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Background: Amino acid metabolism (AAM) deregulation, an emerging

metabolic hallmark of malignancy, plays an essential role in tumour

proliferation, invasion, and metastasis. However, the expression of AAM-

related genes and their correlation with prognosis in clear cell renal cell

carcinoma (ccRCC) remain elusive. This study aims to develop a novel

consensus signature based on the AAM-related genes.

Methods: The RNA-seq expression data and clinical information for ccRCC

were downloaded from the TCGA (KIRC as training dataset) and ArrayExpress

(E-MTAB-1980 as validation dataset) databases. The AAM-related differentially

expressed genes were screened via the “limma” package in TCGA cohorts for

further analysis. The machine learning algorithms (Lasso and stepwise Cox

(direction = both)) were then utilised to establish a novel consensus signature in

TCGA cohorts, which was validated by the E-MTAB-1980 cohorts. The optimal

cutoff value determined by the “survminer” package was used to categorise

patients into two risk categories. The Kaplan-Meier curve, the receiver

operating characteristic (ROC) curve, and multivariate Cox regression were

utilised to evaluate the prognostic value. The nomogram based on the gene

signature was constructed, and its performance was analysed using ROC and

calibration curves. Gene Set Enrichment Analysis (GSEA) and immune cell

infiltration analysis were conducted on its potential mechanisms. The

relationship between the gene signature and key immune checkpoint, N6-

methyladenosine (m6A)-related genes, and sensitivity to chemotherapy was

assessed.

Results: A novel consensus AMM-related gene signature consisting of IYD,

NNMT, ACADSB, GLDC, and PSAT1 is developed to predict prognosis in TCGA

cohorts. Kaplan-Meier survival shows that overall survival in the high-risk group

wasmore dismal than in the low-risk group in the TCGA cohort, validated by the

E-MTAB-1980 cohort. Multivariate regression analysis also demonstrates that

the gene signature is an independent predictor of ccRCC. Immune infiltration

analysis highlighted that the high-risk group indicates an immunosuppressive

microenvironment. It is also closely related to the level of key immune

checkpoints, m6A modification, and sensitivity to chemotherapy drugs.
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Conclusion: In this study, a novel consensus AAM-related gene signature is

developed and validated as an independent predictor to robustly predict the

overall survival from ccRCC, which would further improve the clinical

outcomes.
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Introduction

Renal cell carcinoma has become one of the most prevalent

genitourinary tumours (Siegel et al., 2021). Its incidence

continues to increase, which accounts for approximately 5%

of new cancer cases in males and 3% of female cases (Siegel

et al., 2021). As the major subtype of renal cell carcinoma, clear

cell renal cell carcinoma (ccRCC) makes up 70–80% of all cases

with the highest mortality rate (Zhao et al., 2018). Meanwhile,

only a subset of patients has yielded great benefit from targeted

therapies due to the heterogeneity of ccRCC. The application of

conventional classification was often not sufficient as it was

determined only by several clinicopathological traits without

regard to molecular biological features. Therefore, to tackle

the abovementioned considerations and avoid latent

overtreatment or undertreatment, it is imperative to identify

reliable molecular signatures to optimise prognosis and predict

immune responses in ccRCC.

Amino acid metabolism (AAM) deregulation, an

emerging metabolic hallmark of malignancy, is geared

toward the increased requirement of rapid cancer cell

proliferation (Hanahan and Weinberg, 2011; Pavlova and

Thompson, 2016). AAM plays an essential role in tumour

proliferation, invasion, and metastasis (Vettore et al., 2020).

As a super nutrient, glutamine was involved in a series of

pathways in energy generation, macromolecular synthesis,

and signalling transmission in cancer cells (Li and Zhang,

2016). Serine, glycine, and threonine and the one-carbon units

these processes produce, such as methenyl and methyl, fulfil

tumour cell growth and proliferation and maintain the cellular

redox, genetic, and epigenetic status (Locasale, 2013; Liu et al.,

2019). In addition, N6-methyladenosine (m6A) RNA

methylation widely participate in the metabolic

recombination of tumour cells (An and Duan, 2022). m6A,

as one of the drivers of tumourigenesis and progression was

closely associated with a variety of tumours (Yu et al., 2021).

m6A RNA methylation also affects clinical prognosis by

modulating the immune function of patients with ccRCC

(Chen S. et al., 2020). Some studies have reviewed that

individual AAM-related genes or gene signatures play a

surprising role in tumour progression and have excellent

prognosis prediction value in glioma and hepatocellular

carcinomas (Seltzer et al., 2010; Liu et al., 2019; Zhao et al.,

2021). Liu et al. (2019); Zhao et al. (2021) showed that the risk

signature based on AAM-related gene could effectively predict

prognosis in glioma and hepatocellular carcinomas,

respectively. Previous studies showed that the AAM-related

gene of large amino acid transporter-1 was closely associated

with an unfavourable prognosis in ccRCC (Betsunoh et al.,

2013). Likewise, logistic regression models constructed for

several serum amino acids (histidine, glutamine, 1-methyl

histidine, and norvaline) had superior predictive and

prognostic values for ccRCC (Zhang et al., 2017). The

tumor cells of ccRCC are highly dependent on glutamine as

a result of the ubiquitous genetic loss of the von Hippel-

Lindau tumour suppressor gene (Fu et al., 2019). Nevertheless,

the characteristic of the AAM-related gene in ccRCC has not

been comprehensively elucidated. Moreover, novel AMM-

related gene signatures for predicting prognosis remain to

be developed in ccRCC and their relationship with m6A needs

to be further defined.

In this study, we endeavored to apply AAM-related genes to

develop a novel consensus signature in the TCGA to assess the

prognosis and the feature of the immune microenvironment,

immune checkpoint, m6A modification, and chemotherapy

response, which was validated in E-MTAB-1980 cohorts. This

work may facilitate optimising precision treatments and improve

the clinical prognosis of ccRCC patients.

Material and methods

Data collection

The overall design of this study is illustrated in Figure 1. Five

hundred and eighty ccRCC samples (including 508 tumours and

72 non-tumour tissues) were retrospectively downloaded, with

the RNA-seq expression data (FPKM normalised data) and

clinical information from kidney renal clear cell carcinoma

(KIRC) of The Cancer Genome Atlas (TCGA) database

(https://portal.gdc.cancer.gov/), which served as a training

dataset. Data from the E-MTAB-1980 cohort was used as the

validation dataset, and included RNA-seq transcriptomic data

(normalised mRNA expression data) and clinical information of

the complete 101 samples, obtained from the ArrayExpress

database (https://www.ebi.ac.uk/arrayexpress/). The two

datasets with complete overall survival (OS) information were

used to construct and validate the stratification signature. The
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American Joint Committee on Cancer (AJCC) TNM staging

system and the World Health Organization (WHO) grading

classification were adopted in this study. The 374 AAM-

related genes were extracted from the gene sets (REACTOME

METABOLISM OF AMINO ACIDS AND DERIVATIVES)

obtained from the Molecular Signature Database v7.5

(MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/), as

detailed in Supplementary Table S1.

The nine pairs of ccRCC tissues and adjacent tissue were

retrieved from the First Affiliated Hospital of Nanchang

University. The specimens were obtained with the patients’

informed consent and the approval of the Ethics Committee

of the First Affiliated Hospital of Nanchang University. The study

protocol was carried out following the guidelines of the Helsinki

Declaration.

Screen for AAM-related differentially
expressed genes

Differentially expressed genes (DEGs) between normal and

ccRCC tissues were obtained with the criteria of adjusting p <
0.05 and | log2 fold change (FC) | > 1.5 via applying the “limma”

package in the TCGA cohort. The intersecting AAM-related

genes in the TCGA and E-MTAB-1980 cohorts were then

identified. The “VennDiagram” package was applied to screen

the co-expressed AAM-related DEGs.

Functional enrichment analysis and
protein-protein interaction network
analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analyses were

conducted using the ‘clusterProfiler’ package to explore the

potential molecular mechanisms for AAM-related DEGs (Yu

et al., 2012). p-value < 0.05 and q-value < 0.05 were the

criteria used to determine the significant enrichment

function. Protein-protein interaction (PPI) analysis was

performed via uploading the AAM-related DEGs to the

STRING database (http://www.string-db.org/), an online

database of known and predicted protein-protein

interactions (Szklarczyk et al., 2019). The results were

then visualised using the Cytoscape software (version 3.7.

1), where nodes denote proteins and edges represent

interactions between these proteins. The ‘degree’ of a node

was calculated by topological structure analysis of the PPI

network.

Construction and validation of the AAM-
related prognostic signature

Univariate Cox regression based on AAM-related DEGs

is utilised to preliminarily screen interesting AMM-related

FIGURE 1
Workflow diagram.
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genes heavily affecting the OS of ccRCC, to develop an

AAM-related prognostic signature with high accuracy and

stability performance in TCGA cohorts. The further

analysis combined the least absolute shrinkage and

selection operator (Lasso) and the stepwise Cox

(direction = both) model was applied to determine the

consensus risk stratification signature via the “glmnet”

and “survival’” package, respectively. The risk score was

calculated by following the formula: risk score =

∑n
i�1Coefi × Expi (where Coefi was the coefficient of each

gene weighted via multivariate Cox regression and Expi was

the relative expression of each gene). All patients were

divided into high- and low-risk groups according to the

optimal cutoff value determined by the “survminer”

package. The log-rank test and Kaplan-Meier curves were

generated using the “survival” and “survminer” packages,

respectively. To evaluate the predictive performance of the

prognostic signature, the time-dependent receiver

operating characteristic (ROC) curve was plotted using

the “timeROC” package. Subsequently, the consensus risk

stratification signature was validated using the E-MTAB-

1980 cohorts via the abovementioned method.

Correlation of the AAM-related gene
signature with clinical traits

Multivariate Cox regression was conducted after adjusting

for other available clinical traits to assess the predictive value

of AMM-related gene signature. The nomogram with risk

scores and commonly used clinical traits was constructed

using the “rms” package to predict the OS of ccRCC.

Harrell’s concordance index (C-index) was calculated to

evaluate the accuracy of this model. The 1-year, 3-year, and

5-year calibration curves were also visualised to assess their

predictive performance. Subsequently, the correlation

between gene signature and clinical traits and subgroup

analysis within ccRCC patients with various clinical traits

was undertaken to further evaluate the predictive value of the

risk stratification signature.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) is a method of

interpreting expression dataset using previously established

gene sets defining pathways or functions. It aims to analyze

the association between expression dataset and biological signals.

The gene expressionmatrix and phenotype classes were uploaded

to GSEA software V4.2 (https://www.gsea-msigdb.org/gsea/

index.jsp) for GSEA with permutation = 100, min size =

15 and max size = 500 to further reveal potential mechanisms

of prognostic signature.

Immune cell infiltration, immune-related
pathways, cell pathways, and immune
checkpoints analysis

Given that the tumour immune microenvironment was essential

for its prognosis in renal cell cancer (Giraldo et al., 2015), the

Estimation of STromal and Immune cells in MAlignant Tumor

tissues using Expression data (ESTIMATE) algorithm and cell-type

identification by estimating relative subsets of RNA transcripts

(CIBERSORT) algorithm was applied to evaluate the stromal

score, immune score, and estimate score as well as 22 immune cell

fractions content in patients between different groups, respectively.

The results were then visualised via box and violin plots, respectively.

Additionally, a single-sample gene set enrichment analysis

(ssGSEA) was performed using the R package ‘GSVA’ to assess

differences in immune-related pathways and cell pathways. The

reference genes on each immune-related pathway and cell

pathway were reported in Supplementary Table S2 (Wei et al.,

2020). The differences in the expression of key immune

checkpoints between the two groups were compared as they

are vital to tumour prognosis.

Landscape of gene mutation and
m6A-related genes analysis

The mutation frequencies and oncoplot waterfall plots for

both groups of parients with ccRCC were generated by the

“maftools” package.

Some studies consider that m6A is considered one of the

drivers of tumorigenesis and progression in various tumours (Yu

et al., 2021). Meanwhile, m6A RNA methylation widely

participate in the metabolic recombination of tumour cells

(An and Duan, 2022). m6A modification is closely related to

the tumour immune landscape in ccRCC (Zhong et al., 2021).

Thus, the expression level of the m6A-related gene between both

risk groups was assessed to explore the potential mechanism of

m6A modification in ccRCC. m6A-related genes were available

from previously published articles, including regulators on

writers, readers, and erasers (Sun et al., 2019; Zaccara et al., 2019).

Tumour mutational burden, microsatellite
instability, and sensitivity analysis of
chemotherapy drugs

In tumour mutation burden (TMB) and microsatellite

instability (MSI) analysis, the correlation between gene

expression and TMB and MSI scores was evaluated by

Spearman’s correlation analysis.

To explore the difference in several common chemotherapy

sensitivity between both risk groups, the half-maximal inhibitory

concentration (IC50) was estimated from the Genomics of Drug
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Sensitivity in Cancer database (https://www.cancerrxgene.org/)

using the “pRRophetic” R package (Geeleher et al., 2014). The

expression matrixes of both groups were uploaded to this database.

Validation of AAM-related prognostic
genes

The mRNA expression, promoter methylation, and protein

expression levels of AAM-related prognostic genes in ccRCC

were further obtained and validated from The University of

ALabama at Birmingham CANcer data analysis Portal

(UALCAN) database (http://ualcan.path.uab.edu/index.html)

(Chandrashekar et al., 2017). Protein expression levels were

also verified via immunohistochemistry (IHC) from the

Human Protein Atlas (HPA) database (https://www.

proteinatlas.org/).

The ccRCC and adjacent tissue were retrieved from ccRCC

patients undergoing surgical treatment and were cryopreserved

in liquid nitrogen after isolation. Total RNA was extracted from

nine pairs of ccRCC tissue and adjacent tissue as well as renal

normal or cancer cell lines HK-2, 786-O, A498, and OSRC-2

using Trizol reagent (ComWin Biotech, Beijing, China) and

reversed transcribed into cDNA with the TransScript First-

Strand cDNA Synthesis SuperMix kit (TransGen Biotech,

Beijing, China) according to the manufacturer’s instructions.

Real-time quantitative polymerase chain reaction (RT-PCR)

was conducted with qPCR SYBR Green SuperMix (TransGen

Biotech, Beijing, China). β-Actin was used, as an internal

reference gene, to normalise the relative mRNA expressions

with the 2−ΔΔCT method. The primer sequences used in the

study are listed in Supplementary Table S3.

Statistical analysis

This study performed all statistical analyses and data

processing using the R software (Version 4.1.3), with p <
0.05 considered statistically significant. The gene expression

levels, risk scores, the abundance of immune cell infiltration,

and drug’s IC50 between both risk groups were analysed via the

Wilcoxon test, while immune scores (stromal score, immune

score, and estimate score) and tumour purity via the unpaired

Student’s t-test.

Results

Screen for AAM-related DEGs and
functional enrichment

Eight hundred forty-three DEGs were obtained from the

intersection between differentially expressed genes in TCGA

cohorts and genes in the E-MTAB-1980 cohorts.

Subsequently, the AAM-related DEGs were further elucidated

(Figure 2A). Five of the 27 AAM-related DEGs were highly

expressed, while twenty-two were lowly expressed in tumour

tissues for the TCGA cohort, as detailed in Figures 2B,C.

GO and KEGG analyses based on the 27 AAM-related DEGs

were then performed to assess the features of AAM-related genes

and the biological processes involved (Figures 2D,E). KEGG analysis

mainly was enriched in amino acid and carbon metabolism

(Figure 2D). The GO analysis results indicated that biological

processes (BP) were mainly enriched in cellular and alpha−

amino acid metabolic and catabolic processes, cellular

components (CC) in the mitochondrial matrix, as well as

molecular functions (MF) in electron transfer activity

(Figure 2E). Functional enrichment analysis corresponded to the

molecular traits of AAM-related genes. The AAM-related DEGs

might be involved in some biological processes such as AAM,

electron transfer activity, fatty acid metabolism and degradation.

PPI analysis was also conducted to explore the relationship

between the DEGs or corresponding proteins. The PPI network

contained 27 nodes and 138 edges with a minimum required

interaction score of low confidence (0.15), as depicted in

Figure 3A.

Development and validation of the AAM-
related prognostic signature

Based on the expression profiles of AAM-related DEGs in the

training dataset, univariate Cox regression regarding OS

ultimately screened the 12 prognostic AAM-related genes,

including Iodotyrosine Deiodinase (IYD), Nicotinamide

N-Methyltransferase (NNMT), Aldehyde Dehydrogenase

6 Family Member A1 (ALDH6A1), Acyl-CoA Dehydrogenase

Short/Branched Chain (ACADSB), Glycine Decarboxylase

(GLDC), 4-Hydroxy-2-Oxoglutarate Aldolase 1 (HOGA1),

Phosphoserine Aminotransferase 1 (PSAT1), D-Amino Acid

Oxidase (DAO), Acetyl-CoA Acetyltransferase 1 (ACAT1),

Phenylalanine Hydroxylase (PAH), Glycine

Amidinotransferase (GATM), and Agmatinase (AGMAT)

(Figure 3B). A combination model of Lasso and stepwise Cox

(direction = both) was applied in TCGA cohorts to develop a

consensus AAM-related gene signature, identifying a final set of

5 AAM-related DEGs. In this combination model, to avoid

multicollinearity of several variables and overfitting the model,

the Lasso regression regarding OS was employed to screen the

key AAM-related DEGs. Based on the 10-fold cross-validation in

the Lasso regression, the partial likelihood of deviance reached

the minimum when the optimal lambda was 0.013. At that point,

IYD, NNMT, ALDH6A1, ACDSB, GLDC, HOGA1, PSAT1, and

ACAT1 were selected (Figure 3C). The stepwise Cox was utilised

to further screen for genes associated with OS. Subsequently,

each gene expression weighted by the regression coefficient in the
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multivariate Cox model based on the selected 5 AAM-related

DEGs (AAM-related gene signature) was utilized to calculate the

risk score with the formula as follows: Risk score = IYD ×

(-1.1404) + NNMT × (0.1243) + ACADSB × (-0.4140) +

GLDC × (-0.2061) + PSAT1× (0.2789). All participants were

assigned to high- or low-risk groups according to the optimal

cut-off value.

Kaplan-Meier survival analysis showed that OS in the high-

risk group was dramatically more dismal than in the low-risk

group in the training dataset (TCGA cohort) (Figure 4A),

validated only by the validation dataset (E-MTAB-

1980 cohort) (Figure 4B). The risk score distribution and

survival status for TCGA cohorts are depicted in Figure 4C

and for E-MTAB-1980 cohorts in Figure 4D. The expression

heatmaps of the five selected AAM-related genes for the TCGA

cohorts and the E-MTAB-1980 cohorts are shown in Figures

4E,F, respectively. To evaluate the discrimination of the AAM-

related prognostic signature, ROC analysis of OS is measured,

and the 1-, 3-, and 5-year areas under the ROC curves (AUCs)

were 0.751,0.716, and 0.747 in the TCGA cohorts (Figure 4G)

and 0.701, 0.783, and 0.761 in the E-MTAB-1980 cohorts

(Figure 4H), respectively.

Establishment of a nomogram

Four hundred eighty-eight ccRCC patients in the TCGA cohort

with complete clinical information were selected for further analysis.

Themultivariate Cox regression indicated that age, tumour stage, and

risk score were independent prognostic factors (Figure 5A).

Subsequently, the nomogram with age, tumour stage, and risk

score was established to predict 1-, 3-, and 5-year OS in ccRCC

patients from the TCGA cohort (Figure 5B). The prediction value of

the nomogram is compared with the prognostic signature and other

available clinical traits. As illustrated in Figures 5C–E, this nomogram

model had greater AUCs at 1, 3, and 5 years. The C-index for the

FIGURE 2
AAM-related DEGs in TCGA-KIRC cohorts and functional enrichment analysis. (A) Venn plots of co-expression gene between DEGs and AAM-
related gene (B) Volcano plots of AAM-related DEGs; (C)Heatmap plots of AAM-related DEGs; (D) KEGG analysis; (E)GO analysis involving biological
process, cellular component, and molecular function.
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FIGURE 3
Protein-protein interaction network and regression analysis. (A) Protein-protein interaction network of AAM-related DEGs; (B) Univariate Cox
regression analysis of AAM-related DEGs; (C) Lasso regression analysis of AAM-related DEGs.
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FIGURE 4
The correlation between the AAM-related gene signature and prognosis in ccRCC. (A,B) Kaplan-Meier survival analysis between high-risk
groups and low-risk groups in TCGA (A) and E-MTAB-1980 (B) cohorts; (C,D) The trend in patient survival status as the increment of risk scores in
TCGA (C) and E-MTAB-1980 (D) cohorts; (E,F) Heatmap plots of the prognostic genes in TCGA (E) and E-MTAB-1980 (F) cohorts; (G,H) Time-
independent receiver operating characteristic (ROC) curve for predicting OS based on this signature in TCGA (G) and E-MTAB-1980 (H)
cohorts.
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FIGURE 5
The AAM-related gene signature as an independent predictor for OS in TCGA cohorts and the predictive performance of the nomogram (risk
models), risk (AAM-related gene signature), and other clinical traits. (A) The multivariate Cox regression analysis; (B)Nomogram for predicting 1-, 3-,
and 5-year OS. (C–E) ROC curves for 1-year, 3-year, and 5-year OS based on the nomogram, risk, and other clinical traits, respectively; (F) the
calibration plots for predicting 1-, 3-,5-year OS of the nomogram, respectively; T: AJCC TNM tumor stage; M: AJCC TNM node stage; G: WHO
grade classification; tumor stage: AJCC tumor clinical stage.
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nomogramwas 0.789 (95% confidence interval: 0.753–0.825). The 1-,

2-, and 3-year calibration curves for the nomogram showed that the

actual OS was well in line with the predicted OS (Figure 5F).

Relationship between AAM-related gene
signature and clinical traits

The expression heatmap of the AAM-related prognostic

signature indicated that the expression level of IYD, ACADSB,

and GLDC in the high-risk group was lower than in the low-risk

group. At the same time, NNMT and PSAT1 were highly

expressed in the high-risk group, as shown in Figure 6A. It

also demonstrated that the stratified risk was closely associated

with the clinical metrics such as gender, T stage, M stage, grade,

and tumour stage, consistent with the results in Figures 6B–G.

The advanced clinical stage and grade have a higher risk score. To

assess the prognostic predictive value of the AAM-related gene

signature, the stratified subgroup analysis according to available

clinical traits was conducted, suggesting that it encompasses

reliable and accurate prediction ability (Figures 7A–M). The

above results indicate that the novel gene signatures were

closely related to several clinical traits, such as T stage, M

stage, grade, and tumour stage.

Gene set enrichment analysis

GSEA was performed to investigate the signalling pathways underlying the

AMM-related risk signature, and demonstrates that the high-risk group was

mainly enriched in base excision repair, homologous recombination, pyrimidine

metabolism, the tumour protein p53 (p53) signalling pathway,DeoxyriboNucleic

Acid (DNA) replication, and cell cycle (Figure 8A). Fatty acid metabolism,

adipocytokine signallingpathway, citrate cycle, tricarboxylic acid cycle (TCA)cycle,

propanoate metabolism, glycolysis, gluconeogenesis, pyruvate metabolism, and

ERBB signalling pathway were primarily enriched in the low-risk group

(Figure 8B).

Immune cell infiltration, immune-related
pathways, cell pathways, and immune
checkpoint analysis

To evaluate the status of immune cell infiltration, immune-

related pathways, and immune checkpoints, several appropriate

algorithms such as ESTIMATE, CIBERSORT, and ssGSEA were

employed. The estimate score, immune score, and stromal score

in the high-risk group were significantly higher than in the low-

risk group based on the ESTIMATE algorithm, in contrast to

tumour purity (Figures 8C–F). The CIBERSORT results show

FIGURE 6
The correlation between the AAM-related gene signature and clinical traits. (A) Heatmap plot displayed the correlation between the risk group
and other clinicopathological traits; (B–G) Boxplot showed the correlation between the risk scores and clinicopathological traits; T: AJCC TNM
tumor stage; M: AJCC TNMmetastasis stage; G: WHO grade classification; tumor stage: AJCC tumor clinical stage; ns: p ≥ 0.05; *: p < 0.05; **: p <
0.01; ***: p < 0.001.
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that the proportion of plasma cells, resting and activated memory

CD4 T cells, follicular helper T cells, regulatory Tregs T cells,

resting NK cells, M0 macrophages, activated dendritic cells, and

neutrophils in the high-risk group were elevated compared to the

low-risk group. In contrast, the reverse was observed for

monocytes, M1 and M2 macrophages, resting dendritic cells,

and resting mast cells (Figure 9A). Furthermore, the ssGSEA

demonstrated that most immune-related pathways such as

antigen presenting cell (APC) co-stimulation, C-C chemokines

receptors (CCR), checkpoint, cytolytic activity, inflammation-

promoting, parainflammation, T cell co-inhibition, and T cell co-

stimulation in the high-risk group had higher enrichment scores

than in the low-risk group (Figure 9B). However, there was no

difference between both risk groups in HLA, MHC class I, and

type I IFN responses (Figure 9B). The enrichment score of cell

pathways such as tumour proliferation, epithelial-mesenchymal

transition (EMT), angiogenesis, apoptosis, DNA repair, and

DNA replication were higher in the high-risk group (Figure 9C).

FIGURE 7
Subgroup analysis of the AAM-related prognostic gene signature according to age (A, B), gender (C, D), T stage (E, F), M stage (G, H), grade (I, J),
and tumor stage (K, M); T, AJCC TNM tumor stage; M, AJCC TNM metastasis stage; G, WHO grade classification; tumor stage, AJCC tumor clinical
stage.
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Notably, the expression of key immune checkpoints was

also evaluated and demonstrated that most immune

checkpoints such as PDCD1, CTLA-4, and CD28 are

upregulated in the high-risk group. However, few immune

checkpoints, such as PD-L1 (CD274) and HAVCR2, are

downregulated (Figure 9D).

Landscape of gene mutation and m6A-
related genes analysis

The incidence of copy number variations and somatic mutations

are summarized in Supplementary Figure S1; 254 of 330 (76.97%)

ccRCC samples had genetic mutations. Missense mutation was the

FIGURE 8
Gene set enrichment analysis in the high-risk group (A) and the low-risk group (B), respectively; and Immunemicroenvironment analysis (C–F)
via ESTIMATE algorithm, ns: p ≥ 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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most common variant classification (Supplementary Figure S1A).

Single nucleotide polymorphisms were the most common variant

type, and C > T ranked as the top SNV class. The results also

demonstrated VHL as the gene with the highest mutation

frequency in both risk groups, followed by PBRM1 and TTN

(Supplementary Figure S1B).

m6A RNA methylation widely participates in the metabolic

recombination of tumour cells (An and Duan, 2022). The

differential expression analysis of m6A-related genes was assessed

because m6A is one of the drivers of tumorigenesis and progression in

various tumours (Yu et al., 2021). For “Writers”, most genes, such as

METTL14, RBM15, METTL16, ZC3H13, and PCIF1, were

remarkably downregulated in the high-risk group, in contrast to

METTL3. Similarly, the expression levels of various genes, such as

ZCCHC4, YTHDC1, YTHDF2, YTHDF3, and YTHDC2, were

significantly decreased in the high-risk group for “Readers”. FTO

and ALKBH5 were also lowly expressed in the high-risk group with

regard to “Erasers” (Figure 9E).

TMB, MSI, and drug-sensitivity analysis

TMB andMSI can be used as a possible biomarker for predicting

immunotherapy response in cancers (Chang et al., 2018; Samstein

et al., 2019). To clarify the relationship between AAM-related gene

signature and MSI as well as TMB, we then analysed the correlation

between the prognostic gene and TMB as well as MSI. The results

indicated a negative correlation between TMB and ACADSB (p =

0.003), but a positive correlation between TMB and NNMT (p =

0.004) as well as PSAT1 (p= 0.009). There was no correlation between

FIGURE 9
Immune infiltration, immune status and cell pathway evaluation, and immune checkpoints andm6A-related genes analysis. (A) The violin plot of
immune cells proportion of the high-risk and low-risk group via CIBERSORT; The different immune status (B) and cell pathway (C) between the high-
risk and low-risk group via ssGSEA; (D) Gene expression analysis of immune checkpoints between the high-risk and low-risk group; (E) Gene
expression analysis of m6A-related genes between the high-risk and low-risk group; ns: p ≥ 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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TMB and IYD as well as GLDC (Supplementary Figure S2). IYD (p =

0.001) and NNMT (p = 0.048) were positively correlated with MSI.

There was no significant correlation between MSI and other genes

(Supplementary Figure S2).

IC50 values for several chemotherapy drugs were measured as

sensitivity metrics. The results suggest that participants in the low-

risk group were more sensitive to several common chemotherapy

drugs, including axitinib, bosutinib, sorafenib, sunitinib, and

FIGURE 10
Several common chemotherapy drug sensitivities analyses between the high-risk and low-risk group, ns: p ≥ 0.05; *: p < 0.05; **: p < 0.01; ***:
p < 0.001.
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FIGURE 11
Validation of the mRNA expression levels (A), promoter methylation levels (B), and protein expression levels (C) of AAM-related prognostic
genes via UALCAN database, ns: p ≥ 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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vinblastine, than in the high-risk group (Figure 10). However, there

was no significant difference between both groups concerning the

sensitivity of gefitinib (Figure 10).

Validation of AAM-related prognostic
genes

The mRNA and protein expression levels of AAM-related

prognostic genes were further validated via the UALCAN and

HPA databases. The NNMT gene was highly expressed in

primary tumour tissue compared with normal tissue. In

contrast, several other genes (IYD, ACADSB, GLDC, and

PSAT1) were under-expression (Figure 11A), which was in

line with Figure 2C. Further, the promoter methylation level

of prognostic genes showed the converse of the gene

expression level above (Figure 11B). The protein

expression level of several prognostic genes was also

validated (Figures 11C, 12A), which was consistent with

gene expression levels.

FIGURE 12
Validation of the protein expression levels of AAM-related prognostic genes via IHC in HPA database (A); Validation of the gene expression levels
of IYD (B), ACADSB (C), and PSAT1 (D) based on ccRCC and adjacent tissues via RT-PCR, ns: p ≥ 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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Additionally, Holstein et al. demonstrated that NNMT

expression was apparently up-regulated in renal cancer

tissues and cell lines (Holstein et al., 2019). NNMT also

had a high protein expression in tissues and cell lines. Chen

et al. also showed that GLDC expression was down-regulated

in renal cancer tissues and cell lines (Chen Y. et al., 2020).

The protein expression level of GLDC in tissues was in line

with the RT-PCR results. Thus, this study selected IYD,

ACADSB, and PSAT1 for validation since they had not

been validated in renal cancer tissues and cell lines. The

results of RT-PCR in tissues demonstrated that IYD,

ACADSB, and PSAT1 had significantly lower expression

levels in cancer tissues than in adjacent tissues, consistent

with the predicted results (Figures 12B–D). However, only

NNMT, GLDC, and ACADSB remained consistent with the

abovementioned results in the renal cancer cell lines

(Supplementary Figure S3).

Discussion

The AJCC TNM staging system was implemented as a

conventional clinical management tool to guide treatment

decision-making. However, its limitations, such as

heterogeneous clinical prognosis within the same stage

patients, hamper the ability to provide optimal clinical

care to patients as clinical traits rather than molecular

features are primarily considered. Due to the pivotal

importance of AAM for tumour proliferation, invasion,

metastasis, and prognosis (Liu et al., 2019; Vettore et al.,

2020; Zhao et al., 2021), the current study systematically

established a novel consensus signature based on AAM-

related genes to investigate the relationship between it and

prognosis, immune infiltration, and sensitivity to various

chemotherapeutic drugs.

With advancements in bioinformatic techniques,

numerous predictive gene signatures have been proposed

using various machine learning algorithms. This study

develops a novel AMM-related gene signature according

to the combination model of Lasso and stepwise Cox

(direction = both). This algorithm can further reduce the

dimension of variables to construct a robust gene signature

more effectively, composed of 5 AAM-related genes. In

addition, multivariate Cox regression, Kaplan-Meier

survival, and ROC analyses suggest that this gene

signature maintained high accuracy and reliability in the

TCGA and E-MTAB-1980 cohorts, suggesting great

potential for clinical risk stratification. This gene

signature was closely associated with clinical traits

(gender, T stage, M stage, grade, and tumour stage). To

better understand the function of this gene signature in

ccRCC, the individual AAM-related genes involved in this

signature were highlighted. Previous studies demonstrated

that the antioxidant-related gene signature constituted with

IYD and five other genes could effectively forecast the

prognosis of ccRCC and that IYD was closely associated

with prognosis (Ren et al., 2021). Several studies revealed

that NNMT was up-regulated, depending on the stage of

progression in renal cell carcinoma, and its expression

played a critical role in the invasive potential of human

ccRCC cells (Tang et al., 2011; Holstein et al., 2019). Yue

Wu et al. demonstrated that mitochondrial gene signatures,

including ACADSB, could accurately predict OS, and

ACADSB had good diagnostic and prognostic abilities in

ccRCC (Liu et al., 2021; Wu et al., 2021). Yeda Chen et al.

indicated that the expression levels of GLDC were

significantly decreased in RCC cell lines compared to the

normal cell lines (Chen Y. et al., 2020). Its expression level

was down-regulated in RCC samples compared to those in

paracancerous normal tissues. The function assay further

showed that GLDC overexpression significantly inhibited

the migration and invasion of RCC. Yan Zhang et al. reveal

that the glycolysis-related gene signature based on

PSAT1 had an excellent diagnosis and prognostic value

in ccRCC (Zhang et al., 2021). The enrichment scores of

cell pathways, such as tumour proliferation, epithelial-

mesenchymal transition (EMT), angiogenesis, and

apoptosis, were higher in the high-risk group, also

suggesting that the AAM-related gene signature plays an

essential role in the tumourigenesis and progression in

ccRCC. Some studies demonstrated that tumours with

higher levels of apoptosis are more aggressive (Morana

et al., 2022). Thus, the above-selected gene, consisting of

an AAM-related gene signature, plays an essential role in

cancer progression and prognosis prediction for ccRCC.

This study also explored the gene signature’s latent biological

mechanisms and immune infiltration features. GSEA indicated

that cell growth and cell cycle pathways such as base excision

repair were mostly enriched in the high-risk group. Likewise, the

low-risk group’s lipid and glucose metabolism-related pathways

were extraordinarily activated. The status of immune infiltration,

immune-related pathways, and immune checkpoints were

further evaluated using the appropriate algorithms. The

estimate score, immune score, and stromal score are

remarkably elevated in the high-risk group, which suggested

elevated immune activity in this subgroup. When CIBERSORT

was used to assess the proportions of 22 immune cell subsets, the

results showed that most immune cells, including plasma cells,

resting and activated memory CD4 T cells, follicular helper

T cells, regulatory Tregs T cells, resting NK cells,

M0 macrophages, activated dendritic cells, and neutrophils,

were significantly higher in the high-risk group than in the

low-risk group. Regulatory T cells (Tregs) are up-regulated in

high-risk tumours. Tregs as immunosuppressive cells helps to

suppress antitumour T cell responses. It can yield

immunosuppressive cytokines and immune-inhibitory
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receptors that impair the activation of antitumour T cells (Speiser

et al., 2016). Macrophages, found in all stages of tumour

progression, were particularly abundant in the tumour. It was

also immunosuppressive, preventing tumour cell attacks by

natural killer and T cells (Noy and Pollard, 2014). M1

(antitumour) and M2 (pro-tumour) phenotypes may represent

various function states rather than truly different cell types (Noy

and Pollard, 2014). Zhang et al. (2019) demonstrated that the

high proportion of M0 macrophages was closely associated with

worse poor outcomes, which might reflect their gradual function

differentiation. Immune functions are evaluated via the ssGSEA

algorithm, which indicate that the APC co-stimulation, CCR,

immune checkpoint, cytolytic activity, inflammation-promoting,

parainflammation, T cell co-inhibition, and T cell co-stimulation

were up-regulated in the high-risk group. Appropriate

stimulation of APCs is essential for initiating and maintaining

the immune response (Gallucci and Matzinger, 2001).

Chemokines and chemokine receptors also play a crucial role

in cancer, especially during metastasis (Zlotnik, 2006). The

immune cytolytic activity, along with the existence of

complicated associations among various tumour-infiltrated

immune cells, elicits immune suppression in kidney cancer

(Roufas et al., 2018). Inflammation has been demonstrated to

promote the proliferation and metastasis of cancer (Coussens

and Werb, 2002). Aran et al. demonstrated that

parainflammation, a low-grade form of inflammation, which

is widely prevalent in human cancer, is associated with a poor

prognosis and p53 mutations (Aran et al., 2016). Co-stimulation

and co-inhibition of T-cell activation involves a range of

functions that determines T-cell-mediated immune responses

(Chen and Flies, 2013). T-cell co-stimulation promotes T-cell

activation whereas co-inhibition suppresses T-cell activation

(Bour-Jordan et al., 2011). Co-stimulation may be balanced by

co-inhibition in the high-risk group (Saleh et al., 1990). Most key

immune checkpoints such as PDCD1, CTLA-4, and CD28 were

upregulated in the high-risk group. These results above highlight

that the high-risk group indicates an immunosuppressive

microenvironment. Previous studies also propose a “glutamine

steal” scenario, in which cancer cells deprive tumour-infiltrating

lymphocytes of the required glutamine, thereby impairing the

antitumour immune response (Edwards et al., 2021). The tumour

cells may impair the metabolism of immune cells in the tumour

microenvironment through high uptake of amino acids,

contributing to the immune escape. Thus, the AAM-related

gene signatures might down-regulate antitumour immune

cells, which enhances the immune escape of ccRCC.

N6-methyladenosine (m6A) is the most abundant type of

RNAmodification in most eukaryotes (Liu and Pan, 2016). Some

studies demonstrated that m6A modification is closely related to

the tumour immune landscape in ccRCC (Zhong et al., 2021).

m6A RNA methylation participate in the metabolic

recombination of tumour cells (An and Duan, 2022). m6A is

closely linked to various tumours as one of the drivers of

tumourigenesis and progression (Yu et al., 2021). Therefore,

the special relationship between the expression level of the

m6A-related gene and the prognostic signature was

considered. Previous studies suggested that the risk signature

based on m6A RNA methylation regulators, METTL3 and

METTL14, was of great value for prognosis prediction and

closely associated with clinicopathological traits in ccRCC

(Zhang et al., 2020). Jiaxun Zhao et al. showed superior

survival in patients with either high FTO mRNA or low

METTL3 mRNA via survival analysis (Zhao and Lu, 2021).

Other studies also demonstrated that the expression levels of

METTL3 was intimately associated with tumour size and

histological grade (Li et al., 2017). METTL3 can affect cell

function and serve as a novel marker for the progression and

survival of renal cell carcinoma (Li et al., 2017). Our findings

support this correlation, indicating that AAM-related gene

signatures could be highly correlated with m6A modification

and further explain the effect of AAM on tumourigenesis and

progression in ccRCC.

There are several limitations to this study. The signature

failed to be validated via our cohort in this study, due to the small

samples, and further clinical trials are required for validation.

Secondly, the molecular mechanisms of several prognostic genes

and their relationship with tumour immunity and m6A

modifications should be further investigated.

Conclusions

The study developed a novel AAM-related gene signature

and constructed a nomogram based on signature and other

clinical traits to predict the OS of ccRCC via multiple

algorithms. The nomogram can reliably predict the

prognosis, which may contribute to optimising precision

treatment and further improve the clinical outcome of

ccRCC. More importantly, the gene signature was closely

related to clinicopathological traits, immune cell

infiltration, immune checkpoints, immune-related

functions, m6A modification, and sensitivity to

chemotherapeutic drugs.
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SUPPLEMENTARY FIGURE S1
Landscape of gene mutation in ccRCC.

SUPPLEMENTARY FIGURE S2
Tumour mutational burden and microsatellite instability analysis; TMB:
tumour mutational burden; MSI: microsatellite instability.

SUPPLEMENTARY FIGURE S3
Validation of the gene expression levels of IYD, ACADSB, and PSAT1 based
on renal cancer cell lines via RT-PCR, ns: p ≥ 0.05; *: p < 0.05; **: p <
0.01; ***: p < 0.001.
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