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Abstract
Background  Thalamic pain, a neuropathic pain syndrome, frequently occurs after stroke. This research aimed to investigate 
the effect of dexmedetomidine (DEX) on thalamic pain.
Methods  The cellular localization of the TLR4 protein was determined by immunostaining. The expression of Iba1, GFAP 
and protein associated with the TLR4/NF-κB/ERK1/2 pathway was measured by Western blotting. Continuous pain hyper-
sensitivity was evaluated by behavioural tests. The results were analysed by one-way ANOVA, two-way ANOVA and Tukey’s 
post hoc test.
Results  The results demonstrated that DEX obviously alleviated thalamic pain induced by haemorrhage on the ipsilateral 
side and delayed the development of pain hypersensitivity. Furthermore, the expression levels of Iba1, GFAP and proteins 
associated with the TLR4/NF-κB/ERK1/2 signalling pathway were greatly increased in mice with thalamic pain, but these 
effects were reversed by DEX.
Conclusion  Our findings suggest that DEX alleviates the inflammatory response during thalamic pain through the TLR4/
NF-κB/ERK1/2 signalling pathway and might be a potential therapeutic agent for thalamic pain.
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Introduction

Currently, stroke, which has very high disability and mor-
tality rates, is one of the most important diseases endanger-
ing human life and health worldwide. Central post-stroke 
pain (CPSP), a chronic neuropathic pain syndrome, is 

often induced by damage to and/or dysfunction of the cen-
tral nervous system following stroke (Widar et al. 2002). 
CPSP occurs in approximately 1–14% of all stroke patients 
(Gritsch et al. 2016). CPSP is usually caused by damage 
to sensory pathways at various levels, such as the cerebral 
cortex, medulla oblongata and thalamus (Vartiainen et al. 
2016). Patients with CPSP commonly experience long-
term hyperalgesia, allodynia, spontaneous pain, and other 
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sensory deficits, in some cases for the rest of their lives. 
Typical CPSP, also called thalamic pain syndrome or Dejer-
ine–Roussy syndrome, refers to central pain caused by tha-
lamic stroke. Thalamic haemorrhage is the main cause of 
CPSP (Klit et al. 2009; Shanthanna 2018). Haemorrhage in 
the ventral posterior lateral (VPL) nuclei, the ventral poste-
rior medial (VPM) nuclei and the posterior (PO) nucleus of 
the thalamus is associated with a high incidence of CPSP. As 
the mechanism of CPSP has not yet been clarified and little 
attention is currently paid to central pain after stroke, the 
effect of drug treatment is not satisfactory, causing patients 
to suffer long-term pain that seriously affects quality of life 
and the ability to work and imposing a heavy burden on 
families and society.

The Toll-like receptor (TLR) family, a family of trans-
membrane pattern recognition receptors, mediates innate 
and adaptive immunity through recognized exogenous 
ligands, pathogen-associated molecular patterns and danger-
associated molecular patterns (Akira et al. 2006). Toll-like 
receptor 4 (TLR4), the expression of which correlates with 
the prognosis of cerebral haemorrhage, plays a key role in 
the innate immune system and neuropathic pain (Zhang et al. 
2018a, b; Piao et al. 2018). Inhibition of the TLR4/NF-κB 
signalling pathway alleviates cerebral damage and reduces 
brain water content after cerebral haemorrhage (Zhang et al. 
2018a, b; Lan et al. 2017). Studies have also shown that 
inhibition of TLR4 can alleviate neuropathic pain associ-
ated with spinal cord injury (Chen et al. 2017) and periph-
eral neuropathic pain (such as post-operative pain and pain 
related to diabetic nerve injury) (Luo et al. 2018). However, 
whether the TLR4/NF-κB signalling pathway is related to 
thalamic pain is unknown.

Dexmedetomidine (DEX) is a novel selective α2 adren-
ergic receptor agonist. Excitation of α2 adrenergic receptors 
results in sedation, analgesia, and inhibition of sympathetic 
nerve activity through different signalling pathways (Mikami 
et al. 2017). A previous study suggested that DEX can exert 
analgesic effects against spinal cord injury-related neuro-
pathic pain and peripheral neuropathic pain and that its anal-
gesic effect increases with increasing dose. In addition, DEX 
can also reduce the dose of tramadol required to alleviate 
acute pain and neuropathic pain (Guneli et al. 2007). DEX 
can reduce sympathetic nerve excitability and ameliorate 
the neurological and histopathological alterations after cer-
ebral ischaemic injury in rats. Interestingly, this effect can 
be reversed by α2 receptor antagonists (Sanders et al. 2005). 
Researchers have also found that DEX protects the brain to 
different degrees in animal models, such as a rabbit model 
of cerebral ischaemia/reperfusion injury (Maier et al. 1993) 
and a rat model of brain injury (Benggon et al. 2012). Degos 
et al. (2013) found that DEX can directly protect neuronal 
cells in studies of glutamate-mediated neuro-cytotoxicity. 
In addition, studies have revealed that DEX downregulates 

the expression of TLR4, a component of the central pro-
inflammatory system, and upregulates the expression of 
the central anti-inflammatory system component nicotinic 
receptor a7nAChR, inhibiting the inflammatory response 
after injury (Rong et al. 2017). However, it is currently 
unknown whether DEX can alleviate CPSP caused by tha-
lamic haemorrhage. In this study, a model of CPSP induced 
by thalamic haemorrhage was established, and the effect of 
DEX was observed.

Materials and methods

Animals

The study was approved by the Animal Care and Use Com-
mittee of the Medical College of Yangzhou University 
(Yangzhou, China) and conformed to the guidelines for ani-
mal care and use formulated by the Chinese government. 
Male CD1 mice aged approximately 7–8 weeks were pur-
chased from the Comparative Medical Center of Yangzhou 
University, and housed in animal facilities. They were main-
tained on a 12-h light/dark cycle and provided free access 
to water and food pellets. All experiments were approved 
by the Animal Care and Use Committee of Yangzhou Uni-
versity and the International Association for Pain Research. 
To reduce variability in behavioural outcomes within and 
between individuals, the animals were trained in advance. 
The experimenter that performed the behavioural tests was 
blinded to the treatment conditions.

Animal model of haemorrhage‑induced thalamic 
pain

Anaesthetized animals were placed in a stereotaxic frame. 
Collagenase IV (Coll IV) (Sigma-Aldrich Co., St. Louis, 
MO; 0.01 U/10 nl) dissolved in saline solution was injected 
stereotaxically (Cai et al. 2018) into the VPM and VPL of 
the right thalamus of the mice (AP: − 0.82 to 2.30 mm, ML: 
− 1.30 to 1.95 mm from bregma and DV: − 3.01 to 4.25 mm 
below the dura into the right striatum). An equal volume of 
sterile saline was injected into the sham mice. After injected, 
the glass micropipette was kept in placed for 10 min to allow 
the Coll IV to completely disperse. Then, the glass micro-
pipette was slowly removed. The wound was closed gently 
and cleaned with iodophor.

Behavioural tests

Pain behaviour tests, including tests of mechanical, thermal 
and cold pain, were conducted.

First, the paw withdrawal latency in response to mechani-
cal stimulation was measured (Li et al. 2017). The mice were 
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placed in a plexiglass chamber with an elevated screen floor 
and allowed to adapt to the chamber for 30 min. The poste-
rior limbs were stimulated for 1–2 s with 0.07 g and 0.4 g 
calibrated von Frey filaments (Stoelting Co.). The process 
was repeated 10 times at 5-min intervals. Quick withdrawal 
of the paw was considered a positive response. The paw 
withdrawal frequency was calculated as follows: (number of 
paw withdrawals/10 trials) × 100% = response frequency).

Next, an analgesia metre (model 336; IITC Inc. Life Sci-
ence Instruments, Woodland Hills, CA) was used to measure 
the paw withdrawal latency as described previously (Li et al. 
2015, 2017; Xu et al. 2014). A beam of light was delivered 
by the instrument and directed at the middle of the posterior 
paw of the mouse on the glass plate. Rapid withdrawal of 
the paw caused the beam of light to turn off. The duration 
for which the beam stimulated the paw was recorded as the 
paw withdrawal latency. Five trials were conducted for each 
side at an interval of 5 min. A cut-off time of 20 s was used 
to avoid tissue damage.

In addition, the paw withdrawal latency in response to a 
harmful cold stimulus (0 °C) was measured using a cold alu-
minium plate as described previously (Li et al. 2015, 2017; 
Xu et al. 2014). Briefly, mice were placed in a plexiglass 
chamber on a flat plate, the temperature of which was con-
tinuously monitored using a thermometer. The amount of 
time until the mice began jumping was recorded as the paw 
withdrawal latency. The experiment was carried out three 
times at an interval of 10 min.

After completion of the pain behaviour tests, motor func-
tion tests, including placement, grip and righting reflex tests, 
were performed as described previously (Li et al. 2017). 
For the placement reflex test, the hind limbs were placed 
slightly lower than the forelimbs, and the dorsal surface of 
the hind paws was brought into contact with the edge of 
the table. Whether the hind paws were reflexively placed 
on the table surface was recorded. For the grip reflex test, 
each mouse was placed on a wire grid, and whether the hind 
paws grasped the wire was recorded. For the righting reflex 
test, each mouse was placed on its back on a flat surface, and 
whether the mouse immediately returned to a normal upright 
position was recorded. Each test was repeated five times at a 
5-min interval, and scores were recorded by calculating the 
number of normal responses.

Western blot assay

Western blotting was performed as described in our pre-
viously published study (Huang et al. 2020). The protein 
concentration of each sample was measured using a BCA 
Protein Assay Kit, and then the samples were heated for 
5 min at 99 °C. Next, 30 µg of protein was loaded in each 
well of a 10% polyacrylamide gel, and then the proteins 
on the gel were transferred to a polyvinylidene fluoride 

membrane. The PVDF membrane was incubated in 5% 
skimmed milk for 1 h, washed and incubated overnight at 
4 °C with the following primary antibodies: rabbit anti-
TLR4 (Cell Signaling Technology (CST); 1:1000), rab-
bit anti-phospho-p44/42 MAPK (Erk1/2) (CST; 1:2000), 
rabbit anti-p44/42 MAPK (Erk1/2) (CST; 1:2000), rab-
bit anti-phospho-NF-κB p65 (CST; 1:1000), rabbit anti-
NF-κB p65 (CST; 1:1000), rabbit anti-Iba1 (FUJIFILM 
Wako Chemicals; 1:500), mouse anti-GFAP (CST; 1:2000) 
and rabbit anti-GAPDH (CST; 1:5000) followed by perox-
idase-conjugated goat anti-mouse or anti-rabbit secondary 
antibodies (1:3000; Jackson ImmunoResearch) and a per-
oxidase-conjugated donkey anti-goat secondary antibody 
(1:2000; Jackson ImmunoResearch). Finally, the proteins 
were visualized using Western peroxide reagent and Clar-
ity Western ECL Substrate (Bio-Rad) and the ChemiDoc 
XRS system (Bio-Rad) with Image Lab software. NIH 
ImageJ software was used to quantify the intensity of the 
bands by measuring the optical density.

Immunofluorescence

The mice were anaesthetized with isoflurane and then 
perfused with 50–100 ml of physiological saline and 4% 
paraformaldehyde. The harvested brains were post-fixed 
in 4% paraformaldehyde overnight at 4 °C and dehydrated 
in 30% sucrose until they sank to the bottom of the con-
tainer. Selected tissues were sliced into sections with a 
thickness of 30 µm. After blocking, these slices were incu-
bated with primary antibodies, including a mouse anti-
TLR4 antibody (Santa Cruz Biotechnology Inc; 1:50), a 
mixture of mouse anti-TLR (1:50) and rabbit anti-NeuN (a 
marker of neurons) (Invitrogen/Thermo Fisher Scientific; 
1:500) antibodies, a rabbit anti-GFAP antibody (a marker 
for astrocytes) (Millipore Sigma, Burlington; 1:500), and 
a rabbit anti-Iba1 antibody (a marker of microglia) (FUJI-
FILM Wako Chemicals; 1:1000) overnight at 4 °C. Then, 
the sections were washed and incubated with secondary 
antibodies, including Cy2-conjugated donkey anti-mouse 
IgG Cy2 alone or a mixture of Cy2-conjugated donkey 
anti-mouse IgG and Cy3-conjugated goat anti-rabbit 
IgG, at room temperature for 1 h. All secondary antibod-
ies were purchased from Jackson ImmunoResearch Labs 
(1:500). For control experiments, the primary antibody 
was replaced with normal mouse, rabbit, or goat serum. 
Finally, the sections were incubated with 4′,6-diamidino-
2-phenylindole (DAPI) at room temperature for 15 min 
and mounted using VectaMount reagent (Vector Labora-
tories, Burlingame, CA). All images were captured with a 
Leica DMI4000 fluorescence microscope and DFC365FX 
camera. Single- and double-labelled cells were counted 
manually or using NIH ImageJ software.
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Statistical analysis

The animals were randomly assigned to various treatment 
groups. All the results are expressed as means ± SDs. The 
results were analysed by one-way ANOVA and two-way 
ANOVA. If ANOVA revealed a significant difference, a 
pairwise comparison of the mean values was performed 
using Tukey’s post hoc test (SigmaPlot 12.5, San Jose, CA). 
P < 0.05 was considered significant.

Results

The expression of TLR4 is increased after thalamic 
haemorrhage

To evaluate pain hypersensitivity in the context of haem-
orrhage-induced thalamic pain, we measure the paw with-
drawal frequencies of mice micro-injected with Coll IV into 
the VPM and VPL. Consistent with previous studies (Cai 
et al. 2018), the paw withdrawal frequencies in response to 
0.07 g and 0.4 g von Frey filaments were markedly increased, 

proving that Coll IV induced long-lasting mechanical allo-
dynia (Fig. 1a, b). The ipsilateral paw withdrawal latencies 
in response to heat (Fig. 1c) and cold (Fig. 1d) stimuli were 
significantly decreased, showing that heat and cold hyper-
algesia occurred 1 day after microinjection of Coll IV and 
lasted for at least 14 days (Fig. 1a–d). However, the basal 
contralateral paw withdrawal responses were not signifi-
cantly different (Supplementary Fig. 1a–c).

To confirm the function of TLR4, we evaluated the 
expression level of TLR4 in the thalami of mice with 
haemorrhage-induced thalamic pain after micro-injection 
of Coll IV (Cai et al. 2018). The expression level of TLR4 
was persistently increased by 1.8-, 1.9-, 2.0- and 2.3-fold on 
days 1, 3, 7 and 14 after unilateral Coll IV microinjection, 
respectively, in the ipsilateral thalamus compared with the 
contralateral thalamus (Fig. 1e, f). Consistently, immunoflu-
orescence staining with TLR4 antibodies showed that TLR4 
immunoreactivity in the ipsilateral thalamus was weak in 
the saline-treated group (Fig. 1g); however, the density of 
TLR4-labelled cells was robustly increased by 12-fold on 
day 7 after microinjection of Coll IV (Fig. 1g, h). A double-
labelling assay showed that the majority of the TLR4 signal 
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Fig. 1   TLR4 expression was increased during thalamic pain. Micro-
injection of Coll IV into the ventral posterior medial nuclei and ven-
tral posterior lateral nuclei led to increases in paw withdrawal fre-
quencies in response to 0.07 g (a) and 0.4 g (b) von Frey filaments 
and decreases in the paw withdrawal latencies in response to stimula-
tion of the ipsilateral side with heat (c) and cold (d) stimuli. n = 8. 
**P < 0.01 vs. the contralateral thalamus (e, f). Protein expression of 
TLR4 in the ipsilateral (Ipsi) and contralateral (Contra) thalamus on 
different days after microinjection of Coll IV. A representative West-
ern blot (e). Statistical analysis of the densitometry data (f). n = 3. 

*P < 0.05 vs. the contralateral thalamus. Repeated paw withdrawal 
frequency and latency measurements and Western blot data were ana-
lysed by two-way ANOVA followed by Tukey’s post hoc test. (g, h) 
TLR4 immunofluorescence staining of the ipsilateral thalamus on day 
7 after microinjection of Coll IV or saline. Representative immuno-
fluorescence staining. Scale bar: 100 µm (g). Statistical analysis of the 
densitometry data (h). n = 3. **P < 0.01 vs. the saline-treated group 
by two-tailed unpaired Student’s t test. i TLR4 was co-localized with 
Iba1 and NeuN but not GFAP in the ipsilateral thalamus on day 7 
after microinjection of Coll IV. n = 3. Scale bar: 100 µm
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in thalamic cells overlapped with the Iba1 signal (a marker 
of microglia) and that a small amount of the TLR4 signal in 
thalamic cells overlapped with the GFAP signal (a marker of 
astrocytes) and NeuN signal (a marker of neurons) on day 7 
after Coll IV microinjection (Fig. 1i). This result indicated 
that TLR4 expression was increased mainly in microglia.

Intraperitoneal (IP) administration 
of DEX attenuates the development 
of haemorrhage‑induced thalamic pain

We determined whether IP administration of DEX attenu-
ated the development of haemorrhage-induced thalamic 
pain. DEX or vehicle was administered intraperitoneally 
30  min before microinjection of Coll IV or saline and 

once daily for 5 days thereafter. Then, pain behaviour tests 
were performed on days 1, 3 and 5. As expected, mechani-
cal allodynia, thermal hyperalgesia and cold hyperalgesia 
were observed on the contralateral (but not the ipsilateral) 
side in the vehicle plus Coll IV-treated group on days 1, 
3 and 5 after Coll IV microinjection. These forms of pain 
hypersensitivity were significantly attenuated in Coll IV-
microinjected mice administered 40 μg/kg DEX. (Fig. 2a–d). 
These effects were dose-dependent (Fig. 3a–d). DEX did not 
change the basal ipsilateral paw withdrawal frequency or 
latency in the DEX + Coll IV-treated group (Supplementary 
Fig. 2a–c) or the contralateral (Fig. 2a-d) or ipsilateral (Sup-
plementary Fig. 2a–c) basal ipsilateral paw withdrawal fre-
quency or latency in the DEX + saline-treated group. Vehi-
cle did not influence the basal paw withdrawal frequency or 
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injection of Coll IV or saline. n = 8. Two-way repeated measures 
ANOVA followed by Tukey’s post hoc test. **P < 0.01 vs. day − 1. 
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latency in the saline-treated group (Fig. 2a–d; Supplemen-
tary Fig. 2a–c). After treatment, the locomotor activity of 
the mice recovered (Table 1).

The effect of DEX (40 μg/kg) on haemorrhage-induced 
thalamic pain maintenance was observed. After microin-
jection of Coll IV on day 1, robust mechanical allodynia 
and thermal heat and cold hyperalgesia developed (Fig. 4). 
Systemic administration of DEX (40 μg/kg) significantly 
ameliorated these forms of pain hypersensitivity on the 

ipsilateral side, but mechanical allodynia and thermal and 
cold hyperalgesia were observed in the vehicle-treated group 
on days 3 and 5 after microinjection of Coll IV (Fig. 4a–d). 
In addition, neither DEX nor vehicle altered the basal con-
tralateral paw withdrawal responses (Fig. 4a–d).

TLR4 activates the NF-κB and ERK1/2 pathways in tha-
lamic microglial cells, and DEX attenuates haemorrhage-
induced thalamic pain by inhibiting the TLR4/NF-κB/
ERK1/2 signalling pathway.

Finally, we explored the mechanism by which DEX attenu-
ates haemorrhage-induced thalamic pain development. The 
expression level of TLR4 in the ipsilateral thalamus was 
increased by 2.5-fold in the vehicle + Coll IV-treated group 
compared with the vehicle + saline-treated group (Fig. 5a). 
However, the expression level of TLR4 was not increased in 
Coll IV + DEX-treated mice (Fig. 5a). Consistent with previ-
ous studies (Huang et al. 2020; Hanada et al. 2014), the expres-
sion levels of Iba1 and GFAP in the ipsilateral thalamus were 
remarkably increased in vehicle-treated mice on day 5 after 

10

25

40

55

70

-1 1 3 5

Pa
w

 w
ith

dr
aw

al
 fr

eq
ue

nc
y 

(%
)

0.07 g 
Mechanical

a

Days after Coll IV/saline injection
30

45

60

75

90

-1 1 3 5

Coll IV+vehicle Coll IV+DEX 10μg

Coll IV+DEX 20μg Coll IV+DEX 40μg

Days after Coll IV/saline injection

Pa
w

 w
ith

dr
aw

al
 fr

eq
ue

nc
y 

(%
)

0.4 g 
Mechanical

b

**

* *

**
**

**

**

**
** **

* *

4

8

12

16

-1 1 3 5
Days after Coll IV/saline injection

Pa
w

 w
ith

dr
aw

al
 la

te
nc

y 
(s

) Thermal
c

** **
***

*
*

6

10

14

18

22

-1 1 3 5
Days after Coll IV/saline injection

d

Pa
w

 w
ith

dr
aw

al
 la

te
nc

y 
(s

)

Cold

**
** **

**
**

**

Fig. 3   Dose-dependent effect of DEX on thalamic pain development. 
Effect of pre-administration of DEX [0 (vehicle), 10, 20, and 40 μg/
kg] on paw withdrawal frequencies in response to 0.07 g (a) and 0.4 g 
(b) von Frey filaments and paw withdrawal latencies in response to 

heat (c) and cold (d) stimuli on days 1, 3 and 5 after microinjection 
of Coll IV. n = 8. Two-way repeated measures ANOVA followed by 
Tukey’s post hoc test. *P < 0.05 and **P < 0.01 vs. the Coll IV plus 
vehicle-treated group

Table 1    Locomotor tests

N = 8/group; 5 trials; mean (SD)

Treated group Placing Grasping Ringhting

Saline + vehicle 5 (0) 5 (0) 5 (0)
Coll IV + vehicle 5 (0) 5 (0) 5 (0)
Coll IV + DEX 5 (0) 5 (0) 5 (0)
Saline + DEX 5 (0) 5 (0) 5 (0)
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microinjection of Coll IV, which demonstrated that microglia 
and astrocytes were activated (Fig. 5a). The increases in the 
expression levels of Iba1 and GFAP in Coll IV-treated mice 
were attenuated by systemic pre-treatment with DEX by IP 
injection (Fig. 5a). Furthermore, the NF-κB and ERK path-
ways were activated by Coll IV microinjection, as indicated 
by the increase in the expression of nuclear phosphorylated 
p65 (p-p65), nuclear p65 (He et al. 2020), phosphorylated 
ERK1/2 (p-ERK1/2) and ERK1/2 in the ipsilateral thalamus 
in vehicle-treated mice on day 5 after microinjection of Coll 
IV (Fig. 5b, c). However, systemic pre-treatment with DEX 
reversed these effects of Coll IV microinjection (Fig. 5b, c). 
However, the expression levels of total p65 and total ERK1/2 
in the ipsilateral thalamus did not change (Fig. 5b, c).

Discussion

Microinjection of Coll IV into the unilateral VPL and 
VPM of the murine thalamus leads to long-lasting pain 
hypersensitivity, including mechanical allodynia, thermal 
hyperalgesia and cold hyperalgesia on the contralateral 
side, mimicking thalamic pain caused by haemorrhagic 
stroke in humans (Kuan et al. 2015). However, the mecha-
nisms underlying pain hypersensitivity development are 
still not clear. This study suggested that Coll IV increased 
the expression level of TLR4, which participates in the 
induction and maintenance of pain hypersensitivity, likely 
through the NF-κB and ERK1/2 signalling pathways in 
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Fig. 4   Effect of DEX on thalamic pain maintenance. DEX (40 μg/kg) 
or vehicle was given 1  day after Coll IV microinjection once daily 
for 5 days. Effect of DEX or vehicle on paw withdrawal frequencies 
in response to 0.07 g (a) and 0.4 g (b) von Frey filaments and paw 
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thalamic microglia. Furthermore, DEX administration 
decreased the expression levels of proteins related to the 
TLR4/NF-κB/ERK1/2 signalling pathway and reduced 
microglial activation. Our findings suggest that DEX may 
have therapeutic efficacy against haemorrhage-induced 
thalamic pain.

Current research on the pathogenesis of CPSP mainly 
focuses on neuro-inflammation, disinhibition and central 
sensitization. With extensive research on neuro-inflamma-
tion in the field of neurology, the role of neuro-inflamma-
tion in the mechanism of CPSP has become increasingly 
clear. The development of neuro-inflammation is thought 
to be related to microglia, astrocytes, and oligodendrocytes 
in the nervous system. Previous studies have revealed that 
in stroke, neuro-inflammation can cause secondary brain 
damage through activation of glial cells, which induces 
neuronal death, promotes the release of inflammatory 
cytokines, and leads to CPSP (Yang et al. 2017a, b). As 
innate macrophages and the smallest glial cells, microglia 
are distributed throughout the brain and account for approxi-
mately 5–10% of all glial cells. Microglia have become the 
focus of pain interventions. Recent research shows that glial 
cells and immune cells regulate the occurrence, develop-
ment and maintenance of chronic pain through a variety of 

mechanisms, such as neuro-inflammation and glial crosstalk 
(Yang et al. 2014). Our study revealed that excessive activa-
tion of microglia after thalamic haemorrhage may lead to 
the occurrence of CPSP, which is consistent with the results 
of previous studies (Yang et al. 2017a, b; Lu et al. 2018).

TLR4 in the thalamus can be activated in response to 
haemorrhagic stroke, but its specific role in CPSP is unclear. 
Some studies have suggested that TLR4 plays a crucial role 
in other forms of neuropathic pain (Bettoni et al. 2008), 
including neuropathic pain caused by spinal cord injury 
(Ellis et al. 2016), hyperalgesia induced by opioids (Wat-
kins et al. 2009), pain resulting from sciatic nerve com-
pression (Luo et al. 2018), and postoperative pain (Kawano 
et al. 2016). After TLR4 is knocked out, pain is significantly 
relieved. TLR4 induces the development and maintenance 
of neuropathic pain, mainly by activating microglia and 
increasing the expression levels of the pro-inflammatory 
factors IL-1β and TNFα and the early-pain-mediator brain-
derived nerve growth factor (BDNF) (Rodriguez-Yanez 
et al. 2012). Therefore, antagonizing the TLR4 signalling 
pathway might be a potential therapeutic strategy for tha-
lamic pain. This study focused on whether TLR4-mediated 
neuro-inflammation is involved in central pain after stroke. 
The results of the study showed that the expression of TLR4, 
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NF-κB and p-ERK1/2 at the edge of the thalamic lesion 
was increased in the CPSP group compared with the sham 
group, suggesting that the TLR4/NF-κB/ERK1/2 signalling 
pathway might be associated with pain.

DEX, a centrally selective α2 adrenergic receptor ago-
nist, exerts good anxiolytic, sedative and analgesic effects 
(Cappuccio et  al. 2018). DEX can produce analgesic 
effects in multiple sites, such as the rat brainstem, indi-
cating that DEX can act on pain centres outside the spi-
nal cord (Anger 2013). Kobayashi et al. (2011) found that 
intrathecal DEX administration has an anti-allodynic effect 
in a rat pain model. Liu et al. (2012) reported that systemic 
administration of DEX attenuates thermal and mechani-
cal hyperalgesia in a partial sciatic nerve ligation (PSNL) 
model. In this study, pre-treatment with DEX significantly 
reduced pain hypersensitivity in mice with thalamic pain. 
The analgesic effect of DEX is dose-dependent. Moreover, 
our research also revealed that the administration of DEX 
in the maintenance phase of thalamic pain ameliorated 
pain hypersensitivity in mice with thalamic pain.

DEX can directly or indirectly act on neurons through 
microglia and astrocytes to exert its neuroprotective effect 
(Gupta et al. 2018). In our research, we found that DEX 
inhibited the activation of microglial cells. In addition, 
DEX pre-treatment can alleviate myocardial ischaemia/
reperfusion injury in rats by inhibiting inflammatory 
processes through the TLR4/NF-κB signalling pathway 
(Yang et al. 2017a, b). In our study, the expression levels 
of proteins related to the TLR4/NF-κB/ERK1/2 signal-
ling pathway were significantly increased, while DEX 
reversed these effects, indicating that DEX inhibits the 
TLR4/NF-κB/ERK1/2 pathway in a thalamic pain model.

Conclusion

Our study revealed the effect of DEX on thalamic pain for 
the first time. The results showed that DEX alleviated the 
pain sensitivity in the context of thalamic pain. Addition-
ally, DEX reduced the inflammatory response and the acti-
vation of glial cells, possibly through the TLR4/NF-κB/
ERK1/2 signalling pathway.
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