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The genetic diversity and the relationships among sesame cultivars were

investigated using physiological and cyto/molecular analysis. To our

information, no studies have yet been conducted on the genetic evaluation

of sesame genotypes based on cyto/molecular analysis in Saudi Arabia. This

study showed that genotype Bah-312 had the highest values from physiological

and biochemical traits (plant height, harvest index, total plant dry matter, seed

yield, oil content, and fatty acids content). Using 20 ISSR and 25 SCoT primers,

the studied genotypes amplified 233 and 275 alleles, while the average

polymorphism percentage (P%) was 65.32% (ISSR) and 77.8% (SCoT) across

all the studied genotypes, respectively. To assess themarkers efficiency analysis

the polymorphism information contents (PIC), Marker Index (MI), Effective

Multiplex Ratio (EMR), Resolving Power (Rp) were estimated. In general,

primers (ISSR 2 & SCoT 21) and (ISSR 4 & SCoT 3) revealed the highest and

lowest values for P %, PIC, MI, and EMR%. Furthermore, 188 positive and

negative unique bands were detected, out of which ISSR generated 84,

while 104 were amplified by SCoT analysis. In this regard, genotype Bah-312

generated 41 unique amplicons, and Jiz-511 genotype 23 unique amplicons. In

the same context, the population genetics parameters, number of different

alleles (Na), number of effective alleles (Ne), Shannon’s index (I), expected

heterozygosity (He), and Unbiased Expected Heterozygosity (uHe), were

calculated. ISSR marker showed the highest values for all the estimated

parameters. In this regard, genotype Bah-312 exhibited the highest values

(1.35, 1.37, 0.31, 0.21, 0.29) & (1.31, 1.35, 0.30, 0.20, 0.27) while, genotype

Ahs-670 revealed the least values (1.29, 1.31, 0.26, 0.16, 0.23) &(1.14, 1.26, 0.22,

0.15, 0.20) for ISSR and SCoT markers respectively. For cytological data,

according to the highest asymmetry index (AsK%) and lowest total form

percentage (TF%) values, genotype Ahs-670 was the most advanced cultivar,

and genotype Bah-312 was the most primitive one. According to the degree of

asymmetry of karyotype (A) and intrachromosomal asymmetry index (A1),
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sesame genotype Ahs-670 was the most asymmetrical, and Bah-312 was the

most symmetrical genotype. This study gives some helpful information about

the genetic diversity of six sesame landraces. The variation harbored by these

landraces could be used in sesame breeding programs.
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Introduction

One of the most ancient annual oilseed crops cultivated in

tropical and temperate regions is Sesame (Sesamum indicum L.)

(Amoo et al., 2017). It is a self-pollinated diploid plant (2n = 26)

with oil-rich seeds (50–60%) and antioxidants (Sharma et al.,

2014). The size of the sesame genome, which is around

350 megabytes, has not been extensively studied. In a sesame

reference genome with a low amount of repetitive sequences

(28.5%), a total of 27,148 genes have been annotated (Wang et al.,

2014). Sesame seeds are a protein source, a high-quality edible oil

with a high amount of polyunsaturated fatty acids and various

other nutrients, including vitamins, minerals, and important

antioxidant lignans (sesamin, sesamolin, sesamol) (Dar and

Arumugam, 2013; Pathak et al., 2017). Sesame seed oil has

long been used for human consumption and various

industrial applications.

Recently, it received much attention due to its high oil

quality, which contains many oleic and linoleic acids (Dar

et al., 2019a). Asia produces 70% of the world’s Sesame, while

Africa accounts for the remaining 26%. India, Myanmar, China,

Sudan, Uganda, Ethiopia, and Nigeria are the world’s major

producers of Sesame (Food and Agriculture Organization of the

United Nations, 2018). In Saudi Arabia (KSA), Sesame is an

economic crop cultivated in Makkah and Gizan regions (Sher

and Hussain, 2009; Alyemeni et al., 2011). Sesame production in

KSA is 4.021 tons from 3.056 ha, and the average seed yield is

623 kg ha−1 (Ministry of environment water and agricultural,

2021). Saudi Arabis’s Sesame stays undeveloped because of many

restrictions, such as uncharacterized plant material and the lack

of improved cultivars. This situation can be improved by

generating and releasing high-yielding, high-quality varieties

with high adaptability to the growing circumstances of this

crop (Nyongesa et al., 2013). Previous to that, genetic

information on local landraces is required to examine the

current genetic diversity.

Estimating genetic diversity is considered a precursor for

crop improvement, giving relevant data for selections and

breeding programs (Pal et al., 2016; Erdinc et al., 2021;

Hasanbegovic et al., 2021). Furthermore, it is helping

researchers develop new cultivars with desired traits such as

yield and quality; genetic resources facilitate the introgression of

novel traits required in the production of plants under different

climates (Holmes et al., 2019; Park et al., 2021). Genetic

polymorphism in Sesame was established using germplasm

pool, phenotyping, and genotyping selections. New traits and

gene discovery programs in Sesame are based on maintaining its

genetic diversity and the evolution of new sources and landraces

with high yield components and resistance to pests and diseases.

Moreover, resistance to different abiotic stresses and high

nutritional value and quality through producing marker-

assisted breeding by making crosses from promising

concerned stress-tolerant genotypes and selecting among their

progeny using gene-specific markers (Hika et al., 2015a; Hika

et al., 2015b; Teklu et al., 2021).

Enhancement of the efficiency of the breeding strategy for

Sesame using a molecular marker to investigate the phylogenetic

relationship and genetic diversity is very significant (Wang et al.,

2012; Park et al., 2014). Molecular markers have been widely used

to check the identity and purity of cultivars and assess their

genetic variability in different crops. Also, environmental factors

do not influence them, and DNA can be analyzed from any

growth stage (Dar et al., 2019b; Abd El-Moneim et al., 2021).

Several marker systems have been utilized to investigate the

genetic variability and phylogenetic associations between

sesame cultivars, including Random Amplified Polymorphic

DNA (RAPD) (Pham et al., 2009; Dar et al., 2017); inter

simple sequence repeats (ISSR) (Nyongesa et al., 2013; Abate

et al., 2015), simple sequence repeats (SSRs) (Uncu et al., 2015;

Dossa et al., 2016; Sehr et al., 2016) amplified fragment length

polymorphism (AFLP) (Laurentin and Karlovsky, 2007); and

Sequence Related Amplified Polymorphism (SRAP) ((Ali AL-

somain et al., 2017).

SCoT (Start Codon Targeted) is a strategy for creating a plant

DNA marker system based on conserved sequences flanking the

ATG regions of the start codon in plant genes (Collard and

Mackill, 2009). No prior knowledge of the sequence under

investigation is required to use this marker system. To the

best of our knowledge, using SCoT marker to characterize

genetic diversity in sesame germplasm has not yet been

described in other molecular investigations in Sesamum

indicum L except in the report of Maini and Dasgupta

(Bhattacharjee and Dasgupta, 2020). ISSR and SCoT markers

have been proven valuable in genetic diversity investigations

because of their high reproducibility and great ability to detect

polymorphism (Thakur et al., 2021a; Igwe et al., 2022).

Genetic drift, mutation, and natural selection within and

among populations stimulate genetic diversity and
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differentiation of populations. Population genetics is helpful for

the evolution of organisms that respond to different biotic and

abiotic stresses determining resources, genetic composition, and

differentiation of populations (Hancock et al., 2021).

Recently, biochemical markers to estimate genetic diversity

has received much interest. Because of its simplicity and efficacy

in determining crop germplasm genetic diversity, sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) is commonly utilized among biochemical techniques

(Nisar et al., 2011; Sharma and Krishna, 2017; Gowayed and

Abd El-Moneim, 2021). Akbar et al. (Akbar et al., 2012) used

SDS-PAGE to analyze the genetic diversity of 105 sesame

accessions obtained from various agroecological locations in

Pakistan. A total of 20 polypeptide bands were found, with

molecular weights ranging from 13.5 to 100 kDa, 14 and 6 of

which were polymorphic and monomorphic, respectively.

The most important aims in cytogenetic investigations are

chromosome identification and karyotype study. In the

cytological examination, karyotype study is vital for

demonstrating origin, polidy, chromosome attributes, and

taxonomic and phylogenetic relationships between plants

(Eroğlu et al., 2013; Akbar et al., 2020; EL-Mansy et al., 2021).

Karyoevolutionary forms are illustrated and demonstrated by

studying karyotype attributes and their formula (Weiss-

Schneeweiss et al., 2013; Soliman et al., 2019; Soliman et al.,

2020). Genetic diversity of related species using Karyotype

analysis was used to estimate the evolution of chromosomes

and delimitate different formulae patterns that are considered the

main tool in the mechanism of changes in chromosomal

evolution (Kamel et al., 2014; Soliman et al., 2016). There are

three cytogenetic groups for Sesame based on chromosome

number included 1) first group with chromosome number

2n = 26 for Sesamum indicum, S. alatum, S. capense, S.

schenckii, and S. malabaricum 2) the second group with

chromosome number 2n = 32 for S. prostratum, S. laciniatum,

S. angolense, and S. angustifolium and 3) third group with

chromosome number 2n = 64 for S. radiatum, S. occidentale,

and S. schinzianum. All Sesamum species are self-pollination.

The cross-compatibility was limited because of the difference in

chromosome number between different Sesamum species

(Carlsson et al., 2008; Kumari and Ganesamurthy, 2015).

Morinaga et al. (Morinaga et al., 1929) are the first who

investigate the chromosome number of the cultivated Sesame

as x = 8, 13, and 2n = 26. There are not many cytogenetic and

molecular investigations on Sesamum indicum. (Liu et al., 2018).

Molecular and cytological relationships give informative

knowledge and adequate information in plant breeding

strategies that help transfer desirable characters and genes

from one crop to another. Thus, this paper aimed to study

genetic diversity between various cultivated genotypes of

Sesamum indicum in Saudi Arabia using physiological,

biochemical, cytological analysis, and molecular attributes

(SCoT & ISSR).

Material and methods

Plant material

Six local sesame cultivars were provided by the Ministry of

Environment, Water, and Agriculture in Saudi Arabia (Table 1).

Morpho-physiological and agronomical
parameters

Plant height, harvest index (%), seed yield (Kg/ha) total plant

dry matter (kg/ha) were estimated by randomly collecting five

plants (86 days) for each genotype. The field experiments were

conducted in the faculty of science, Arish university. The

genotypes were arranged in a randomized complete block

design with three replications. Each genotype was sown in a

plot size of 3.6 m, consisting of three rows of 2 m in length.

Spacing between rows and plants was 60 and 15 cm, respectively,

resulting in 30 plants plot-1. The experiment was irrigated by

100% of the calculated crop water requirement [?]. Fertilizer in

the form of Calcium superphosphate (15.5% P2O5) at a rate of

200 kg/fed and potassium sulphate (48%K2O) at 100 kg/fed rate

was added during soil preparation. Nitrogen in the form of

ammonium nitrate (33%) at a rate of 150 kg was manually

side-dressed into three portions, at sowing, after thinning, and

at the flowering stage. All agricultural practices were adopted as

recommended for each location. In order to compare the

performance of the studied sesame genotypes, ten plants/

genotypes (86 days) from each plot were selected randomly

for data collection. The studied traits were plant height, seed

yield (Kg/ha), harvest index (%), and total plant dry matter (kg/

ha). The weight of all the seeds and stover were measured by an

electrical balance and converted the yield in kg ha-1. The harvest

index was calculated using the following formula:

Harvest index(%) � Seed yield
Bio logical yield

× 100

Where, Biological yield = Seed yield + Stover yield.

TABLE 1 Locations of the studied cultivars used in this study.

Sr Location Cultivar

G1 Al-Ahsa Ahs-670

G2 Asser As-1236

G3 Al-Baha Bah-697

G4 Jizan Jiz-511

G5 Jizan Jiz-517

G6 Al-Baha Bah-312
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Biochemical Parameters

The oil from seeds for each genotype was extracted in hexane

on a soxhlet apparatus. Methyl esters were obtained according to

the method of Anjani and Yadav (Anjani and Yadav, 2017). The

organic phase was extracted with hexane and washed with water

till neutral pH. The hexane was dried over anhydrous sodium

sulfate and concentrated with nitrogen gas to get methyl esters.

The fatty acid composition was determined using an Agilent

7890B gas chromatograph (GC) equipped with a flame ionization

detector (FID) and an autosampler.

Genomic DNA extraction and PCR
conditions

The CTAB approach (Doyle, 1990; Clarke, 2009) was used

to extract DNA from 2 g of young leaves obtained from 10-

day-old seedling plants of each genotype investigated. The

total volume of the PCR systems was 20 μL, which contained

10 μL MIX, 8 μL ddH2O, 1 μL primers (10 μM), and 1 μL

template DNA (50 ng/μL). Twenty ISSR and twenty-five

SCoT primers were selected from previous research to be

employed in this research (Table 2). The marker amplification

reaction was performed according to the following program:

4 min for predenaturation at 95°C for 3 min, followed by

40 cycles of denaturation at 95°C for 40 s, annealing at

44–52°C/ISSR, and 48–55°C/SCoT for 40 s, and extension at

72°C for 2 min, with a final extension at 72°C for 7 min. The

PCR products according to the primers for both markers were

separated on a 1.5% agarose gel.

SDS-PAGE analysis

Protein banding patterns were analyzed using the Sodium

Dodecyle Sulfate Polyacrylamide Gel Electrophoresis (SDS-

PAGE) technique. Total protein was extracted according to

Laemmli (Laemmli, 1970). Leaves of sesame samples were

collected and were used for the total protein extraction. The

protein content was determined according to the method of

Bradford (Bradford, 1976). Furthermore, 1) or (0) refer to the

presence or absence of each recorded protein band for each

genotype.

TABLE 2 Name of primer and their sequence used in the research.

ISSR name Sequence SCoT name Sequences

ISSR 1 (AG)8T SCoT 1 CAACAATGGCTACCACC

ISSR 2 (GA)8T SCoT 2 CAACAATGGCTACCACG

ISSR 3 (CT)8T SCoT 3 AAGCAATGGCTACCACC

ISSR 4 (CT)8A SCoT 4 ACGACATGGCGACCAAC

ISSR 5 (CA)8T SCoT 5 ACCATGGCTACCACCGA

ISSR 6 (GT)8A SCoT 6 CACCATGGCTACCACCA

ISSR 7 (AG)8C SCoT 7 ACCATGGCTACCACCGC

ISSR 8 (AG)8G SCoT 8 ACGACATGGCGACCCAC

ISSR 9 (GA)8C SCoT 9 CCATGGCTACCACCGCA

ISSR 10 (CT)8G SCoT 10 ACGACATGGCGACCGCG

ISSR 11 (AC)8 C SCoT 11 CAACAATGGCTACCACCC

ISSR 12 (TG)8 A SCoT 12 ACCATGGCTACCACCGCG

ISSR 13 (AG)8 YT SCoT 13 CACCATGGCTACCACCAG

ISSR 14 (AG)8 YA SCoT 14 CCATGGCTACCACCGCCT

ISSR 15 (GA)8 YT SCoT 15 CAACAATGGCTACCACGC

ISSR16 (CA)8 RG SCoT 16 ACGACATGGCGACCATCG

ISSR 17 (GT)8 YG SCoT 17 ACGACATGGCGACCCACA

ISSR 18 (AC)8 YT SCoT 18 CCATGGCTACCACCGCAC

ISSR 19 (GAA)6 SCoT 19 ACGACATGGCGACCGCGA

ISSR 20 (CAG)5 SCoT 20 ACG ACA TGG CGA CCA CGC

SCoT 21 ACC ATG GCT ACC ACC GGC

SCoT 22 ACG ACA TGG CGA CCC ACA

SCoT23 CAA TGG CTA CCA CTA CAG

SCoT 24 ACA ATG GCT ACC ACT GAG

SCoT 25 ACA ATG CTA CCA CCA AGC
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Data analysis

Every clear band of each primer was recorded as present 1) or

absent (0). To evaluate the investigated primers’ informativeness,

(PIC, EMR, MI, and Rp) parameters were determined for each

primer according to Anderson et al. (1993), Powell et al. (1996),

Prevost and Wilkinson (1999), Nagaraju et al. (2001) (Anderson

et al., 1993; Powell et al., 1996; Prevost and Wilkinson, 1999;

Nagaraju et al., 2001). GenAlEx software V. 6.5 was utilized to

compute the mean number of alleles per loci (Na), the average

number of effective alleles per loci (Ne), Shannon’s information

index (I), expected heterozygosity (He), and unbiased expected

heterozygosity (uHe) for every primer across the studied

genotypes based on the frequency of alleles of each locus.

Principle Component Analysis scatter diagram for cyto-molecular

data was made based on a Dice coefficient genetic similarity matrix.

In addition, ClustVis was utilized to construct heatmaps using the R

Package (https://biit.cs.ut.ee/clustvis/) (Metsalu and Vilo, 2015). A

cluster dendrogram of the investigated cultivars was created

according to molecular attributes via the unweighted pair group

method of averages (UPGMA) in NTSYSpc software V. 2.1. The

Morpho-physiological, Agronomical and Biochemical Parameters

data were analyzed using SAS Software, and mean differences

among studied genotypes were calculated using Duncan test as

post hoc at a significant 5% level.

Cytological study

Twenty-five seeds from each genotype of Sesamewere germinated

in sterilized filter paper in Petri dishes at RT (25°C) for 3–5 days. Root

tips with length (1–1.5 cm) were collected and pretreated using 8-

hydroxyquinoline for 2 h at 4°C. Then root tips were washed with

distilled water and then fixed in Alcohol: glacial acetic acid (3:1 v/v) for

24 h. The root tips are rinsed with DH2o and kept in Alcohol till use at

4 °C. The hydrolysis step occurred using 1.0 N HCl for 30min at RT;

then, root tips were stained with 2% aceto-orcein stain for 2 h.

Counting chromosome numbers for 20 metaphase cells using

FIGURE 1
Physio-morphological parameters for different genotypes of sesame. (A); harvest index (%) and Plant height (cm). (B); Total plant dry matter (kg
ha-1) and seed yield (kg ha-1). Values are the averages of three replicates ±SD. Different letters indicate significant differences according to Duncan’s
multiple range tests (p < 0.05).
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FIGURE 2
Percentage of oil content and fatty acids content (Oleic acid & Palmitic acid) for different sesame genotypes. Values are the average of three
replicates ±SD. Different letters indicate significant differences according to Duncan’s multiple range tests (p < 0.05).

TABLE 3 Types and number of generated DNA bands, polymorphism percentage, and informativeness comparison obtained via ISSR primers.

Number of fragments FS bp

MB UB PB TAB Larger Smaller PIC EMR MI P (%) Rp

ISSR 1 6.00 3.00 8.00 14.00 960 180 0.41 4.57 1.89 57.14 17.22

ISSR 2 0.00 9.00 19.00 19.00 1,140 75 0.82 19.00 15.50 100.00 7.01

ISSR 3 2.00 0.00 4.00 6.00 950 445 0.39 2.67 1.05 66.67 7.28

ISSR 4 5.00 0.00 1.00 6.00 980 275 0.09 0.17 0.02 16.67 10.89

ISSR 5 1.00 6.00 12.00 13.00 1,260 370 0.75 11.08 8.31 92.31 6.50

ISSR 6 1.00 8.00 13.00 14.00 1,280 240 0.73 12.07 8.84 92.86 7.50

ISSR 7 4.00 3.00 9.00 13.00 1,330 410 0.45 6.23 2.82 69.23 14.22

ISSR 8 5.00 2.00 6.00 11.00 1,070 290 0.47 3.27 1.54 54.55 11.67

ISSR 9 0.00 3.00 7.00 7.00 1,540 330 0.81 7.00 5.67 100.00 2.67

ISSR 10 0.00 6.00 17.00 17.00 1,245 160 0.75 17.00 12.83 100.00 8.33

ISSR 11 7.00 2.00 2.00 9.00 1,425 260 0.22 0.44 0.10 22.22 14.11

ISSR 12 10.00 2.00 4.00 14.00 1,330 215 0.25 1.14 0.28 28.57 21.11

ISSR 13 4.00 3.00 10.00 14.00 1,370 190 0.51 7.14 3.66 71.43 13.67

ISSR 14 2.00 4.00 11.00 13.00 1,280 290 0.57 9.31 5.33 84.62 11.11

ISSR 15 1.00 3.00 12.00 13.00 1,040 210 0.62 11.08 6.91 92.31 9.77

ISSR 16 6.00 0.00 4.00 10.00 1,400 125 0.29 1.60 0.47 40.00 14.11

ISSR 17 6.00 0.00 3.00 9.00 980 230 0.22 1.00 0.22 33.33 14.00

ISSR 18 3.00 4.00 7.00 10.00 380 95 0.51 4.90 2.48 70.00 9.89

ISSR 19 4.00 2.00 6.00 10.00 1,110 240 0.47 3.60 1.69 60.00 10.61

ISSR 20 5.00 2.00 6.00 11.00 1,065 280 0.44 3.27 1.45 54.55 12.22

Total 72.00 62.00 161.00 233.00 9.79 126.54 81.05 69.1% 223.90

Average 3.60 3.10 8.05 11.65 0.49 6.33 4.05 65.32 11.19

MB, monomorphic band; UB, unique band; PB, polymorphic band; TAB, total amplified bands; FS, fragment size; PIC, polymorphic information content; EMR, effective multiplex ratio;

MI, marker index; P%, percent of polymorphism; Rp, resolving power.
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Olympus CX40 microscope and photographed using a digital camera

at X = 100. Karyotype parameters and ideogram assessments were

estimated via IdeoKar software at: http://agri.uok.ac.ir/ideokar/index.

htm; different karyotype parameters’ equations were calculated and

presented in Supplementary Table S1.

Results

Physio-morphological parameters

Genotype G6 (Bah-312) had the highest plant height, harvest

index, total plant dry matter, and seed yield with values of 131 cm,

21.22 (%), 3,573.2 (Kg ha−1), 594.58 (Kg ha−1), respectively, and the

lowest values were recorded in genotype G1 (Ahs-670) as shown in)

Figure 1.

Biochemical parameters

The highest values of oil content and fatty acids content (Oleic

acid, Linoleic acid & Palmitic acid) were recorded in genotype G6

(Bah-312) with values of 86.22% for oil content, 49.34% for oleic

acid, and 19.32% for palmitic acid as shown in)Figure 2.

Polymorphism as revealed by ISSRs

The size of generating alleles for 20 ISSR primers varied from

75 to 1,425 bp. A total of 233 alleles were amplified in the studied

samples of different genotypes used in current investigation

(Table 3). Out of which, 161 were polymorphic alleles, and

72 alleles were monomorphic. The number of polymorphic

alleles varied from 1 (ISSR 4) to 19 (ISSR 2), with a mean of 8.5.

TABLE 4 Types and number of generated DNA bands, polymorphism percentage, and informativeness comparison obtained via SCoT primers.

Number of fragments FS bp

MB UB PB TAB Larger Smaller PIC EMR MI P (%) Rp

SCoT 1 4.00 1.00 5.00 9.00 885 260 0.27 2.78 0.75 55.56 13.11

SCoT 2 2.00 0.00 8.00 10.00 1,480 285 0.39 6.40 2.49 80.00 12.22

SCoT 3 4.00 0.00 2.00 6.00 480 150 0.10 0.67 0.07 33.33 10.78

SCoT 4 0.00 5.00 13.00 13.00 1,700 445 0.84 13.00 10.89 100.00 4.22

SCoT 5 6.00 0.00 3.00 9.00 1,520 350 0.16 1.00 0.16 33.33 15.17

SCoT 6 1.00 6.00 7.00 8.00 2,150 500 0.82 6.13 5.04 87.50 2.83

SCoT 7 8.00 1.00 5.00 13.00 1,430 330 0.24 1.92 0.46 38.46 19.72

SCoT 8 2.00 2.00 7.00 9.00 530 350 0.51 5.44 2.79 77.78 8.78

SCoT 9 4.00 1.00 5.00 9.00 1,250 470 0.32 2.78 0.89 55.56 12.22

SCoT 10 1.00 2.00 4.00 5.00 1,580 830 0.61 3.20 1.95 80.00 3.89

SCoT 11 2.00 5.00 8.00 10.00 1,210 350 0.69 6.40 4.44 80.00 6.11

SCoT 12 0.00 1.00 12.00 12.00 1,370 200 0.67 12.00 8.03 100.00 7.95

SCoT 13 2.00 2.00 6.00 8.00 1,530 340 0.63 4.50 2.83 75.00 5.94

SCoT 14 0.00 4.00 10.00 10.00 950 280 0.71 10.00 7.14 100.00 5.72

SCoT 15 1.00 2.00 8.00 9.00 2040 510 0.54 7.11 3.84 88.89 8.28

SCoT 16 6.00 1.00 4.00 10.00 380 80 0.35 1.60 0.56 40.00 13.00

SCoT 17 2.00 1.00 7.00 9.00 1,490 310 0.56 5.44 3.06 77.78 7.89

SCoT 18 2.00 0.00 4.00 6.00 200 100 0.54 2.67 1.43 66.67 5.56

SCoT 19 2.00 1.00 9.00 11.00 270 100 0.69 7.36 5.10 81.82 6.78

SCoT 20 2.00 2.00 9.00 11.00 330 100 0.65 7.36 4.76 81.82 7.78

SCoT 21 0.00 18.00 31.00 31.00 1940 90 0.88 31.00 27.16 100.00 7.67

SCoT 22 5.00 5.00 9.00 14.00 1,400 200 0.53 5.79 3.06 64.29 13.17

SCoT 23 1.00 3.00 13.00 14.00 930 110 0.62 12.07 7.45 92.86 10.72

SCoT 24 4.00 2.00 7.00 11.00 420 170 0.53 4.45 2.34 63.64 10.44

SCoT 25 0.00 11.00 18.00 18.00 1,300 155 0.92 18.00 16.50 100.00 3.00

Total 61.00 76.00 214.00 275.00 13.76 179.08 123.20 77.8% 222.95

Average 2.44 3.04 8.56 11.00 0.55 7.16 4.93 74.17 8.92

MB, monomorphic band; UB, unique band; PB, polymorphic band; TAB, total amplified bands; FS, fragment size; PIC, polymorphic information content; EMR, effective multiplex ratio;

MI, marker index; P%, percent of polymorphism; Rp, resolving power.
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The average polymorphic percentage (P%) was 65.32% across all the

studied genotypes. The highestP% was100% for ISSR 2,9,10, and the

lowest was 16.67% for ISSR 4.Moreover, the PIC values ranged from

0.09 (ISSR 4) to 0.82 (ISSR 2), with an average of 0.49. The highest

value of MI was recorded by ISSR 2 (15.50), while the least was for

primer ISSR 4 (0.02), with the average 4.05. EMR values varied from

0.17 to 19 for primers ISSR four and ISSR 2, respectively, whereas the

mean value was 6.33. Rp values varied from 7.01 (ISSR 2) to 21.11

(ISSR 12), whereas the mean value was 11.19 distinguishing the

different genotypes. Generally, ISSR two and ISSR four primers

revealed the highest and least values for P%, PIC, MI, and EMR%,

respectively.

Polymorphism as revealed by SCoT

As shown in Table 4, out of 275 amplified alleles, 214 and

76 alleles were polymorphic and monomorphic, respectively,

when studying 25 SCoT primers. The size of generated alleles

ranged from 80 to 2,150 bp. Furthermore, SCoT 21 & three

primers had the highest 31) and lowest 2) number of

polymorphic alleles. The average P% was 77.8% across all

genotypes. The highest P% was (100%) for primers SCoT 4,

12, 14, 21, and 25, while the least was 33.33% for primers SCoT

three and 5. The highest value for PIC was 0.92 for primer SCoT

25. While the lowest value was 0.10 for primer SCoT 3, and the

FIGURE 3
Total number of positive and negative unique bands revealed by ISSR and SCoT of the studied cultivars. (1) Ahs-670, (2) As-1236, (3) Bah-697, (4)
Jiz-511, (5) Jiz-517 and (6) Bah-312

TABLE 5 Number and types of amplified protein bands and
polymorphism percentages.

TAB MB PB UB %P (%)

G1 5 4 1 0 20

G2 5 4 1 0 20

G3 6 4 2 0 33.33

G4 7 4 3 0 42.86

G5 7 4 3 0 42.86

G6 6 4 2 0 33.33

TAB, total amplified bands; MB, monomorphic band; PB, polymorphic band; UB,

unique band, %P percent of polymorphism.

FIGURE 4
SDS-PAGE protein profile of studied genotypes. (M) = marker
protein) (1) Ahs-670, (2) As-1236, (3) Bah-697, (4) Jiz-511, (5) Jiz-
517 and (6) Bah-312
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mean was 0.55/primer. On the other hand, the highest (27.16)

and lowest values (0.07) of MI were observed for SCoT 21 and

three respectively, and the average value was 4.93. Furthermore,

the values of EMR varied from 0.67 to 31 for SCoT 3 and

21 primers, respectively, and the average was 7.16. The Rp

values varied between 2.83 (SCoT 6) to 19.72 (SCoT 7). While

the average Rp was 8.92. In conclusion, primers SCoT 21 and

three revealed the highest and least values for %P, PIC, MI, and

EMR, respectively.

Positive and negative specific markers
revealed by ISSR and SCoT

The number of genotype-specific markers (positive and

negative) scored across studied genotypes was as high as

188, in which 84 of them were generated from ISSR, while

104 were from SCoT analysis (Figure 3). However, ISSR two

showed the highest unique bands (nine markers) while SCoT

21 exhibited the highest number of unique bands

FIGURE 5
Multivariate heatmap illustrating the genetic diversity of studied sesame cultivars, based on the 20 ISSR, 25 SCoT primers, and SDS-PAGE profile
using the module of a heatmap of ClustVis—an online tool for clustering and visualizing multivariate data. (1) Ahs-670, (2) As-1236, (3) Bah-697, (4)
Jiz-511, (5) Jiz-517 and (6) Bah-312

TABLE 6 Genetic parameters for the studied Sesame genotypes using 20 ISSR primers and 25 SCoT primers.

Genotypes ISSR SCoT

Na Ne I He uHe Na Ne I He uHe

Ahs-670 1.291 1.318 0.260 0.161 0.231 1.141 1.260 0.223 0.153 0.203

As-1236 1.303 1.363 0.310 0.212 0.283 1.249 1.340 0.290 0.199 0.265

Bah-697 1.265 1.308 0.264 0.181 0.241 1.224 1.304 0.260 0.178 0.237

Jiz-511 1.282 1.332 0.284 0.195 0.260 1.238 1.324 0.277 0.190 0.253

Jiz-517 1.261 1.314 0.269 0.184 0.245 1.144 1.265 0.227 0.156 0.207

Bah-312 1.359 1.372 0.318 0.218 0.290 1.310 1.357 0.306 0.209 0.279

Total 1.293 1.333 0.285 0.195 0.260 1.218 1.308 0.264 0.181 0.241

Na, No of Different Alleles; Ne, No of Effective Alleles = 1/(p̂2 + q̂2); I, Shannon’s Information Index = −1* [p * Ln (p) + q * Ln(q)]; He, Expected Heterozygosity = 2 *p *q; uHe, Unbiased

Expected Heterozygosity = [2N/(2N-1)] * He; q, (1–Band Freq.) 0̂.5 and p = 1–q.
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(18 markers). The highest number of unique bands across

both types of markers was exhibited by genotype 6

(41 amplicons), 15 markers generated by ISSR, and

26 markers amplified by SCoT, while the least was scored

for genotype 4 (23 amplicons).

Polymorphism as revealed by SDS-PAGE
analysis

Eight polypeptides’ bands were scored amongst the six

sesame genotypes. Of these eight bands, 4 (50%) were

polymorphic, and 4 (50%) were monomorphic. The size of

the protein bands amplified by SDS-PAGE ranged from 2 to

85 kDa. Bands 10, 20, 50, and 85 were present in all the

genotypes, whereas bands 2 and 59 kDa were present only

in G4 and G5. Table 5 concluded that G4 and G5 scored the

highest amplified bands (seven). In addition, the highest

polymorphism percentage was 43% for G4 and

G5 genotypes. Meanwhile, the least polymorphism

percentage was 20% for G1 and G2 genotypes.

Additionally, no positive or negative specific bands

amplified among the studied genotypes were observed. The

variability in the intensity of the studied genotypes was viewed

in G4 and G5 protein bands that exhibited the amount of

protein peptides increasing at a specific molecular weight

(Figure 4).

Phylogenetic relationship as revealed by
cluster analysis using SDS-PAGE, ISSR, and
SCoT data

The genetic variance between the studied genotypes was

detailed in the multivariate similarity heatmap in (Figure 5).

The multivariate similarities heatmap was conducted using R

Package based on SDS-PAGE, ISSR, and SCoT data; the six

genotypes were clustered into two main clades. The first clade

contained two sub-clades; the first subclade contained genotypes

G3& G4, and the second sub-clade contained genotypes (G1 &

G2). The second clade contained genotypes (G5 & G6).

Population genetics and genetic diversity

A total of 20 ISSR primers and 25 SCoT primers were used to

study the population genetics of the Sesame genotypes; the

genetic diversity data was illustrated in Table 6. For the ISSR

marker, the number of different alleles (Na) per locus varied from

1.261 in G5 to 1.359 in G6; the number of effective alleles (Ne)

per locus varied from 1.308 in G3 to 1.333 in G6. The Shannon’s

index (I) varied from 0.260 in G1 to 0.318 in G6; the expected

heterozygosity (He) values ranged from 0.161 in G1 to 0.218 in

G6, where Unbiased Expected Heterozygosity (uHe) values

varied from 0.231 in G1 to 0.290 in G6. Regarding the SCoT

marker, the number of different alleles (Na) per locus varied from

FIGURE 6
Chromosome number for all studied genotypes 2n = 26. (G1) Ahs-670, (G2) As-1236, (G3) Bah-697, (G4) Jiz-511, (G5) Jiz-517 and (G6) Bah-312.
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1.141 in G1 to 1.310 in G6; the number of effective alleles (Ne)

per locus varied from 1.260 in G1 to 1.357 in G6. The Shannon’s

index (I) was varied from 0.223 in G1 to 0.306 in G6; the expected

heterozygosity (He) values ranged from 0.153 in G1 to 0.209 in

G6, where Unbiased Expected Heterozygosity (uHe) values

varied from 0.203 in G1 to 0.279 in G6; the percentage of

polymorphism was varied from43.19% in G6 to 52.56% in

G1 for ISSR marker, where polymorphism percentage ranged

from 36.82% in G6 to 50.54% in G1 for SCoT marker. In general,

the highest value of genetic diversity (He) was 0.195 for the ISSR

marker.

Cytological analysis

All studied genotypes from Sesame with chromosome

number 2n = 26 as shown in (Figure 6); karyotype attributes

differed between different genotypes as shown in Table 7, and the

ideogram for the haploid chromosome number was illustrated

for the studied genotypes in (Figure 7). Haploid chromosome

length varied from the lowest value 88.76 µ in genotype G3 to the

highest value 119.09 µ in genotype G6. Genotype (G) has the

highest values from karyotype asymmetry index (AsK%), the

degree of asymmetry of karyotype (A), mean centromeric

asymmetry (McA), coefficient of variation of the centromeric

index (CVci), and intrachromosomal asymmetry index (A1) with

value 58.50, 0.17, 16.83, 14.92 and 0.27 respectively. The highest

percentage from total form percentage (TF%), centromeric index

(CI) with values 44.06% and 0.44 respectively, was recorded in

genotype G6; also, G6 presented the lowest value from A and A1

0.12 and 0.20, respectively. Stebbins formula was 2B in all

genotypes except genotype G4 was 1B, and G5 was 2A.

Karyotype formula illustrated nearly submetacentric (-), nearly

metacentric (nm), and nearly subtelocentric (nst) in all

genotypes. The scatter diagrams of different karyotype

parameters between the studied six genotypes are illustrated in

(Figure 8). The Scatter diagrams were conducted to assess the

classification strength and demonstrate the relationship among

different genotypes. Panels (a, b and c) between A1 and A2,

between MCA and AI, and between Cvci and Cvcl clustered the

genotypes into two groups: genotypes (G5 & G6) in separate

groups and genotypes (G1-G4) in another group. Where scatter

diagram between MCA and Cvci (Panel d) recorded that

genotypes (G5& G6) are interposed inside the second groups

containing the other four genotypes.

Combined cytological, biochemical (SDS-
PAGE), and molecular markers (ISSR
&SCoT) analysis

Multivariate similarity heatmap analysis using cytological,

biochemical (SDS-PAGE), andmolecular markers (ISSR &SCoT)T
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was utilized to illustrate the genetic distance between sesame

genotypes and illustrated the classification of these genotypes in

(Figure 9). The sesame cultivars were grouped into two main

clusters; the first cluster contained two sub-cluster: the first sub-

cluster involved genotypes G5 and G6, the second sub-cluster

included genotypes G3 and G4. The second cluster contained

genotypes G1 and G2. Principle component analysis is a

multivariate analysis for data used to visualize relationships,

similarities, and dissimilarities among various cyto-molecular

data against different sesame genotypes. Principle component

analysis (PCA) for all cyto-molecular data for the six sesame

genotypes was illustrated in (Figure 10). PCA explained the

maximum variation interaction by cyto-molecular attributes

ordinated the studied genotypes into two groups; one group

contained genotypes G1 and G2, and the second group contained

genotypes (G1-G4) in a separate one. The first two principal

components (PC1 & PC2) with total variance 34.4% and 25.7%

respectively. These values are considered the best measure for the

FIGURE 7
Ideogram for haploid chromosome number of the studied Sesame genotypes. (G1) Ahs-670, (G2) As-1236, (G3) Bah-697, (G4) Jiz-511, (G5) Jiz-
517 and (G6) Bah-312.
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quality of ordination and, the strength of the genotypes–morpho-

physiological relationship.

Discussion

The significant genetic variation in Sesamum indicum L. should

be considered when developing conservation strategies and breeding

programs. Morphological and molecular analyses confirmed this.

Identification based on morphological markers usually requires

much time and tedious work (Abd El-Moneim et al., 2021).

Furthermore, characterization of genetic variability in sesame

germplasm utilizing molecular markers is minimal. Likewise, single

neutral molecular marker technology has limitations in studying

Sesame’s genetic diversity and relationships in-depth. Different

neutral molecular marker technologies target different regions.

Thus, the extensive use of neutral molecular markers targeting

different regions is conducive to the comprehensive elucidation of

plant genetic diversity and relationships (Gogoi et al., 2020). To date,

many applications combining multiple molecular marker techniques

have been employed to evaluate the genetic diversity and genetic

relationships of plants (Antony et al., 2015; Thakur et al., 2021b;

Tikendra et al., 2021). The combination of 45 ISSR and SCoT primers

produced a higher number of alleles (508) with an average of 69% and

78% (P), demonstrating the usefulness of the selected primers for

identifying the genetic variability between the studied cultivars.

The use of many polymorphic ISSR primers is of great utility as it

raises the accuracy of the explanation of the results, especially if the

amplified profiles are reproducible (Handaji et al., 2012). Our results

revealed 100% polymorphism generated by different primers (ISSR

2,9,10) and (SCoT 4, 12,14,21, and 25) that is possibly be caused by the

genetic material examined, the nature of the ISSR primers, and the

hybridization temperatures utilized (Sánchez de laHoz et al., 1996). In

the same context, the average polymorphism rate (69.1%) was higher

than that stated in earlier research using ISSR markers to explore the

genetic diversity in Indian Sesame (57%) (Kumar and Sharma, 2011)

and Korean Sesame (33%) (Kim et al., 2002). In contrast, it was lower

than that recorded in Sesame from Africa and wild relatives (70.6%)

(Nyongesa et al., 2013), Ethiopian Sesame (75.86%) (Woldesenbet

et al., 2015), and byAnitha et al. (Anitha et al., 2010) (98.5%), (ElHarfi

et al., 2021), (80.7%). Our findings concluded that ISSR-PCR analysis

is helpful for the identification of germplasms and assessment of

FIGURE 8
A scattered diagram of different karyotype asymmetry between different six sesame genotypes (A) A1 versus A2 parameter, (B) MCA versus AI
parameter, (C)CVcl versusCVci parameter, and (D)MCA versusCVci parameter. (G1) Ahs-670, (G2) As-1236, (G3) Bah-697, (G4) Jiz-511, (G5) Jiz-517
and (G6) Bah-312.
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genetic diversity among the sesame genotypes. These findings are in

accordance with the previous study of (Pradeep Reddy et al., 2002;

Sharma et al., 2009; Abate et al., 2015), who reported that ISSR

markers are a proper method in identifying high genetic diversity in

sesame germplasm. A limited number of research exists on using

SCoT markers to evaluate the genetic diversity between sesame

genotypes. In this regard, Bhattacharjee and Dasgupta, (2020) used

EST-SSR and SCoTmarkers to find out the genetic diversity between

30 sesame cultivars. The size of SCoT markers ranged between

200 and 1,500 bp, and alleles mean it was 9.6 alleles/primer, while

in our study ranged between 80 and 2,150 bp with alleles mean

11 alleles/primer. The discriminatory power of primers is measured

by the polymorphism Information Content (PIC) value, which is

utilized as a relative measure of polymorphism level. In other words,

PIC is used in linkage studies to determine the informativeness of a

genetic marker. The closer a primer’s value gets to 1, the more

polymorphic it is and themore likely it is to reveal allelic variation and

vice versa. The majority of primers utilized produced polymorphic

profiles with varying levels of polymorphism information. The lowest

PIC values were generated by (ISSR four and SCoT 3), indicating the

lowest diversity of these primers. In contrast, the highest values were

found in (ISSR two and SCoT 25) primers which give 100%

polymorphic bands, proving that it has the best ability to

discriminate among studied cultivars. The average of PIC was 0.49

& 0.55 for ISSR and SCoT, respectively, suggesting that both markers

are informative and useful for distinguishing the studied genotypes.

These values are lower than those obtained by (Kesawat et al., 2015)

(PIC = 0.675) using the ISSR marker and (Bhattacharjee and

Dasgupta, 2020) (PIC = 0.79) using SCoT markers. Oppositely,

the findings of PIC values in this research exceeded those of (El

Harfi et al., 2021) (PIC = 0.169) and (Zhang et al., 2012), who showed

an average of 0.20 in minicore and 0.18 in the Chinese sesame core

collection.

Besides PIC, we assessed the discriminatory power of the studied

primers via calculating the MI (marker index), which is a feature of a

marker, EMR (effective multiplex ratio) that is the result of the

fraction of polymorphic bands and the number of polymorphic

bands. Consequently, the higher polymorphism reveals a higher

FIGURE 9
Cluster tree for the studied six sesame genotypes based on all molecular markers and cytological parameters. (G1) Ahs-670, (G2) As-1236, (G3)
Bah-697, (G4) Jiz-511, (G5) Jiz-517 and (G6) Bah-312.
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EMR. In addition, the ability of a primer/marker combination to

detect changes between several genotypes is measured by its resolving

power (Rp) (Prevost andWilkinson, 1999); these characteristics have

not yet been described before in othermolecular research in Sesamum

indicum L. Several investigations have studied these features to

estimate the discriminatory power of molecular marker systems,

e.g., Wheat (using ISSR, EMR = 11.07, MI = 7.81, Rp = 8.7) and

(using SCoT, EMR = 9.37, MI = 6.71, Rp = 8.78) (Abd El-Moneim,

2020). Tomato (using ISSR, EMR = 2.33, MI = 1.03, Rp = 12.50) and

(SCoT, EMR = 4.28, MI = 2.27, Rp = 14.14) (Abdein et al., 2018).

Squash (using ISSR, EMR = 3.86, MI = 2.29, Rp = 6.65) and (using

SCoT, EMR = 6.76, MI = 4.77, Rp = 6.76) (Abdein et al., 2021). Our

study exhibited that the average EMR, MI, and Rp values was (6.33&

7.16), (4.05 & 4.93), and (11.19 &8.92) using ISSR and SCoT,

respectively. These means were higher that means reported by

(Dar et al., 2017) using SSR (EMR = 1, MI = 0.172, Rp = 0.213)

and using RAPD, EMR = 6.034, MI = 1.426, Rp = 4.012). In contrast,

our results were lower than (Laurentin and Karlovsky, 2007) using

AFLP (MI = 10.34, Rp = 18.94). In general, our results showed that

primers (ISSR 2 & SCoT 21) and (ISSR 4 & SCoT 3) had the highest

and least values for (P%, PIC, MI, and EMR), respectively,

demonstrating that these primers can be used to investigate

molecular polymorphism among studied genotypes. Additionally,

188 negative and positive unique amplicons were generated overall

for the studied primers. 108 amplicons were generated via SCoT

primers, while 84 amplicons were generated via ISSR primers.

Accordingly, the SCoT marker evaluated the genetic relationships

among sesame genotypes more effectively than ISSR. As a result, it

could be a helpful marker system for population genetics, genetic

diversity, and genotype improvement research. These results were in

harmony with (Abdein et al., 2018).

SDS-PAGE techniques are effectively employed for analyzing the

genetic diversity in various species of Wheat (Gowayed and Abd El-

Moneim, 2021), Brassica (Choudhary et al., 2015), and tomato

(Hameed et al., 2014). In addition, protein types and their

diversity vary between crop species, which may help in the early

detection of species at the seed level and acquiring the information on

clarity of genetic assets (Rahman and Hirata, 2004). Our findings

exposed a limited level of diversity between the studied sesame

genotypes. These findings agreed with Quenum et al. (Quenum

and Yan, 2017), who exhibited a small level of intraspecific

variability for seed protein between Sesame. Contrary, Nisar et al.

(Nisar et al., 2007) showed a high level of intraspecific variability for

seed protein between local and exotic chickpea germplasm.

Furthermore, our results agreed with Akbar et al. (Akbar et al.,

2012), who showed that sesame genotypes that exhibited a similar

protein banding patternmight be duplicated; it must be verified using

advancedmolecularmarkers. In the same context, population genetics

analysis of sesame genotypes was assessed using molecular markers.

The mean number of effective alleles Ne = 1.333 for the ISSR marker

and 1.308 for SCoT marker were lower than the effective alleles

among 277 sesame accessions using 14 SSR primers accumulated

from fifteen countries in four distinct continents (Park et al., 2014).

Themean of expected heterozygosity was 0.195 for ISSR and 0.181 for

SCoT, lower than values of 0.538, 0.30, 0.72, and 0.34 reported from

(Hika et al., 2015b;Asekova et al., 2018; Araújo et al., 2019; Teklu et al.,

2021) respectively using 14, 27, 23 and 10 SSR primers. The lowest

genetic diversity and heterozygosity recorded in this work suggested

the low genetic variation among studied genotypes. Low genetic

variability indicated population fragmentation, leading to limited

gene flow (Leimu et al., 2010). Maintaining diversity may be

difficult because of the limited size and quantity of populations.

Genetic drift, self-pollination, and inbreeding are some of the effects of

small populations that cause genetic diversity to be diminished

(Ferreira et al., 2013).

Additional cytogenetic analysis was carried out to examine the

existing genetic diversity between the studies germplasm and validate

or disprove the outcomes of the molecular marker analysis.

Cytological parameters, including chromosome number, karyotype

formula, and chromosome behavior between different cultivars, gave

effective information on plants’ structural changes and evolution. The

karyotype formula is one of the most crucial factors in identifying

plant species and cultivars (Sharma and Sharma, 2014; Soliman et al.,

2016). Karyotype parameters were used to evaluate the relationships

among different cultivars, including the chromosome size, position of

the centromere, and the number of chromosomes (Kolar et al., 2012).

The chromosome number of all investigated sesame cultivars was

2n = 26, agreeing with (Raghavan and Krishnamurthy, 1947;

Kobayashi, 1949; Nyongesa et al., 2014; Jha et al., 2020). The basic

chromosome number was x = 8 and x = 13 (Kobayashi, 1991). There

are no reports on the cytogenetics of sesame cultivars in KSA until

now. This may be because the Sesame contains very small size of

FIGURE 10
Principle Component Analysis (PCA) illustrated the genetic
diversity between six sesame genotypes using molecular and
cytological data. (G1) Ahs-670, (G2) As-1236, (G3) Bah-697, (G4)
Jiz-511, (G5) Jiz-517 and (G6) Bah-312.
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chromosomes, and the research on cytogenetics of Sesame was few

over the world (Raghavan and Krishnamurthy, 1947; Mukherjee,

1959). Changes to an asymmetric karyotype can arise by shifts in the

position of the centromere towards the telomere (intrachromosomal)

and/or by the addition or deletion of chromatin from some but not all

chromosomes, which leads to differences in size among the largest

and smallest chromosome (interchromosomal) (Peruzzi et al., 2009).

The karyotype parameters appraised the plant evolution using indices

of symmetry. The value of TF% ranged from 0 to 50 according to

(Zuo and Yuan, 2011), and the S % index ranged from 0 to

100 according to (Huziwara, 1962). The symmetric karyotype is

well-conceived as primitive, and the asymmetric karyotype is

offered with advanced characters (Stebbins, 1971). According to

the highest ASK% and lowest TF% values, sesame G1 was the

most advanced and G6 most primitive. Also, according to A and

A1 sesame genotypes, G1 was themost asymmetrical, andG6was the

most symmetrical genotype (Zarco, 1986; EL-Mansy et al., 2021).

Cytological data revealed that genotype G6 was the most symmetrical

than others, which may be due to this genotype having the highest

number of unique positive bands 19) generated from the SCoT

marker. At the same time, genotype G1 was the most

asymmetrical, maybe due to having the highest number of unique

positive bands 16) generated from ISSR marker.

Conclusion

Genetic diversity is required to evaluate genotypes for important

agronomic parameters like grain yield, oil content, and oil production,

all of which are influenced by genetic diversity. The current

investigation determined genetic variation among studied sesame

genotypes collected from KSA using molecular markers and

cytological parameters to choose distinct and complementary

parents for breeding and conservation strategy. The results have

given helpful information about the genetic diversity of Saudi

Arabia’s sesame cultivars. All the studied genetic diversity

parameters recorded in this research showed that the ISSR

markers utilized were highly reproducible. Moreover, the highest

number of unique bands across the studied genotypes was exhibited

by G6, while G4 scored the lowest. In the same context, cytological

study agreedwithmolecular data and concluded thatG6was themost

symmetrical (primitive) according to TF% and ASK %. While the

genotype G1 was the most asymmetrical (advanced) according to A

and A1 and had the highest number of unique bands from the ISSR

marker.
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