 448 

these test-level parameters are constrained by the experimental data directly. The pattern held 449 

across all subjects. The full table with the mean and HWCI of the test-level marginal distributions 450 

for all 13 subjects is available in Supplementary Materials B.  451 

 452 
Figure 9. Marginal posterior distributions of the test-level parameter θ i1 for subject 𝑖 = 6. 453 
 454 
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Table 8. Mean and 94% HWCI of the marginal posterior	distributions of θ61. 455 
	 θ611	 θ612	 θ613	 θ614	 θ615	 θ616	

Mean	 0.0009	 1.93	 0.87	 0.09	 0.004	 0.05	

HWCI	 0.0001	 0.10	 0.04	 0.00	 0.001	 0.00	

 456 

Predicted learning curves and weight structures (HB-AHRM). Figure 10 depicts the observed 457 

and predicted population-level z-score learning curves in the incongruent and congruent 458 

conditions, as well as the derived d’ learning curves. For the z-score learning curves, the average 459 

𝑅𝑀𝑆𝐸 was 0.173±0.071 and 0.175±0.090 and the average 94% HWCI was 0.064±0.037 and 460 

0.071±0.001 in the congruent and incongruent conditions, respectively, with a 𝑅R	of 0.835. 461 

For the 𝑑’ learning curves, the average 𝑅𝑀𝑆𝐸	was 0.199±0.074 and average 94% HWCI was 462 

0.105±0.051, with a 𝑅R of 0.887.  In comparison, the AHRM with parameters from grid search in 463 

Petrov et al. (2005) accounted for 88.2% of the variance of the average 𝑑′ learning curve across 464 

all the subject, with a 𝑅𝑀𝑆𝐸 of 0.209. The results suggest that the HB-AHRM provided a largely 465 

comparable solution as the original AHRM at the population level. A table that details 𝑅𝑀𝑆𝐸 and 466 

94% HWCI in each of the six experimental conditions is available in Supplementary Materials B. 467 
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 468 
Figure 10: Observed and predicted population-level z-score learning curves in the incongruent 469 
(a) and congruent (b) conditions, and the derived 𝑑’ learning curves (c). Data points represent the 470 
average learning curves across all 13 subjects. 471 
 472 

Figure 11 depicts population-level weight structure evolution over the course of training. 473 

Similar to Petrov et al. (2005), the weights for task-relevant channels (e.g., 2 c/d) increased over 474 

the course of training, while the weights for task-irrelevant channels (e.g., 4 c/d) stayed more or 475 

less the same. The HB-AHRM also allowed us to estimate the uncertainties of the weights. For the 476 

channels at 2 c/d, the average HWCI of the weights was 0.008 after 300 trials of training, 0.011 477 

after 2700 trials of training, and 0.011 after 9300 trials of training. For the channels at 4 c/d, the 478 

average HWCI of the weights was 0.008 after 300 trials of training, 0.007 after 2700 trials of 479 

training, and 0.006 after 9300 trials of training. 480 
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 481 
Figure 11: Population-level weight structure evolution over the course of training. Top row: 482 
Longitudinal weight traces for units tuned to the target frequency (2.0 c/d) and an irrelevant 483 
frequency (4.0 c/d). Each trace corresponds to a particular orientation. Middle and bottom rows: 484 
Cross-sections of the weights at 2.0 c/d, 2.8 c/d and 4.0 c/d at the end of each epoch.   485 
 486 
 487 

Figure 12 depicts the observed and predicted test-level z-score learning curves in the 488 

incongruent and congruent conditions, as well as the derived 𝑑’ learning curves for subject 6.  For 489 

the z-score learning curves, the average 𝑅𝑀𝑆𝐸 was 0.423±0.204 and 0.456±0.227 and the average 490 

94% HWCI of 0.035±0.001 and 0.032±0.015 in the congruent and incongruent conditions, 491 

respectively, with a 𝑅R of 0.675.   For the 𝑑’ learning curves, the average 𝑅𝑀𝑆𝐸 was 0.276±0.071 492 

and the average 94% HWCI was 0.031±0.014, with a 𝑅R of 0.744.  A table that details 𝑅𝑀𝑆𝐸 and 493 

94% HWCI in each of the six experimental conditions for all the subjects 	 is available in 494 

Supplementary Materials B. 495 
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 496 
Figure 12: Observed and predicted test-level z-score learning curves in the incongruent (a) and 497 
congruent (b) conditions, and the derived d’ learning curves (c) for subject 6.  498 
 499 

Figure 13 depicts test-level weight structure evolution over the course of training for subject 500 

6. The pattern of results is very similar to what happened at the population level, although the 501 

quantitative weights were different. For the channels at 2 c/d, the average HWCI of the weights 502 

was 0.003 after 300 trials of training, 0.005 after 2700 trials of training, and 0.006 after 9300 trials 503 

of training. For the channels at 4 c/d, the average HWCI of the weights was 0.003 after 300 trials 504 

of training, 0.002 after 2700 trials of training, and 0.001 after 9300 trials of training. 505 

  506 

 507 
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 508 
Figure 13: Test-level weight structure evolution over the course of training for subject 6. Top 509 
row: Longitudinal weight traces for units tuned to the target frequency (2.0 c/d) and an irrelevant 510 
frequency (4.0 c/d). Each trace corresponds to a particular orientation. Middle and bottom rows: 511 
Cross-sections of the weights at 2.0 c/d, 2.8 c/d and 4.0 c/d at the end of each epoch.   512 
 513 
 514 

STUDY 2: SIMULATIONS  515 

In study 2, we conducted a simulation study to evaluate parameter recovery and HB-AHRM’s 516 

ability in predicting the performance of a new simulated observer with no or limited training data.  517 

Methods 518 

Simulated Datasets. We created simulated dataset1 with 13 simulated observers to evaluated 519 

parameter recovery. For each simulated observer 𝑖, we set their AHRM parameters by drawing a 520 

random sample from the six-dimensional test-level HB-AHRM posterior distribution θi1 (see 521 

Supplementary Materials C for a table of all the parameters). We then created a single trial 522 

sequence with 9600 trials based on Petrov et al. (2005) and simulated these observers’ 523 

performance using the AHRM with the same trial sequence 300 times. Simulated dataset1 524 

therefore consisted of performance in six experimental conditions, averaged every 300 trials, 525 
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from each of the 13 simulated observers from the 300 repeated simulations. The structure of the 526 

data was identical to that in Petrov et al. (2005). 527 

To evaluate HB-AHRM’s ability in predicting the performance of a new simulated observer 528 

with no or limited training data, we created three additional simulated datasets by deleting some 529 

training data for a randomly selected subject 13 in simulated dataset1, while keeping all the data 530 

from the other 12 simulated observers. Specifically, simulated dataset2, simulated dataset3, and 531 

simulated dataset4 comprised 9600 trials of subjects 1-12 and 0 trials, the first 300 trials, and the 532 

first 2700 trials of training data for subject 13, respectively. 533 

HB-AHRM fitting; statistical evaluation. We fit the HB-AHRM to each of the four simulated 534 

datasets and computed the predicted learning curves from the joint posterior distributions of the 535 

HB-AHRM hyperparameters and parameters. The procedure was identical to that of STUDY 1. 536 

For simulated dataset1, we evaluated parameter recovery by comparing the mean of the 537 

posterior distributions of the AHRM parameters with those of the simulated observers (“the truth”) 538 

and computed the 94% HWCI for each of the parameters. We also evaluated the goodness of fit 539 

using 𝑅𝑀𝑆𝐸 and 𝑅R. 540 

For simulated dataset2, dataset3, and dataset4, we focused on the predicted learning curves of 541 

simulated observer 13 and compared them with the simulated learning curves of the same observer 542 

in simulated dataset1 (“the truth”). 543 

Results 544 

Model recovery. As shown in Figures 14 and 15, the HB-ARHM provided excellent fits to 545 

simulated dataset1 at both the population and test levels.  546 

At the population level, for the z-score learning curves, the average RMSE was 0.014±0.001 547 

and 0.005±0.002 and the average 94% HWCI was 0.037±0.001 and 0.031±0.015, in the congruent 548 
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and incongruent conditions, respectively, with a 𝑅R  of 0.994. For the 𝑑’  learning curves, the 549 

average RMSE was 0.078±0.038 and the average 94% HWCI was 0.052±0.031, with a 𝑅R	of 550 

0.981.  A table that details 𝑅𝑀𝑆𝐸 and 94% HWCI in each of the six experimental conditions is 551 

available in Supplementary Materials C. 552 

 553 
Figure 14:  Simulated and predicted population-level z-score learning curves in the incongruent 554 
(a) and congruent (b) conditions, and the derived d’ learning curves (c). Data points represent the 555 
average simulated learning curves across all 13 simulated observers. 556 
 557 

At the test level, for the z-score learning curves, the average RMSE was 0.010±0.000 and 558 

0.010±0.000 and the average 94% HWCI was 0.034±0.001 and 0.030±0.018 for simulated 559 

observer 13 in the congruent and incongruent conditions, respectively, with a 𝑅R	of 0.994. For the 560 

𝑑’  learning curves, the average RMSE was 0.068±0.023 and the average 94% HWCI was 561 
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0.048±0.028, with a 𝑅R	of 0.987. A table that details 𝑅𝑀𝑆𝐸 and 94% HWCI in each of the six 562 

experimental conditions for all 13 observers is available in Supplementary Materials C. 563 

 564 

 565 
Figure 15. Simulated and predicted test-level z-score learning curves in the incongruent (a) and 566 
congruent (b) conditions, and the derived d’ learning curves (c) for simulated observer 13. Data 567 
points represent the simulated learning curves. 568 
 569 

Figure 16 shows scatter plots of the recovered AHRM parameters against their true values in 570 

simulated dataset1. The 𝑅𝑀𝑆𝐸 between the recovered and true AHRM parameters were 0.00019, 571 

0.308, 0.061, 0.017, 0.002, and 0.011 for the learning rate (𝛼), bias strength 	572 

(𝛽), activation function gain (𝛾), decision noise (𝜎0), representation noise (𝜎'), and initial weight 573 

scaling factor (𝑤!1!#), respectively. The 94% HWCI for the recovered parameters were 9e-5±2e-574 

5, 0.091±0.040, 0.012±0.002, 0.005±0.001, 7e-17±2e-17, and 0.007±0.001, respectively. For the 575 

learning rate, bias strength, decision noise, and initial weight scaling factor, the recovered 576 
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parameters exhibited excellent correlations with their true values, with Pearson’s correlation 577 

coefficients of 0.690, 0.956, 0.877 and 0.980, respectively. For activation function gain, the true 578 

values ranged from 0.384 to 0.606, but the recovered values all fell within a narrow range between 579 

0.459 and 0.497, suggesting that the model was not very sensitive to activation function gain. For 580 

representation noise, the true values were in a very narrow range (0.00366 to 0.00371), and the 581 

recovered values were also in a very narrow range (0.00567 to 0.00593), although with a slightly 582 

higher mean. This is because representation noise was very small relative to the external noise in 583 

this experiment; it didn’t have much impact on model performance. Overall, these results indicate 584 

that the HB-ARHM exhibited very good model recovery. 585 

 586 
Figure 16. Scatter plots of the recovered AHRM parameters against their true values in simulated 587 
dataset1. Each panel shows one AHRM parameter and each point represent one simulated 588 
observer. Error bars represent 94% HWCI. 589 
 590 
Model predictions. Figure 17 shows the predicted learning curves of subject 13 with no data, 30 591 

trials of data, 2700 trials of data, and 9600 trials of data. We compared the predictions with the 592 

simulated performance of the subject in simulated dataset1. 593 
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With no data, for the z-score learning curves, the average RMSE was 0.011±0.002 and 594 

0.027±0.009 and the average 94% HWCI was 0.146±0.003 and 0.128±0.068 in the congruent and 595 

incongruent conditions, respectively, with a 𝑅Rof 0.972. For the 𝑑’ learning curves, the average 596 

RMSE was 0.104±0.007 and the average 94% HWCI was 0.193±0.115, with a 𝑅Rof 0.960.  597 

With 300 trials of data, for the z-score learning curves, the average RMSE was 0.018±0.006 598 

and 0.025±0.004 and the average 94% HWCI was 0.098±0.002 and 0.088±0.041 in the congruent 599 

and incongruent conditions, respectively, with a 𝑅R of 0.968. For the 𝑑’  learning curves, the 600 

average RMSE was 0.132±0.016 and the average 94% HWCI was 0.146±0.078, with a 𝑅Rof 0.942.  601 

With 2700 trials of data, for the z-score learning curves, the average RMSE was 0.012±0.004 602 

and 0.022±0.006 and the average 94% HWCI was 0.062±0.002 and 0.055±0.022 in the congruent 603 

and incongruent conditions, respectively, with a 𝑅R of 0.980. For the 𝑑’  learning curves, the 604 

average RMSE was 0.101±0.017 and the average 94% HWCI was 0.084±0.044, with a 𝑅Rof 0.966.  605 

Overall, the HB-AHRM made excellent predictions with no data, 300 trials of data, and 2700 606 

trials of data for simulated observer 13. A table that details RMSE and 94% HWCI in each of the 607 

six experimental conditions is available in Supplementary Materials C. 608 

 609 
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 610 
Figure 17. Simulated and predicted z-score and 𝑑’ learning curves for subject 13 with no data (a), 611 
300 trials of data (b), 2700 trials of data (c), and 9600 trials of data (d). Data points represent the 612 
simulated learning curves for the subject in simulated dataset1. 613 
 614 

DISCUSSION 615 

In this study, we developed the HB-AHRM and new modeling technologies to address the 616 

challenge in fitting the AHRM, a very successful model in visual perceptual learning. A 617 

combination of feature engineering and linear regression provided a high-quality approximation 618 

of the likelihood function. This approach allowed us to drastically reduce the computation time for 619 

fitting the HB-AHRM, estimated to be over 125 days for the dataset in Petrov et al. (2005), which 620 

is practically infeasible. The HB-AHRM produced significantly better fits than the BIP, enabling 621 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.606902doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.08.606902
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

35 

fitting at both the group level with comparable goodness of fit as Petrov et al. (2005), and at the 622 

individual level. In stimulation studies, the HB-AHRM along with the new modeling technologies 623 

demonstrated robust model recovery properties, accurately predicting simulated observer 624 

outcomes with minimal or no initial data.  625 

The AHRM generates trial-by-trial responses based on its parameters and the stimulus 626 

sequence. As the exact external noise image for each trial in Petrov et al. (2005) was unavailable, 627 

we adopted a procedure similar to the original study, sampling from a cache of 1200 expected 628 

activations. The impact of the mismatch with the exact stimulus sequence used in the experiment 629 

appeared to be minimal at the group level due to cross-subject averaging, but it may have 630 

influenced the fits at the individual subject level because each subject in the original study used a 631 

unique random trial sequence. Therefore, it is crucial to accurately record the exact stimulus 632 

sequences in future studies. 633 

Many traditional statistical methods assume homogeneity or complete independence across 634 

subjects and tests. In contrast, hierarchical modeling (HB) integrates heterogeneous information 635 

across multiple levels, using Bayes’ theorem to combine sub-models and probability distributions 636 

from all observed data in a study (Kruschke, 2014; Kruschke & Liddell, 2018; Rouder & Lu, 637 

2005). This yields updated joint posterior distributions of hyperparameters and parameters, 638 

enhancing accuracy compared to methods that treat each individual independently (H. Gu et al., 639 

2016; Kruschke, 2014). Previous studies, including this one, have shown that HBM provides more 640 

precise estimates of parameters of interest compared to traditional methods like the BIP, in 641 

estimating contrast sensitivity functions (Zhao, Lesmes, Hou, & Lu, 2021), visual acuity 642 

behavioral functions (Zhao, Lesmes, Dorr, & Lu, 2021), and learning curves in perceptual learning 643 

(Zhao, Liu, Dosher, & Lu, 2024a, 2024b).  644 
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Moreover, HBM offers a robust framework for predictions, treating to-be-predicted 645 

performance as missing data to compute their posterior distributions based on available 646 

information. Leveraging conditional dependencies across the hierarchy and between- and within-647 

subject covariances, HBM facilitates constructing digital twins and making highly accurate and 648 

reasonably precise predictions (Zhao, Lesmes, Dorr, & Lu, 2024).  649 

This study introduces the concept of likelihood function approximation and demonstrates its 650 

application in fitting the HB-AHRM. This approach may have broader utility in fitting other 651 

stochastic models lacking analytic forms, such as the perceptual template model (Lu & Dosher, 652 

2008), integrated reweighting theory (Dosher et al., 2013), and various response time models 653 

(Ratcliff, Smith, Brown, & McKoon, 2016), as well as complex models that requires extensive 654 

computations to generate predictions, such as the population receptive field model in retinotopic 655 

map studies (Dumoulin & Wandell, 2008). In this particular application, feature engineering and 656 

linear regression were employed to generate the approximate likelihood function. Alternatively, 657 

other methods, including non-linear regression and machine learning, could be utilized to derive 658 

the approximate likelihood function. 659 

In conclusion, we successfully developed and implemented the HB-AHRM using newly 660 

developed modeling technologies. These advancements hold promise for widespread applications 661 

in fitting stochastic models. 662 
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Supplementary Materials A. BIP Results. 

The marginal posterior distributions of parameter θ i1 for subject 6 from the BIP are depicted 

in Figure S1. The mean and 94% half width credible interval (HWCI) of these distributions are 

listed in Table S1.  

 
Figure S1. Marginal posterior distributions of parameter θ i1 for subject 𝑖 = 6 from the BIP. 
 

Table S1. Mean and 94% HWCI of the marginal posterior	distributions of θ61. 
 𝜃6"" 𝜃6"# 𝜃6"$ 𝜃6"% 𝜃6"& 𝜃6"' 

Mean 0.0008 1.91 0.95 0.09 0.054 0.05 

HWCI 0.0001 0.10 0.05 0.00 0.496 0.00 

 

Figure S2 depicts the observed and predicted test-level z-score learning curves in the 

incongruent and congruent conditions, as well as the derived 𝑑’ learning curves from the BIP for 

subject 6. For the z-score learning curves, the average 𝑅𝑀𝑆𝐸 was 0.403±0.092 and 0.389±0.158 

and the average 94% HWCI was 0.039±0.001 and 0.037±0.016 in the congruent and incongruent 

conditions, respectively, with a 𝑅# of 0.535±0.090 across all 13 subjects.   For the 𝑑’ learning 

curves, the average 𝑅𝑀𝑆𝐸 was 0.366±0.057 and the average 94% HWCI was 0.052±0.021, with 

a 𝑅# of 0.604±0.135 across all 13 subjects.  Tables S2 and S3 detail 𝑅𝑀𝑆𝐸 and 94% HWCI in 

each of the six experimental conditions. 
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Figure S2: Observed and predicted test-level z-score learning curves in the incongruent (a) 
and congruent (b) conditions, and the derived d’ learning curves (c) for subject 6.  

 

Table S2. RMSE, 94% HWCI and 𝑅# for the z-score learning curves across 13 subjects (BIP). 
 RMSE HWCI	 R2 
Congruent, low contrast 0.526 

(0.267) 
0.039 

(0.010) 
0.535 

(0.090) 
Incongruent, low contrast 0.261 

(0.040) 
0.021 

(0.007) 
Congruent, medium contrast 0.379 

(0.153) 
0.040 

(0.009) 
Incongruent, medium contrast 0.296 

(0.064) 
0.030 

(0.005) 
Congruent, high contrast 0.304 

(0.039) 
0.038 

(0.007) 
Incongruent, high contrast 0.613 

(0.386) 
0.059 

(0.014) 
 

Table S3. RMSE, 94% HWCI and 𝑅# for the 𝑑’ learning curves across 13 subjects (BIP). 
 RMSE CI of d’ 𝑅2 
Low contrast 0.289 

 
(0.057) 

0.025 
(0.006) 

0.604 
(0.135) Medium contrast 0.383 

(0.102) 
0.054 

(0.009) High contrast 0.425 
(0.073) 

0.077 
(0.008) 
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Figure S3 depicts weight structure evolution over the course of training from the BIP for 

subject 6. For the channels at 2 c/d, the average HWCI of the weights was 0.003 after 300 trials 

of training, 0.004 after 2700 trials of training, and 0.006 after 9300 trials of training. For the 

channels at 4 c/d, the average HWCI of the weights was 0.003 after 300 trials of training, 0.002 

after 2700 trials of training, and 0.002 after 9300 trials of training. 

 
Figure S3. Weight change over time for subject 6 (BIP). Top row: Longitudinal weight 
traces for units tuned to the target frequency (2.0 c/d) and an irrelevant frequency (4.0 c/d). 
Each trace corresponds to a particular orientation. Middle and bottom rows: Cross-sections of 
the weights at 2.0 c/d, 2.8 c/d and 4.0 c/d at the end of each epoch.   
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Supplementary Materials B. Additional HB-AHRM Results. 

Table S4 . Mean and 94% HWCI of the marginal 𝜏𝑖𝑘 distributions (HB-AHRM). 

𝒊 𝝉𝒊𝟏 𝝉𝒊𝟐 𝝉𝒊𝟑 𝝉𝒊𝟒 𝝉𝒊𝟓 𝝉𝒊𝟔 
1 0.0011 

(0.0003) 
1.63 

(0.36) 
0.45 

(0.06) 
0.03 

(0.01) 
0.004 

(0.000) 
0.02 

(0.01) 
2 0.0012 

(0.0003) 
1.88 

(0.42) 
0.47 

(0.07) 
0.10 

(0.03) 
0.004 

(0.000) 
0.10 

(0.03) 
3 0.0017 

(0.0015) 
1.87 

(0.42) 
0.53 

(0.08) 
0.08 

(0.02) 
0.004 

(0.000) 
0.09 

(0.03) 
4 0.0022 

(0.0006) 
1.07 

(0.24) 
0.40 

(0.06) 
0.11 

(0.03) 
0.004 

(0.000) 
0.13 

(0.05) 
5 0.0010 

(0.0003) 
1.98 

(0.45) 
0.35 

(0.05) 
0.10 

(0.03) 
0.004 

(0.000) 
0.15 

(0.05) 
6 0.0012 

(0.0003) 
1.71 

(0.38) 
0.63 

(0.05) 
0.10 

(0.02) 
0.004 

(0.000) 
0.07 

(0.03) 
7 0.0019 

(0.0005) 
0.94 

(0.31) 
0.48 

(0.09) 
0.17 

(0.04) 
0.004 

(0.000) 
0.16 

(0.06) 
8 0.0022 

(0.0006) 
1.92 

(0.43) 
0.42 

(0.07) 
0.09 

(0.02) 
0.004 

(0.000) 
0.11 

(0.04) 
9 0.0018  

(0.0005) 
0.79 

(0.17) 
0.40 

(0.06) 
0.16 

(0.04) 
0.004 

(0.000) 
0.06 

(0.02) 
10 0.0007 

(0.0002) 
1.54 

(0.34) 
0.38 

(0.05) 
0.11 

(0.03) 
0.004 

(0.000) 
0.10 

(0.03) 
11 0.0022 

(0.0016) 
1.88 

(0.32) 
0.47 

(0.06) 
0.09 

(0.02) 
0.004 

(0.000) 
0.14 

(0.05) 
12 0.0014 

(0.0004) 
1.24 

(0.28) 
0.44 

(0.06) 
0.12 

(0.03) 
0.004 

(0.000) 
0.09 

(0.03) 
13 0.0023 

(0.0006) 
1.67 

(0.37) 
0.52 

(0.07) 
0.14 

(0.04) 
0.004 

(0.006) 
0.05 

(0.02) 
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Table S5. Mean and 94% HWCI of the marginal 𝜽𝒊𝒋 distributions (HB-AHRM). 

𝒊 𝜃34(1) 𝜃34(2) 𝜃34(3) 𝜃34(4) 𝜃34(5) 𝜃34(6) 
1 0.0008 

(0.0001) 
1.74 

(0.05) 
0.46 

(0.01) 
0.01 

(0.00) 
0.004 

(0.001) 
0.01 

(0.00) 
2 0.0010 

(0.0001) 
2.30 

(0.13) 
0.49 

(0.01) 
0.11 

(0.00) 
0.004 

(0.001) 
0.11 

(0.01) 
3 0.0018 

(0.0001) 
2.25 

(0.07) 
0.62 

(0.01) 
0.07 

(0.00) 
0.004 

(0.001) 
0.10 

(0.01) 
4 0.0031 

(0.0003) 
0.77 

(0.03) 
0.36 

(0.01) 
0.11 

(0.00) 
0.004 

(0.001) 
0.18 

(0.02) 
5 0.0006 

(0.0001) 
2.61 

(1.14) 
0.27 

(0.01) 
0.09 

(0.00) 
0.004 

(0.091) 
0.24 

(0.01) 
6 0.0009 

(0.0001) 
1.93 

(0.10) 
0.87 

(0.04) 
0.09 

(0.00) 
0.004 

(0.001) 
0.05 

(0.00) 
7 0.0023 

(0.0002) 
0.59 

(0.03) 
0.51 

(0.01) 
0.28 

(0.01) 
0.004 

(0.001) 
0.29 

(0.02) 
8 0.0030 

(0.0003) 
2.45 

(0.11) 
0.37 

(0.01) 
0.09 

(0.00) 
0.004 

(0.001) 
0.13 

(0.02) 
9 0.0021 

(0.0002) 
0.41 

(0.04) 
0.35 

(0.01) 
0.23 

(0.01) 
0.004 

(0.001) 
0.04 

(0.01) 
10 0.0003 

(0.0001) 
1.61 

(1.10) 
0.32 

(0.01) 
0.11 

(0.00) 
0.004 

(0.001) 
0.10 

(0.01) 
11 0.0031 

(0.0002) 
2.36 

(0.06) 
0.48 

(0.01) 
0.07 

(0.00) 
0.004 

(0.001) 
0.20 

(0.02) 
12 0.0012 

(0.0001) 
1.02 

(0.06) 
0.43 

(0.01) 
0.14 

(0.01) 
0.004 

(0.001) 
0.10 

(0.01) 
13 0.0035 

(0.0002) 
1.84 

(0.13) 
0.59 

(0.02) 
0.19 

(0.01) 
0.004 

(0.001) 
0.04 

(0.01) 
 
Table S6. RMSE, HWCI and 𝑅# for the z-score learning curves at the population and test levels. 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

  RMSE HWCI 𝑅2 
Population Congruent, low contrast 0.303 0.069 0.835 

Incongruent, low contrast 0.088 0.029 
Congruent, medium contrast 0.165 0.072 
Incongruent, medium contrast 0.119 0.047 
Congruent, high contrast 0.103 0.071 
Incongruent, high contrast 0.262 0.115 

Test Congruent, low contrast 0.532 
(0.281) 
(0.014) 

0.034 
(0.004) 
(0.004) 

0.533 
(0.093) Incongruent, low contrast 0.268 

(0.043) 
0.018 

(0.007) 
(0.007) 

Congruent, medium contrast 0.377 
(0.152) 
(0.017) 

0.036 
(0.004) 
(0.003) 

Incongruent, medium contrast 0.307 
(0.066) 

0.026 
(0.004) 
(0.004) 

Congruent, high contrast 0.300 
(0.041) 
(0.017) 

0.035 
(0.004) 
(0.003) 
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Table S7. RMSE, HWCI and 𝑅# for the 𝑑’ learning curves at the population and test level.  
  RMSE HWCI 𝑅2 
Population 
 
 
 

Low contrast 0.135 0.043 0.887 
Medium contrast 0.157 0.103 
High contrast 0.305 0.168 

Test 
 
 
 
 
 

Low contrast 0.287 
(0.065) 

0.023 
(0.005) 

0.615 
(0.115) Medium contrast 0.303 

(0.095) 
0.050 

(0.010) High contrast 
 
 

0.418 
(0.060) 

0.075 
(0.010) 
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Supplementary Materials C. Additional Results in the Simulation Study. 

Table S8. Parameters of the Simulated Observers  

𝒊 𝜽𝒊𝟏(𝟏) 𝜽𝒊𝟏(𝟐) 𝜽𝒊𝟏(𝟑) 𝜽𝒊𝟏(𝟒) 𝜽𝒊𝟏(𝟓) 𝜽𝒊𝟏(𝟔) 
1 0.0011 1.48 0.41 0.11 0.004 0.15 
2 0.0014 1.31 0.47 0.11 0.004 0.02 
3 0.0016 1.89 0.52 0.15 0.004 0.08 
4 0.0015 1.02 0.38 0.14 0.004 0.13 
5 0.0012 0.92 0.53 0.16 0.004 0.08 
6 0.0011 1.86 0.46 0.09 0.004 0.13 
7 0.0020 1.79 0.55 0.12 0.004 0.11 
8 0.0012 0.63 0.45 0.09 0.004 0.04 
9 0.0016 1.71 0.58 0.07 0.004 0.06 
10 0.0011 1.75 0.44 0.08 0.004 0.05 
11 0.0013 1.64 0.53 0.10 0.004 0.22 
12 0.0017 1.51 0.43 0.13 0.004 0.04 
13 0.0013 2.34 0.61 0.11 0.004 0.06 

 

Table S9. Mean and 94% HWCI of the η distributions.  
 𝜂(1) 𝜂(2) 𝜂(3) 𝜂(4) 𝜂(5) 𝜂(6) 

Mean 0.0014 1.37 0.48 0.12 0.006 0.08 

HWCI 0.0003 0.08 0.01 0.01 0.000 0.01 
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Table S10. Mean and 94% HWCI of the 𝜏𝑖𝑘 distributions (Simulation study). 

𝒊 𝝉𝒊𝟏 𝝉𝒊𝟐	 𝝉𝒊𝟑	 𝝉𝒊𝟒	 𝝉𝒊𝟓	 𝝉𝒊𝟔	
1 0.0012 

(0.0001) 
1.44 

(0.21) 
0.47 

(0.01) 
0.13 

(0.02) 
0.006 

(0.000) 
0.11 

(0.03) 
2 0.0013 

(0.0001) 
1.37 

(0.21) 
0.47 

(0.01) 
0.12 

(0.01) 
0.006 

(0.000) 
0.05 

(0.02) 
3 0.0014 

(0.0001) 
1.46 

(0.21) 
0.48 

(0.01) 
0.13 

(0.02) 
0.006 

(0.000) 
0.08 

(0.03) 
4 0.0014 

(0.0001) 
1.24 

(0.19) 
0.47 

(0.01) 
0.14 

(0.02) 
0.006 

(0.000) 
0.10 

(0.03) 
5 0.0013 

(0.0001) 
1.13 

(0.16) 
0.47 

(0.01) 
0.14 

(0.02) 
0.006 

(0.000) 
0.09 

(0.02) 
6 0.0013 

(0.0001) 
1.55 

(0.23) 
0.48 

(0.01) 
0.11 

(0.01) 
0.006 

(0.000) 
0.11 

(0.03) 
7 0.0015 

(0.0001) 
1.44 

(1.22) 
0.49 

(0.01) 
0.12 

(0.01) 
0.006 

(0.000) 
0.10 

(0.03) 
8 0.0014 

(0.0001) 
1.06 

(0.15) 
0.47 

(0.01) 
0.13 

(0.02) 
0.006 

(0.000) 
0.08 

(0.02) 
9 0.0015 

(0.0001) 
1.48 

(0.22) 
0.48 

(0.01) 
0.10 

(0.01) 
0.006 

(0.000) 
0.08 

(0.02) 
10 0.0013 

(0.0001) 
1.51 

(0.22) 
0.47 

(0.01) 
0.11 

(0.01) 
0.006 

(0.000) 
0.07 

(0.02) 
11 0.0014 

(0.0001) 
1.46 

(0.22) 
0.47 

(0.01) 
0.11 

(0.01) 
0.006 

(0.000) 
0.14 

(0.04) 
12 0.0014 

(0.0001) 
1.40 

(0.22) 
0.48 

(0.01) 
0.13 

(0.02) 
0.006 

(0.000) 
0.06 

(0.02) 
13 0.0014 

(0.0001) 
1.61 

(0.25) 
0.47 

(0.01) 
0.12 

(0.01) 
0.006 

(0.000) 
0.08 

(0.02) 
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Table S 11.  Mean and 94% HWCI of the 𝜽𝒊𝒋 distributions (Simulation study). 

𝒊 𝜃34(1) 𝜃34(2) 𝜃34(3) 𝜃34(4) 𝜃34(5) 𝜃34(6) 
1 0.0012 

(0.0001) 
1.48 

(0.09) 
0.46 

(0.01) 
0.13 

(0.00) 
0.006 

(0.000) 
0.14 

(0.03) 
2 0.0013 

(0.0001) 
1.33 

(0.09) 
0.47 

(0.01) 
0.12 

(0.00) 
0.006 

(0.000) 
0.03 

(0.03) 
3 0.0014 

(0.0001) 
1.53 

(0.12) 
0.48 

(0.01) 
0.15 

(0.00) 
0.006 

(0.000) 
0.08 

(0.01) 
4 0.0014 

(0.0001) 
1.09 

(0.07) 
0.46 

(0.01) 
0.17 

(0.00) 
0.006 

(0.000) 
0.11 

(0.01) 
5 0.0013 

(0.0001) 
0.88 

(0.05) 
0.47 

(0.01) 
0.16 

(0.01) 
0.006 

(0.000) 
0.08 

(0.01) 
6 0.0013 

(0.0001) 
1.77 

(0.10) 
0.47 

(0.01) 
0.11 

(0.01) 
0.006 

(0.000) 
0.13 

(0.01) 
7 0.0016 

(0.0001) 
1.49 

(0.09) 
0.49 

(0.01) 
0.11 

(0.01) 
0.006 

(0.000) 
0.10 

(0.01) 
8 0.0014 

(0.0001) 
0.80 

(0.04) 
1.48 

(0.01) 
0.14 

(0.00) 
0.006 

(0.000) 
0.07 

(0.01) 
9 0.0017 

(0.0001) 
1.57 

(0.07) 
1.50 

(0.01) 
0.08 

(0.00) 
0.006 

(0.000) 
0.07 

(0.01) 
10 0.0012 

(0.0001) 
1/66 

(0.09) 
0.46 

(0.01) 
0.10 

(0.00) 
0.006 

(0.000) 
0.05 

(0.01) 
11 0.0014 

(0.0001) 
1.51 

(0.07) 
0.48 

(0.01) 
0.11 

(0.00) 
0.006 

(0.000) 
0.22 

(0.01) 
12 0.0014 

(0.0001) 
1/43 

(0.11) 
0.47 

(0.01) 
0.14 

(0.00) 
0.006 

(0.000) 
0.04 

(0.01) 
13 0.0014 

(0.0001) 
1.82 

(0.12) 
0.48 

(0.01) 
0.11 

(0.00) 
0.006 

(0.000) 
0.07 

(0.01) 
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Table S12. RMSE, HWCI and 𝑅! for the z-score learning curves at the population and test levels. 
 

 
 

 
 

 
 
 
 
 
 
 

 
 

Table S13. RMSE, HWCI and 𝑅# for the 𝑑’ learning curves at the population and test levels. 
 

 
 
 

  

  RMSE HWCI 𝑅2 
Population Congruent, low contrast 0.014 0.036 0.994 

Incongruent, low contrast 0.003 0.019 
Congruent, medium contrast 0.015 0.038 
Incongruent, medium contrast 0.006 0.022 

 
 

Congruent, high contrast 0.014 0.036 
Incongruent, high contrast 0.007 0.051 

Test Congruent, low contrast 0.010 
(0.004) 

 
 

(0.003) 

0.033 
(0.002) 
(0.001) 

0.994 
(0.003) Incongruent, low contrast 0.007 

(0.003) 
(0.003) 

0.017 
(0.003) 
(0.003) 

Congruent, medium contrast 0.011 
(0.003) 
(0.002) 

0.035 
(0.002) 
(0.002) 

Incongruent, medium contrast 0.012 
(0.004) 
(0.004) 

0.022 
(0.001) 
(0.001) 

Congruent, high contrast 0.010 
(0.003) 
(0.002) 

0.034 
(0.002) 
(0.002) 

Incongruent, high contrast 0.012 
(0.005) 
(0.003) 

0.052 
(0.015) 
(0.014) 

  RMSE HWCI 𝑅2 
Population Low contrast 0.037 0.021 

 
0.981 

Normal contrast 0.077 0.050 
 High contrast 0.120 0.084 
 Test 

 
 
 
 
 

Low contrast 0.041 
(0.018) 

0.020 
(0.002) 

 
 

0.986 
(0.003) Normal contrast 0.073 

(0.019) 
0.046 

(0.005) 
 

High contrast 
 
 

0.090 
(0.020) 

0.077 
(0.008) 
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Table S14. RMSE, HWCI and 𝑅# for the z-score learning curves in the prediction tasks. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S15. RMSE, 94% HWCI and 𝑅# for the 𝑑’	learning curves in the prediction tasks. 

 
 

 

 

  RMSE HWCI 𝑅2 
No data Congruent, low contrast 0.010 0.142 0.972 

Incongruent, low contrast 0.037 0.076 
Congruent, medium contrast 0.010 0.150 
Incongruent,  medium contrast 0.026 0.089 
Congruent, high contrast 0.014 0.146 
Incongruent, high contrast 0.017 0.218 

300 trials Congruent, low contrast 0.022 0.095 0.968 
Incongruent, low contrast 0.028 0.051 
Congruent,  medium contrast 0.020 0.100 
Incongruent,  medium contrast 0.028 0.072 
Congruent, high contrast 0.012 0.100 
Incongruent, high contrast 0.019 0.142 

2700 trials Congruent, low contrast 0.016 0.060 0.980 
Incongruent, low contrast 0.028 0.042 
Congruent,  medium contrast 0.013 0.063 
Incongruent,  medium contrast 0.023 0.042 
Congruent, high contrast 0.007 0.064 
Incongruent, high contrast 0.014 0.083 

9600 trials Congruent, low contrast 0.014 0.033 0.994 
Incongruent, low contrast 0.009 0.012 
Congruent,  medium contrast 0.012 0.034 
Incongruent,  medium contrast 0.010 0.025 
Congruent, high contrast 0.006 0.034 
Incongruent, high contrast 0.012 0.051 

  RMSE HWCI 𝑅2 
No data Low contrast 0.112 0.077 

 
0.960 

Medium contrast 0.096 0.184 
 High contrast 0.105 0.317 
 300 trials Low contrast 0.132 0.065 
 

0.942 
Medium contrast 0.150 0.146 

 High contrast 0.115 0.226 
 2700 trials Low contrast 0.111 0.038 
 

0.966 
Medium contrast 0.114 0.083 
High contrast 0.078 0.133 

 9600 trials Low contrast 0.059 0.025 
 

0.987 
Medium contrast 0.065 0.055 

 High contrast 0.067 0.081 
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