
ARTICLE OPEN

Eliminating biasing signals in lung cancer images for prognosis
predictions with deep learning
W. A. C. van Amsterdam1*, J. J. C. Verhoeff2, P. A. de Jong1, T. Leiner1 and M. J. C. Eijkemans3

Deep learning has shown remarkable results for image analysis and is expected to aid individual treatment decisions in health care.
Treatment recommendations are predictions with an inherently causal interpretation. To use deep learning for these applications in
the setting of observational data, deep learning methods must be made compatible with the required causal assumptions. We
present a scenario with real-world medical images (CT-scans of lung cancer) and simulated outcome data. Through the data
simulation scheme, the images contain two distinct factors of variation that are associated with survival, but represent a collider
(tumor size) and a prognostic factor (tumor heterogeneity), respectively. When a deep network would use all the information
available in the image to predict survival, it would condition on the collider and thereby introduce bias in the estimation of the
treatment effect. We show that when this collider can be quantified, unbiased individual prognosis predictions are attainable with
deep learning. This is achieved by (1) setting a dual task for the network to predict both the outcome and the collider and (2)
enforcing a form of linear independence of the activation distributions of the last layer. Our method provides an example of
combining deep learning and structural causal models to achieve unbiased individual prognosis predictions. Extensions of machine
learning methods for applications to causal questions are required to attain the long-standing goal of personalized medicine
supported by artificial intelligence.

npj Digital Medicine           (2019) 2:122 ; https://doi.org/10.1038/s41746-019-0194-x

INTRODUCTION
Deep learning has many possible applications in health care,
especially for tasks including unstructured data such as medical
images. Convolutional neural networks (CNN) are deep learning
models that have demonstrated remarkable performance on
many tasks including images. These models are attractive for
prediction tasks on medical images, as CNNs can be optimized
end-to-end from image to outcome. This way the network can
detect patterns in the images that are relevant to the prediction
task, but may be unknown to medical professionals. A downside is
that the induced representations of the network are ‘hidden’ and
not readily interpretable. A much sought after holy grail of artificial
intelligence is to attain personalized treatment decisions through
individual prognosis prediction and individual treatment effect
estimation. Treatment effect estimation is a causal question, so
answering it requires techniques from causal inference.1 A pivotal
result from causal inference is that when the direction of causal
relationships between variables in a given situation is known,
identifiability and estimands of causal queries can be deduced
automatically using do-calculus. In the case of treatment effect
estimation of lung cancer measured with overall survival, this
means that we must know (a) which variables affect both
treatment allocation and overall survival, (b) the causal direction
of relationships between the variables. For instance, we know that
the level of pre-treatment overall fitness is related to the likelihood
of getting intensive treatment. In this case the direction of
causation is clear due to the time ordering: pre-treatment fitness
influences the treatment decision, and not vice versa. Whether this
is a strong or weak relationship, or the specific functional form of
the relationship (e.g., whether the relationship is monotonic) is not
important for the consideration of general non-parametric causal

effect identification. These causal relationships can be encoded
succinctly in a Directed Acyclic Graph (DAG) with an arrow
pointing from the cause to the effect, e.g., fitness! treatment.
When the DAG that encodes the relationship between all the
relevant variables is known, do-calculus provides an answer to
whether a specific causal question can be answered from the
observed data.
The connection between images and a DAG is not always

straightforward to see. Fundamentally, patient outcomes are
driven by biological processes, and images may contain (more or
less noisy) views of these processes. For example, a particularly
aggressive lung tumor may grow very large, as can be seen on CT-
scans, and this biological behavior leads to worse overall survival.
These biological processes can be seen as underlying causes of
factors of variation or patterns in the image in the language of
structural causal models. Conversely, information derived from
medical images is often used to make treatment decisions. Here,
the image is a causal factor for treatment selection. When a deep
neural network is used to predict a certain clinical outcome, it will
make use of all factors of variation in an image that are statistically
associated with that outcome. Thus, predicting an outcome with
deep learning based on an image can be seen as conditioning on
(noisy views of) the underlying causal factors of the patterns in
these images. Medical images, especially images from large body
parts such as a chest CT-scan in the case of lung cancer, may
contain many different factors of variation that can have different
‘roles’ in the DAG. Notably when a specific factor of variation
represents a collider in the DAG, conditioning on the image by
using a deep learning model may introduce bias in the estimation
of treatment effects.
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A collider is a variable that is the effect of two or more variables.
To explain collider bias, consider the following clinical scenario.
The pulmonary oncology department in a general hospital serves
the population of a small geographic region for all cases of lung
cancer, and 90% of their patients come from this region. However,
one of the oncologist has a special interest in the treatment of a
rare form of lung cancer: carcinoid tumors, accounting for roughly
1% of lung cancer cases. Everyone in the country with this rare
form of lung cancer visits this single specialist for their treatment.
Being treated in this hospital for lung cancer is a collider, as it has
two causes: living in the surrounding region, or having the rare
carcinoid form. In reality, these two causes are independent: the
risk of getting carcinoid lung cancer is the same for everyone,
regardless of the region of residence. However, within the
population of the patients treated in this hospital there appears
to be a strong inverse relationship between living in this specific
region and having carcinoid lung cancer. Patients who are treated
in the hospital but are not from the surrounding region are very
likely to have the rare form, whereas patients who live close to the
hospital are very unlikely to have carcinoid lung cancer (namely
1%). This observed ‘spurious’ correlation is the result of
conditioning on a collider through restricting the patient sample
to only those treated in this single hospital. Including an indicator
for being treated in this hospital as a regression variable in a multi-
institutional study into lung cancer is another form of conditioning
that will lead to similar collider bias.
We describe a fictional but realistic clinical scenario where the

following conditions hold: (1) There exists a clinical need for
outcome prediction. (2) This outcome partly depends on
treatment, and an unbiased estimate of the treatment effect is
required. (3) The DAG describing the data-generating process is
assumed to be known. (4) An image is hypothesized to contain
important information for the task in (1), however, one of the
factors of variation in the image represents a collider in the DAG.
Conditioning on this collider will lead to a biased estimate of (2).
(5) The collider can be measured from the image. (6) Deep
learning is used to optimally predict (1). We stress that this poses a
conflicting problem: ‘simply’ using deep learning to predict the
outcome based on the image may lead to a low prediction error of
the outcome in the observed data, but it will lead to bias in the
estimated effect of treatment, as it conditions on a collider. No
matter how accurate the resulting predictions are on the observed
data, such models cannot accurately predict in the setting where
we intervene on treatment. This effectively nullifies the clinical
usefulness of the model for selecting the best treatment for new
patients. The model only ‘works’ when treatments are allocated as
was always done without the model. On the other hand, ignoring
the image all together will lead to worse prediction error as the
image contains important prognostic information. Our contribu-
tion is that we show that by utilizing a multi-task prediction
scheme for both the outcome and the collider, accompanied by
an additional loss term to induce a form of linear independence
between final layer activations, we can satisfy both (1) the
supervised prediction task and (2) attain an unbiased estimate of
the treatment effect. For clarity in notation, we will reserve the
term prediction error for performance on the supervised predic-
tion task (e.g., accuracy of predicted survival time). With bias we
will refer to difference between the expectation of the estimated
treatment effect and the data-generating mechanism.

RESULTS
Clinical case
The proposed clinical case concerns the treatment of lung cancer.
Optimal treatment selection for lung cancer patients is a
challenging problem: depending on the clinical disease stage,
patients receive (combinations of) chemotherapy, radiotherapy,

surgery, or more recently, immunotherapy or targeted therapy.2

Some patients will be cured, while others only endure invalidating
side-effects. In addition to using disease stage, personalized
treatment decisions may be aided by estimating the individual
prognosis of a patient for the different modes of treatment that
are available. Medical scans provide important information for
diagnosing and staging lung cancer, but may also provide this
prognostic information. Deep learning is particularly attractive to
analyze these scans, as these models may discover new
prognostic factors or treatment effect modifiers.

Data-generating mechanism
In our experiments we use a public data set of chest CT-scans from
the Lung Image Database Consortium image collection (LIDC3)
These 1018 scans from 1010 unique patients each contain lung
nodules (N ¼ 2609) suspected of lung cancer. Up to four
radiologists segmented the nodules on each consecutive image
slice. As described in the original publication of the data, the data
where gathered from seven participating hospitals and the study
was approved by the appropriate local institutional review boards
(IRB). Informed consent procedures were followed according to
local IRB guidelines, and the data collection and anonymization
were conducted in compliance with the Health Insurance
Portability and Accountability Act (HIPAA) guidelines with the
intent of providing a publicly available data set. Our study is
conducted in accordance with the usage guidelines from the data
provider.4 We do not add new patient data, so IRB approval for
this specific study was not needed. A CT-scan measures radio-
density, and tissues may exhibit different density-patterns.
Heterogeneity in radiodensity is known to be associated with
higher biologic aggressiveness and worse survival.5 We used
nodule size and the variance of radiodensity in a simulation study
involving a binary treatment and a real-valued outcome reflecting
overall survival. Note that our simulation does not accurately
reflect the real world. Real world applications would require more
complex models. The aim of our contribution is to address a
current limitation in methodological tools. Therefore we chose the
simplest graphical model that induces the problem we try to
solve, but is still clinically conceivable. A DAG used for a real-world
clinical application will be much more complex, but may still
include the basic collider structure we present in this simulation
and will thus require similar methods. Figure 1 and Table 1
illustrate the following hypothetical narrative.
There exist two possible treatments for lung cancer: t 2 f0; 1g,

where t ¼ 1 is deemed more aggressive and also more effective.
An unobserved variable u2 influences treatment allocation: people
who appear to be in better overall health, as per subjective
judgment of the physician, will have a higher probability of being
treated with t ¼ 1. At the same time these fitter patients generally
have a better functioning immune system. The immune system
combats the lung cancer, leading to a lower tumor size (x).
Another unobserved variable u1 represents the tumor biologic
aggressiveness. High aggressiveness leads to a bigger tumor and
negatively impacts the overall survival. We emphasize that the
tumor size (x) is a pre-treatment collider according to this causal
graph. A third noise variable, heterogeneity of radiodensity (z), is a
prognostic factor unrelated to the treatment, but related to the
outcome. Tumors with high heterogeneity lead to reduced
survival.
This situation leads to a conundrum. As can be seen from the

DAG, the marginal average treatment effect is identified by
ATE ¼ E½pðyjt ¼ 1Þ � pðyjt ¼ 0Þ�. The conditional treatment effect
is not identified when conditioning the entire image, which is a
descendant of both x and z. Conditioning on x0 (the tumor size as
measured in the image), corresponds to partly conditioning the
collider x. This will induce an artificial association between u1 and
u2, thereby opening a confounding path from t to y and violating
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of the backdoor criterion.1 A backdoor path is a path from
treatment to outcome that starts in the non-causal direction (an
arrow pointing to the treatment instead of away from). This is
indicative of confounding. When all confounding variables can be
measured and conditioned on, all backdoor paths can be ‘closed’
during analysis, and the treatment effect can still be identified
from observational data. In this case, a new backdoor path is
introduced by conditioning on x0, a proxy of x. This new path runs
through the unobserved variables t  u1 � u2 ! y. Therefore it
cannot be closed by conditioning on these variables in the
estimation, and the treatment effect is no longer identified. Using
a convolutional neural network to predict y without regard for the
biasing effect of conditioning on the collider will lead to a biased
estimate of the treatment effect. Disentangling the factors of
variation in the image to only utilize image information that is not
related to the collider would enable an unbiased estimate of the

conditional treatment effect, which is the goal of this study. The
simulated data are visualized in Supplementary Figs 1 and 2.

Modeling
Our method, as summarized in Fig. 2, revolves around two central
notions: (1) Utilizing the resemblance of the final layer of a CNN
with linear regression and (2) Separating the contributions of
different factors of variation during training to enable exclusion of
factors of variation after model convergence. For each patient we
have two observed quantities: yi 2 R and ti 2 f0; 1g, along with
an image which contains noisy views (x0i ; z

0
i 2 R) of the tumor size

xi and heterogeneity zi . The tumor size xi is known to be a collider
and can be measured from the image, tumor heterogeneity zi is
an unknown prognostic factor that we expect a CNN can ‘discover’
by training it to predict survival. Following standard practice for
predicting a continuous real outcome with deep learning, the last
layer of the CNN resembles linear regression where
ŷ ¼ β0 þ βtt þ

PNk
j¼1β

k
j a

k
j , with akj the Nk activations of the final

layer of a k-layer CNN, t the binary treatment indicator and β0 an
overall intercept. Indices for patients are omitted for clarity. Note
that βt is the estimated average treatment effect (ATE). The
standard minibatch mean squared error is used for y:

Ly ¼ 1
m

Xm

i¼1
ðŷ � yÞ2 (1)

where m the minibatch size. To attain separation of the collider
from other factors of variation in the last layer, we modify the loss
function such that a single activation of the last layer will
approximate the collider: ak1 � x. At the same time we optimize
the other last layer activations fakj ; j > 1g to be linearly indepen-
dent of x0. Note that this is a light constraint based on the prior
knowledge represented in the DAG, namely that x is a scalar and x
and z are independent. We argue that after model convergence,
we can fix all CNN parameters and do a single ordinary least
squares on fakj ∪ t; j > 1g to get a valid estimate of the treatment
effect with βt . These activations are constrained to be linearly
independent of the collider, so performing linear regression on
these activations and the treatment indicator should mimic
omitting the collider as a variable in the regression. To attain
this, we add a loss term for the collider x0:

Lx ¼ 1
m

Xm

i¼1
ðak1 � x0Þ2 (2)

This encourages the model to have a single activation in the last
layer that approximates the collider x. This loss is synergistic with
Ly as predicting x0 from the image will improve Ly since x and y are

tumor aggressiveness (u1)

tumor size (x)

+

survival (y)-   

patient (u2)

- treatment (t)

+

image tumor heterogeneity (z)

-

x'

z'

+

Fig. 1 Directed Acyclic Graph describing the data-generating mechanism for the simulations. Signs indicate positive or negative associations.
Rectangle shaped variables are image variables, dashed variables are unobserved. Tumor aggressiveness and patient fitness cannot be directly
measured. x; z represent biological processes, causing the outcome and image patterns. We cannot directly observe these biological
processes, but x0; z0 are noisy views of these variables that are measurable from the image. x is a collider since it is the child of u1 and u2.
Conditioning on x will induce an artificial association between u1 and u2, thereby inducing a confounding path between treatment and
survival, that only exists when conditioning on the collider.

Table 1. Parameters for sampling images and modeling
outcome data.

Variable Variable model

u1 Aggressiveness Nð0; 0:7071Þ
u2 Fitness Nð0; 0:7071Þ
z Heterogeneity Nð0; 1Þ
x Size Nðu1 � u2; 0:05Þ
t Treatment BernðinvlogitðNðu2 � 0:5; 0:25ÞÞÞ
y Survival Nðt � z � 2u1 � 0:5; 0:05Þ
For each observation i, an image is drawn from the total pool of images
with the closest xi and zi . This ensures the required association between
factors of variation in the image and the simulated outcome data. The
parametric equations follow the DAG presented in Fig. 1: u1; u2; z are
continuous independent noise variables. The collider x is the difference
between u1 and u2 , with a small amount of Gaussian noise (standard
deviation of noise ¼ 0:05). u1 and u2 have a standard deviation of 0:7071 �ffiffiffi
2
p

=2 to ensure that x has a standard deviation of � 1. Treatment t is
modeled as a Bernoulli variable with a logistic link function, where
increased u2 increases the probability of being treated. 0:5 is subtracted to
assure that ~50% of patients are treated. Gaussian noise of standard
deviation 0:25 is added to the inverse log-odds of being treated to assure
that every patient has some probability of being treated with the more
intense treatment. This reflects the clinical world better as some patients
may have strong preferences regarding their treatment, regardless of their
underlying health status. Overall survival (y) increases with treatment (the
true treatment effect is 1) and decreases with heterogeneity in radio-
density and tumor aggressiveness. Again, Gaussian noise of standard
deviation 0:05 is added to introduce some uncertainty in the data
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statistically associated. At each training step, a prediction x̂reg is
made by regressing x0 on the remaining last layer activations
fakj ; j > 1g with ordinary least squares. The MSE of this regression
measures how well x0 can be predicted from a linear combination
of the other last layer activations fakj ; j > 1g. This is compared with
the MSE of predicting x0 i with x, the mean of x0 of that minibatch
of patients. When predicting x0 i from fakj ; j > 1g is no better than
using the mean of x0, these activations are sufficiently indepen-
dent from x. When the converse is true, the difference in mean
squared errors is added to the total loss.

Lreg :¼ maxð0;MSEðx; x0Þ �MSEðx̂reg; x0ÞÞ (3)

The total loss is the direct sum of these losses.

L ¼ Ly þ Lx þ Lreg (4)

Training was continued until convergence or overfitting, as
assessed by an increase in total loss on the independently
simulated validation set with different images than in the training
set. After convergence, all CNN parameters were fixed and the
final layer activations were calculated for each image. A linear
regression of y was fitted on faj; t; 1< j � Nkg using the training
set, resulting in a final model dubbed ‘CausalNet’.

Experiments
We calculated three baseline models for comparison: (1) ignoring
all image information and using only the treatment indicator, (2)
linear regression on the ground truth data ft; x; z; yg with (2) and
without (3) conditioning on the collider x. Through the sampling
scheme, along with ambiguity in manual nodule segmentations
and limitations of statistical learning from finite data, there is
inherent prediction error for y and x. We estimated the MSE of this
inherent error by predicting the ground truth labels x and z with a
separate run of the same CNN architecture by replacing y with z.
For fair comparison of the methods, in the regression baseline
models we replaced x; z by x0; z0 by adding gaussian noise to the
simulated x; z based on the MSE of the ground truth run for both
variables. We compare the ‘curve fitting’ approach of conditioning
on the entire image for predicting y (BiasNet) with the proposed
method (CausalNet). As presented in Table 2, the proposed
method separates the biasing effect of the collider x from the
estimated treatment effect, and attains a prediction error close to
the ideal expected loss for predicting y.

Measurement error
To test the sensitivity of our method to measurement error in the
measured collider x, we simulated two additional scenarios where
the collider was measured on the wrong scale. In one scenario, the
actual relationship between the collider and the outcome was
linear in the diameter of the nodule, while it was measured in
units of volume. This represents a power 3 mismatch between the
measurement and the actual relationship. The inverse scenario
was studied as well. See Supplementary Fig. 3 for a visualization of
relationship the measured x0 and the true x. As shown in Table 3,
the method seems robust to these kinds of measurement errors.

DISCUSSION
We provide a realistic medical example where plain curve fitting
with deep learning will lead to biased predictions that do not
generalize to the setting where we intervene on treatment. By
utilizing prior knowledge about the world in the design of the
CNN architecture and optimization scheme, accurate survival
predictions were feasible with an unbiased estimate of the
treatment effect. Our experiments demonstrate that deep learning
can in principle be combined with insights from causal inference.
Possible directions for extension of our experiments are introdu-
cing more elaborate data-generating mechanisms, for example
with a treatment effect modifier or with statistical dependence
between factors of variation within the image. In addition, similar
approaches can be explored for medical images from different
sources (e.g., pathology slides), or different data domains such as
audio or natural language. We leave these extensions for
further work.
Real world clinical applications of causal inference will

necessarily involve more complicated DAGs. These DAGs could
include one or more colliders. Our method can be adapted to
multiple colliders in a straightforward manner by reserving a last
layer activation for each collider, and requiring the other last layer
activations to be independent of each of these colliders. Each real-
world clinical scenario will require its own DAG for identifying
treatment effects from observational data. Our contribution is that
the proposed method can be used to attain deep representations
of images that are independent of certain factors of variation.
Aside from the mitigation of collider bias, the proposed method

can possibly be useful for other applications. For example, it may
be used to produce deep representations of CT-scans that are
independent of the scanner vendor. The scanner vendor would
then take the place of the collider x in our simulation example.

Last layer activations

CNN

a2

...

a5

a6

a1

y

Lreg

Lx

Ly

t

Fig. 2 Schematic overview of the proposed convolutional neural network architecture. The network receives two inputs: an image and the
treatment indicator (t). Loss functions are depicted in double octagons. The last layer activations are used to separate factors of variation in
the image. a1 is trained to approximate the measurement of the collider x0. The rest of the last layer activations are constrained to be linearly
independent from x0 through Lreg . The total loss is L ¼ Ly þ Lx þ Lreg. CNN convolutional neural network.
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To attain the goal of personalized treatment recommendations
with artificial intelligence, methods combining machine learning
with causal inference need to be further developed. Our
experiments provide an example of how deep learning and
structural causal models can be combined and are a small step
forward towards personalized health care.

METHODS
Data preparation and simulation
The LIDC-IDRI data set provides 1018 scans from 1010 patients with a total
of 2609 nodules. The nodules were split in a training (70%) and validation
(30%) set. Individual slices of the nodules were extracted and size (pixel
count within segmentation) and heterogeneity (variance of pixel
intensities within the segmented nodule) were calculated for each of the
slices. Slices with a nodule size of <20mm2 were removed, as well as slices
for which not all annotators agreed on the presence of a nodule. This
yielded a training pool of 5015 slices and a validation pool of 1528 slices.
Observations were simulated by sampling noise variables from the
appropriate distributions and dependent variables according to the
structural causal model in Table 1. For each patient i with simulated
xi ; zi ; ti ; yi , an image was drawn with replacement from the corresponding
pool of images with the closest measured x0 (size) and z0 (heterogeneity).
This sampling procedure induces a controllable statistical association
between patterns in the image and the simulated treatment and outcome
data. We simulated 3000 training observations and 1000 validation
observations. Square slices of 7 ´ 7 cm surrounding the nodules were
extracted from the CT-slices and resampled to isotropic 0.7 mm spacing.
Pixel intensities were normalized to unit scale using a global mean and
variance. The images were cropped randomly to 51 ´ 51 pixels during
training, center crops of the same size were used for validation. In addition,
random vertical and horizontal mirroring was used as data augmentation
during training.

Neural network
We employed a VGG-like6 CNN architecture. As our aim is to contrast
methods of optimization for attaining unbiased predictions, we chose a
simple CNN architecture with only basic layer types that was small enough
for fast training but expressive enough to be able to model the nodule size
and heterogeneity. The final network consisted 5 layers of 3 ´ 3
convolutions with 16 feature channels, each followed by a ReLU non-
linearity and 2 ´ 2 max-pooling. These basic image features were flattened
into a 1 dimensional vector of size 144. Three fully connected layers of
output sizes 144, 144, 12 were used, each followed by ReLU and dropout
with p ¼ 0:25, after which a final fully connected layer with output size
Nk ¼ 6 was used. The treatment indicator was concatenated to these
activations for the final prediction during training. We used a batch size of
40 and the Adam optimizer7 with a learning rate of 0.001 and no weight-
decay.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The image data used in this study are publicly available through the Cancer Imaging
Archive repository (https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX). The outcome
data were generated randomly according to the data-generating mechanism
described in Table 1.

CODE AVAILABILITY
The source code for replicating the experiments is made available freely online under
the MIT open source license. The code includes the pre-processing of the original CT-
scans, simulation of observations and running of experiments. Source code link:
https://doi.org/10.5281/zenodo.3522229
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Table 2. Main results.

Model Variables MSEy ATE

Regression t 2.74 1.02

Regression t; x0; z0 1.39 0.65

Regression* t; z0 1.99 1.00

BiasedNet t; image 1.83 0.66

CausalNet t; akj ðj > 1Þ 2.23 1.02

Mean squared error for survival (MSEy) along with estimated average
treatment effect (ATE). The linear regression metrics are the expected
outcomes according to whether or not the model conditions on the
collider x. Regression* is the optimal value for our setup: (1) predicting the
outcome based on relevant prognostic information from the image while
(2) retaining a valid estimate of the treatment effect. All metrics were
calculated on the validation set

Table 3. Sensitivity analysis to measuring the collider on the
wrong scale.

Model Actual x Measured x0 MSEy ATE

Regression* Area Area 1.99 1.00

CausalNet Area Area 2.23 1.02

CausalNet Diameter Volume 2.24 0.99

CausalNet Volume Diameter 2.21 1.02

Mean squared error for survival (MSEy) along with estimated average
treatment effect (ATE). The regression* results indicate the optimal results
attainable for this simulated scenario
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