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Geospatial epidemiology has a long history. From Snow’s
[1] famous investigation of the 1854 cholera outbreak in
London to today, observing diseases in relation to people,
place, and time has been essential for understanding and
responding to epidemics. In 2016, the response to HIV/
AIDS sustained more than 17 million people worldwide
on lifesaving antiretroviral treatment [2]. Yet in the
current era of falling donor support [3] and with
governments of low-income countries needing to
balance many spending priorities, it is vital to maximize
the impact and efficiency of the AIDS response. National
and international stakeholders have increasingly sup-
ported geospatial targeting of resources as a means to
accomplish this [4–6], and the challenge for program
designers has become how best to link the ‘who’ and
‘where’ with the ‘what’ and ‘when’. However, a key
question is whether geospatial efforts ultimately translate
into more effective interventions to reduce HIV
incidence. We contend here that geospatial analysis has
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indeed delivered some successes thus far, but that the gap
between academic studies and the needs of policy-setters
must be narrowed if its full potential is to be realized.

Until recently, data limitations meant that intervention
policies were designed under an assumption of homoge-
neous HIV epidemics. But with improvements in data
availability and sophistication, it is now well established
that the HIV epidemic and its drivers are highly
heterogeneous, with studies confirming spatial variation
between provinces [7], districts [8,9], and at finer scales
[10–14] in sub-Saharan Africa. Even in generalized HIV
epidemics, incidence may be concentrated in certain
regions or population groups, such as slums in Kenya,
periurban regions of South Africa, and fishing commu-
nities in Uganda [15]. Policies that fail to account for such
heterogeneity are inherently biased and will leave some
places and populations underserved, limiting overall
effectiveness and equity.
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Geospatial analysis exploits spatiotemporal information
by integrating it into traditional classification and
regression techniques to predict surfaces at a variety of
spatial resolutions. This requires describing the factors
underpinning patterns observed in sparse data, with
geographic information leveraged from multiple sources
(ranging from satellite imagery to expert opinion)
alongside structured spatiotemporal correlations. Gauss-
ian processes and other shrinkage estimators enable
geospatial methods to both uncover the drivers of
transmission and generalize accurately to new unseen
data, and embedding these methods in a Bayesian
statistical framework allows for rigorous treatment of
uncertainty. Moreover, the methods can be synthesized
with mechanistic representations of epidemic dynamics –
including transmission – to place epidemiological
constraints on the underlying functional process. Table
1 gives a brief overview of important methods for
geospatial analysis, with examples of applications and
findings in the setting of sub-Saharan Africa.

Geospatial analysis holds great potential for improving
the efficiency of both a single program at a given level of
spending (economic efficiency) and the allocation of
limited funds across several programs (allocative effi-
ciency). The specific aim of a geospatial analysis could be,
for example, to help target HIV testing to the subnational
units (e.g. districts) with the highest HIV burden or
prevalence in a country, or to explore how prevention
interventions can be combined in different locations and
populations for maximum cost-effectiveness under
national [28] or continental [29] spending limitations.
A recent spatial regression of HIV in South Africa [20]
showed that high-prevalence districts had several factors
in common (including an unfavorable sex ratio, low
socioeconomic status, and intergenerational sex), illus-
trating the importance of such factors for guiding
programs and calling attention to the need for more
local-level data collection and analysis. A study of layered
maps of HIV prevalence and demographic factors at fine
resolution in Lesotho [21] revealed that United Nations
Programme on HIV/AIDS targets for treatment cover-
age may be hindered or even rendered infeasible by high
spatial population dispersion in rural areas. New mapping
efforts aiming to characterize HIV prevalence at very
high resolution in multiple countries in sub-Saharan
Africa [19] could provide essential information for
strategic resource targeting. However, these high-
resolution maps are constrained by data scarcity, with
community surveillance data not always available.
Additional data sources for mapping the risk of HIV
infection, such as population prevalence of detectible
viremia [22], routinely collected clinic-based antenatal
HIV prevalence data (DF Cuadros, personal communi-
cation), and HIV sero-discordant couples [23], are thus
being evaluated. All available data, including from new
sources where possible, should be incorporated in
geospatial analysis.
Much existing literature has been dedicated to improving
the accuracy of geospatial modeling, often by prioritizing
model complexity over ease or speed of analysis.
However, this has left a gap between the modeling and
its relevance to real-world policy change. A major
challenge for geospatial analysis is now: What is the
appropriate spatial resolution? This question must be
answered at three stages during any analysis if the gap
between theory and application is to be bridged.

First, geospatial modeling requires the integration of a
variety of data sources at different levels of resolution and
spatial locations. For example, data on HIV prevalence
and risk behaviors may be available from national surveys,
such as the Demographic and Health Surveys (DHS)
(Fig. 1), whereas program data on the provision of
antiretroviral therapy may be available only from selected
clinics with access to an electronic monitoring system.
Moreover, high-risk subpopulations – particularly
mobile individuals and migration patterns – could be
underrepresented by population-based samples such as
DHS, and the contribution of these core groups to the
spatial structure of HIV may be missed, although the
impact of such undersampling on maps of generalized
epidemics is not yet clear. The granularity of input data
may have an effect on model predictions that dominates
any other factors. In a recent comparison of six geospatial
methods for modeling HIV, the Subnational Working
Group of the HIV Modelling Consortium [30] found that
the accuracy of model predictions and the magnitude of
model error depended more on country-specific HIV
prevalence estimates and the type of survey sample from
which data were drawn, and less on the analytical method
used. With the continual generation of new data, it is
becoming essential to have a geospatial framework that
can integrate multiple data sources, making sure that no
single data source overwhelms the others or biases the
signal.

Second, the granularity of model results must be
appropriate for the administrative and decision structures
of the country or countries of interest, as well as their
monitoring and evaluation capacity (e.g. refer to Fig. 2).
Otherwise, results may be produced, for example, at the
provincial level for reasons of data availability when
budgetary responsibility for HIV programs lies at the
district or facility level. However, the precision and
accuracy of estimates becomes limited at smaller scales,
and whereas model results can easily be aggregated to
higher administrative levels, it is much more difficult
to disaggregate results to lower levels without recourse to
additional data manipulation, which is often based on
weaker evidence than what was included in the model. A
balance must therefore be struck between politics, data
availability, and the reliability of the analytical method. A
further mismatch may occur between modeling results
and coverage targets for interventions set by program
planners or international funding bodies. Extrapolation
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Table 1. Methods for geospatial analysis with (nonexhaustive) examples of applications and findings.

Method Reference
Geographical unit
and location Key findings

Spatial interpolation
methods

Zulu et al. [16] Subnational (district) level in
Malawi

An application of inverse distance weighting suggested
that intervention strategies should emphasize
improved access to health/HIV services, basic
education, and syphilis management, particularly in
rural hotspot districts

Messina et al. [17] Subnational (second
administrative) level in
the Democratic Republic
of Congo

Inverse distance weighting highlighted the importance of
improved surveillance systems in Democratic
Republic of Congo and the use of spatial analytical
methods for understanding the determinants of HIV
infection and geographic patterns of prevalence

Larmarange and
Bendaud [18]

Subnational level in six
countries in sub-Saharan
Africa

Kernel density estimates were developed with the aim to
help countries better understand their HIV epidemics
and inform programing at lower geographical levels

Cuadros et al. [19] National level in four
countries in sub-Saharan
Africa

A method was presented for generating high-resolution
maps of international HIV prevalence based on Kriging
interpolation of spatial variables

Spatial statistics Wabiri et al. [20] District level in South Africa High HIV prevalence districts have very homogeneous
population defined by unfavorable sex ratio (high
proportion of females), low socioeconomic status,
being single, having multiple sexual partners, and
intergenerational sex

Coburn et al. [21] Local level in Lesotho United Nations Programme on HIV/AIDS targets for
treatment coverage may be infeasible for highly
spatially dispersed rural populations

Tanser et al. [22] Micro-geographical level in
South Africa

Despite clear evidence of spatial clustering of high viral
loads in some communities, commonly-used
population viral load (PVL) metrics did not predict
prospective HIV incidence. Only combining viral load
information with the underlying spatial variation in the
proportion of the population infected was found to
have a consistently strong relationship with HIV
incidence

Cuadros and Abu-
Raddad [23]

National level in several
countries in sub-Saharan
Africa

Spatial clusters of HIV sero-discordancy overlap with
those for HIV prevalence and are not distinct in sub-
Saharan Africa

Tanser et al. [24] Microgeographical level in
South Africa

Clear ‘corridors of transmission’ were identified where
new HIV infections were clustered. Though these
clusters comprise just 6.8% of the study area, they
account for one out of every four sero-conversions
observed over the study period

Bayesian geoadditive
models

Ngesa et al. [25] Subnational (district) level in
Kenya

Local HIV prevalence maps established significant
spatial variation of HIV infection among men in Kenya

Kandala et al. [26] Subnational (district) level in
Botswana

Botswana was found to exhibit clear geographic variation
in its HIV epidemic, with the highest prevalence
occurring in the east-central districts of the country.
This study provided maps that could be used for the
targeting of HIV programs and efficient allocation of
resources to higher risk groups

Wand et al. [10] Local level in South Africa Significant spatial patterns were found that could not be
explained by demographic or sexual risk behaviors

Niragire et al. [27] Subnational (district) level in
Rwanda

Areas of Rwanda where women are at a higher risk of
infection were identified. Distinctive geographic
patterns of the risk of HIV infection suggested the
potential effectiveness of district-specific interventions

HIV transmission models
calibrated to spatially
averaged local data

Anderson et al. [28] Subnational (county) level
in Kenya

Targeting prevention interventions by population and
place was found to be more impactful than a
nontargeted approach under a limited budget in Kenya

McGillen et al. [29] Subnational (provincial)
level in 18 countries in
sub-Saharan Africa

On a large scale, key populations may be more important
than locations for efficient spending, but prioritizing
both was the most impactful strategy over a range of
continental budgets
of, for example, clinic-level survey data for target-setting
across small geographical units may not make sense if
some of those units do not contain a clinic that requires
targets. In our view, there is an optimally useful
geographical level for model outputs, and this does not
always need to be the lowest possible level. Models must
also retain the flexibility to adjust to changing political
boundaries. Interventions based on model-derived targets
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Fig. 1. Demographic and Health Survey sample locations (blue dots). The Demographic and Health Survey has conducted
samples including geographical information in more than 20 countries in sub-Saharan Africa, for a total of 8510 datapoints
sampled. Maps were created using ArcGIS software by Esri, version 10.3 [31].
should be amenable to monitoring, and, optimally, there
should be structures in place at this level which have a
mandate to monitor. If monitoring by civil society bodies
is not currently done, tools similar to AIDSvu [32–34] –
maps of data on HIV epidemics in the United States
which are interactive and publicly available online –
could be beneficial. In general, the research question at
hand will determine the exact point of intersection
between the geographic scale of decision-making and the
scale at which modeling techniques are adding value.

Third, recommendations that come out of geospatial
analyses should be translated into policy with caution.
Oversimplification of geospatial conclusions may result in



Geospatial analysis for HIV program planning Meyer-Rath et al. 961

Fig. 2. Using data from Demographic and Health Surveys conducted in 10 countries in eastern sub-Saharan Africa, HIV
prevalence was mapped at three different scales of aggregation: (a) national level, (b) district level, and (c) high resolution
mapping of 1 km2 pixel resolution using a Kriging interpolation technique. Maps were created using ArcGIS software by Esri,
version 10.3 [31].
lower impact than the theoretical maximum [35,36] due
to funds being trapped in allocations which are locally
inefficient. Models may also be naive to the additional
costs of changing intervention programs or implementing
them only in certain regions or populations in a country.
In addition, local socioeconomic or cultural determinants
of demand for interventions may affect the success of
policies derived from models which did not take those
factors into account. There is a further danger that the
geo-location of small areas and populations at high risk of
HIV transmission or acquisition may lead to stigma and
discrimination against those groups, who are often
already vulnerable or marginalized. The enormous
benefits of geospatial analysis in terms of understanding
epidemic dynamics and allocating resources efficiently
may thus be offset by detrimental social consequences for
the very people it aims to help. To avoid this, substantial
efforts are undertaken to preserve the confidentiality of
survey participants, such as the global positioning system
displacement process for DHS sampling data points [37].
Similarly, when using geospatial analyses to rank
administrative units by progress toward an HIV indicator
– such as HIV prevalence, number of people living with
HIV, or coverage of an intervention – it must be
remembered that the objective function measuring this
progress is highly context-specific.

Although geospatial analysis has not yet led to direct
policy change, the semispatial study by Anderson et al.
[28] provides an early step in this direction and will be
used here as an example of how our recommendations
could be applied. Using Kenya as a case study, Anderson
et al. developed a mathematical model of HIV transmis-
sion and explored the potential impact of resource
allocation strategies designed at different geographical
scales. To calibrate the model, the authors integrated data
from several sources, disaggregated to the local level.
Counties (similar to districts elsewhere) and major cities
were selected as the local unit of analysis as they
corresponded to the finest resolution of both budget
decisions and available input data in Kenya. The authors
extracted information from official reports on historical
scale-up of treatment and prevention, and data on sexual
behaviors in the population from national surveys, with a
literature review and mapping of key populations
providing data on MSM in Kenya’s urban settings. For
information on HIV prevalence, geostatistical techniques
were used to interpolate between sample cluster loca-
tions in antenatal clinic and household survey data,
generating county-level averages. A maximum-likeli-
hood fit between model parameters and these data was
found for each local unit in Kenya. Using this calibrated
HIV model, Anderson et al. characterized the potential
impact, in terms of aggregate infections averted, of
making decisions at the national level (i.e. rolling out
prevention interventions uniformly across the country)
versus the subnational level (tailoring interventions to
specific populations and counties). The authors found the
locally focused approach could reduce HIV infections by
33% per year than the national-level approach for the
same total cost. This study lent support to the Kenya
Strategic Framework for 2014/15–2018/19, developed
by the National AIDS Control Council of Kenya to guide
the devolution of programmatic decision-making for the
country’s HIV response to the county level. However,
political and practical issues associated with focusing
resources on certain areas of a socioculturally complex
country continue to pose challenges.

In general, although geospatial analysis can uncover the
locations of vulnerable populations suffering a high
transmission burden, it cannot yet reveal the behavioral
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and biological drivers of the uneven geographical
distribution of the epidemic, quantify the role of
‘hotspots’ in the transmission dynamics of the entire
community, or convey a comprehensive picture of the
changing epidemic over time. The field is now moving
toward the integration of geospatial dynamics with
transmission models that would be able to elucidate this
information. If geographical ’hotspots’ play a role similar
to behavioral core groups in the transmission networks of
concentrated epidemics, then it is possible that targeting
these places would not only impact HIV incidence within
the ‘hotspot’ but also disrupt the much wider transmission
network surrounding it. Phylogenetic analysis, phylo-
geography, and network diffusion analysis techniques
could be combined to depict geographical transmission
networks of large-scale communities and thereby advance
our understanding of this critical issue.

In summary, geospatial analysis needs to be able to
integrate data generated at different locations and levels of
resolution. Its results need to be disaggregated or
aggregated to the level that is most relevant for
decision-making, budgeting, and monitoring (including
the district or facility levels). Recommendations based on
it need to safeguard against oversimplification and against
stigmatizing communities, and should bear in mind that
progress toward targets is context-specific and might
involve behavioral or biological factors not included in
the analysis.

In the HIV response, a model contributes just one piece
of information to a complex decision process that may
also include political concerns, budgetary constraints, and
priorities that reach beyond direct health impact, such as
national economic development. Nevertheless, geospatial
analysis can be a valuable component of this decision-
making landscape. In our view, the way forward is a
flexible, pragmatic approach that seeks to establish the
decision and monitoring structures in a country or
countries via continual engagement with decision-
makers and provision of model results at the most
appropriate level for each step of the engagement.
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