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Abstract 
 
Energy transformation capacity is generally assumed to be a coherent individual trait driven by 

genetic and environmental factors. This predicts that some individuals should have high and 

others low mitochondrial oxidative phosphorylation (OxPhos) capacity across organ systems. 

Here, we test this assumption using multi-tissue molecular and enzymatic activities in mice and 

humans. Across up to 22 mouse tissues, neither mitochondrial OxPhos capacity nor mtDNA 

density were correlated between tissues (median r = -0.01–0.16), indicating that animals with 

high mitochondrial capacity in one tissue can have low capacity in other tissues. Similarly, the 

multi-tissue correlation structure of RNAseq-based indices of mitochondrial gene expression 

across 45 tissues from 948 women and men (GTEx) showed small to moderate coherence 

between only some tissues (regions of the same brain), but not between brain-body tissue pairs 

in the same person (median r = 0.01). Mitochondrial DNA copy number (mtDNAcn) also lacked 

coherence across organs and tissues. Mechanistically, tissue-specific differences in 

mitochondrial gene expression were attributable in part to i) tissue-specific activation of 

canonical energy sensing pathways including the transcriptional coactivator PGC-1� and the 

integrated stress response (ISR), and ii) proliferative activity across tissues. Finally, we identify 

subgroups of individuals with high mitochondrial gene expression in some tissues (e.g., heart) 

but low expression in others (e.g., skeletal muscle) who display different clinical phenotypic 

patterns. Taken together, these data raise the possibility that tissue-specific energy sensing 

pathways may contribute to the idiosyncratic mitochondrial distribution patterns associated with 

the inter-organ heterogeneity and phenotypic diversity among individuals. 

 
Keywords: mitochondrion, gene regulation, mitochondrial biogenesis, energy sensing, inter-

organ crosstalk, disease risk 
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Introduction 

 A major driver of organ-specific function and dysfunction is the capacity for energy 

transformation. Energy enables organ-specific function and inter-organ communication 1,2. In 

breathing animals, energy is transformed within mitochondria, where the oxidative 

phosphorylation (OxPhos) system converts oxygen and food substrates into usable cellular 

energy. Because we develop from a single fertilized mitochondria-filled oocyte into a mature 

adult composed of genetically identical cells and mitochondria, it is generally assumed that 

inherited (epi)genetic factors define mitochondrial OxPhos capacity and biology homogenously 

across the whole body. In single-tissue studies such as blood immune cells, genetic variants 

explain a portion of the variance in mitochondrial DNA copy number (mtDNAcn) 3. Similarly, 

exercise can induce biogenesis not only in the working muscles but also in the brain and other 

tissues 4,5, suggesting that behaviorally-driven mitochondrial adaptations occur systemically 

across the whole body, via the action of only partially resolved factors 6. Therefore, based on 

these premises, there is an expectation that organisms should display mitochondrial inter-tissue 

“coherence”. This means that relative to other individuals in the population, an individual who 

has high mitochondrial content in one tissue (e.g., brain) would also have high mitochondrial 

content in other tissues (e.g. heart, skeletal muscle, skin, etc.). Similarly, we would expect some 

individuals to have low mitochondrial content across all tissues (Figure 1A).  

  

 If the inter-tissue coherence hypothesis is true, measurements of mitochondrial OxPhos 

capacity and gene expression across multiple tissues would be expected to resemble Figure 

1B. Tissues with high baseline energetic demand (e.g. heart) consistently have more 

mitochondria than others with lower demand. But most importantly, the animal order should be 

conserved across tissues: some animals should exhibit high values in all tissues, and some 

animals should be low in all tissues. The inter-tissue correlation structure observed from this 

result would be strongly positive, displaying coherence between tissues (Figure 1C). However, 

if a different correlation structure is observed between tissues (weak, absent, or negative 

correlations) this would suggest that the individual-level, inter-tissue coherence hypothesis is 

incorrect. The assumption of inter-tissue coherence underlies much biological research, 

although rarely made explicit and seldom tested, with a few exceptions. Notably, the lack of 

coherence in mtDNAcn and mitochondrial respiration across human tissues 7,8 together with 

recent evidence that different human organs age at different rates relative to one another even 

in a given body 9-11 brings the inter-tissue mitochondrial coherence hypothesis into question. 
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 Here we systematically test this hypothesis at scale using multi-tissue OxPhos 

enzymatic activity measurements in two independent mouse cohorts, plus in whole 

transcriptomes from 45 tissues from 948 women and men (n=16,205 samples, n=983 total 

tissue-tissue pairs). Unlike the default hypothesis that mitochondrial biology is predominantly an 

organism-level attribute of each individual, our results highlight the general lack of coherence 

across brain and non-brain organ systems. These results point towards the emergence of 

idiosyncratic mitochondrial distribution patterns across individuals, potentially driven by genetic 

regulatory pathways associated with organ-specific mitochondrial gene expression patterns. 

  

 

 

Results 

 Multi-tissue mitochondrial enzymatic activities and mtDNA density display low between-

tissue correlations in two independent mouse cohorts  

 We first tested the trait-level inter-tissue coherence hypothesis using direct biochemical 

enzymatic activities for OxPhos complexes I, II and IV, and the Krebs cycle enzyme citrate 

synthase (CS) in 5 tissues: Brain – hippocampus; non-brain – liver, brown fat, muscle and bone 

from 16 male mice. mtDNA density was also quantified in each tissue by qPCR (n=10 tissue 

pairs x 5 measures per tissue giving a total of n=50 pairwise comparisons for specific 

mitochondrial features compared between tissues). Contrary to the hypothesis, the resulting 

correlation matrix of the 5 mitochondrial measures across the five tissues showed minimal or 

even negative correlation between tissues (Supplemental Figure 1). The frequency distribution 

of the correlation coefficients (Spearman r) across the 50 tissue pairs is shown in 

Supplemental Figure 1B. Individual biplots in which each data point represents a different 

animal show the small-to-null correlations across organ systems. 

 Intrigued by the consistency of these findings across multiple mitochondrial enzymes 

from several tissues, we replicated this analysis in a second cohort of 27 male mice in which we 

quantified OxPhos enzyme activities and mtDNA density in 17 brain regions and 5 non-brain 

tissues (n=1,155 tissue-tissue pairs), the largest multi-tissue mitochondrial biochemistry dataset 

available to our knowledge. The resulting correlation matrix containing all measures across all 

tissues shown in Figure 2A is divided into brain-brain, brain-body, and body-body correlations 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.20.614152doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.20.614152
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

(see inset Figure 2A). Small (r=0.1-0.3), moderate (r=0.3-0.5) and some large (r>0.5) 

correlations were observed between brain regions, reflecting a certain degree of coherence 

between different parts of the same organ (median r=0.25). Of the brain-brain correlations, 86% 

were positive (19.7% significant, uncorrected p<0.05) and 14% were negative (0.15% 

significant, uncorrected p<0.05). In contrast, there was no coherence between brain-body 

tissues (median r=0.03) and between various non-brain tissues (r=-0.03) (Figure 2B). In fact, 

some correlations were even negative: animals with high amygdala complex IV activity tended 

to have lower adrenal gland complex IV activity (r=-0.54, uncorrected p<0.01, Figure 2F). This 

could indicate a potential functional tradeoff between some tissues, where organisms who have 

high mitochondrial expression in one tissue have low expression in another (discussed further 

below). 

Nevertheless, contrary to the default hypothesis that correlations would be positive and 

indicate inter-tissue coherence, 93.4% of brain-body correlations were not statistically different 

from 0 (45% negative, 55% positive; only 3.3% were significantly positive, and 3.3% were 

significantly negative, uncorrected p<0.05). The same was observed between non-brain tissues, 

where 84% of the tissue-tissue correlations were not statistically different from 0 (54% negative, 

46% positive; 8% significantly negative, and 8% significantly positive), roughly indicating 

chance-level results. 

 Thus, animals with high OxPhos capacity and mtDNA content in one tissue do not tend 

to also have high OxPhos capacity in other tissues, demonstrating an overall lack of coherence 

in mitochondrial biology between tissues of the same organism. Both mouse datasets are 

available in Supplemental File 1. 

 

Transcriptome-based mitochondrial profiling 

 Next, we examined the trait-level inter-tissue coherence hypothesis in humans. We 

leveraged the Genotype Tissue Expression (GTEx) 12 RNAseq data from 948 women and men 

across 45 tissues (16,205 samples), which similarly allows to perform multiple brain-brain, brain-

body, and body-body tissue comparisons. Using gene expression data for each tissue we 

quantified the percentage of all mRNA transcripts that are derived from the mitochondrial 

genome (mtDNA%), reflecting most directly, albeit imperfectly, the mass or content of 

mitochondria within each person/tissue. Separately, based on the inventory of mitochondrial 
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genes Mitocarta 3.0 13, we quantified for each GTEx participant and tissue the proportion of the 

nuclear transcriptome (all nuclear transcripts arising from ~20,000 genes) that is “invested” to 

produce the ~1,100 mitochondrial proteins (mito-nDNA%). This yielded novel quantitative 

indices of mitochondrial regulation for each participant-tissue combination (Figure 3), available 

in Supplemental File 2.  

 As expected, the tissues with the highest fraction of mtDNA-derived transcripts 

(mtDNA%) were brain regions (putamen, hippocampus, amygdala), followed by the heart (left 

ventricle), with mtDNA transcripts composing on average ~60-70% of all mRNA transcripts 

(Figure 3B). In a few individual participant’s brains and hearts, >90% of mRNAs were of mtDNA 

origin. The lowest ranking tissues in mtDNA% were pancreas and whole blood, where only 

~4.8-12.5% on average of the cellular transcriptome is from the mitochondrial genome. This 

result was expected as blood leukocytes, particularly the abundant neutrophils, have few 

mitochondria and few mtDNA copies per cell 14, and participants had on average 4.8% mtDNA% 

(range 0.4%-27.8%). The difference between the average of the highest and lowest ranking 

tissue was 14.1-fold, reflecting the well-known natural variation in mtDNA copies and 

mitochondrial abundance between human tissues 7,15. 

The tissues with the highest proportion of nuclear transcripts devoted to mitochondria 

(mito-nDNA%) were adrenal gland and heart (left ventricle), consistent with their high 

mitochondrial volume density 16,17. As in mtDNA-derived transcripts, the lowest ranking tissues 

for nuclear transcripts were whole blood and pancreas (Figure 3D). As expected from well-

established and stable tissue differences in mitochondrial content, tissues with higher mtDNA% 

also generally express higher mito-nDNA% (r=0.84, p<0.0001, Supplemental Figure 2), 

lending validity to these measures. We analyze the association of these parameters at the 

individual level within each tissue below. 

 

Human mitochondrial gene expression patterns display weak brain-body coherence 

 Having established proximate markers of mitochondrial abundance and expression from 

RNAseq data, we then tested the inter-tissue coherence hypothesis in humans by quantifying 

mtDNA% and mito-nDNA% for all available GTEx subjects across 45 organs and tissues. We 

proceeded to compute the correlations across all tissue pairs (n=983 tissue-tissue pairs) and 

analyzed the multi-tissue correlation structure (Figure 4A). A heatmap representing the multi-
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tissue correlation structure of mito-nDNA% is shown in Figure 4B, divided into brain-brain, 

body-body, and brain-body comparisons.  

 The highest between tissue correlations were observed between the 12 brain areas with 

a median of r=0.26 (Figure 4B). This result is similar to the median correlation (r=0.25) 

observed between the 17 brain areas in mice (Figure 2B). Correlations of body tissues with 

other body tissues had a median of r=0.13. As in mouse tissues, several human non-brain 

tissues showed medium positive correlation indicating some coherence between specific tissues 

(highlighted with dotted line, Figure 4B), while others showed weak positive, or even negative 

correlations. Again, the brain-body tissue pairs displayed minimal correlations (median r=0.01, 

Figures 4C-D). The adrenal gland exhibited the lowest degree of coherence with other tissues 

(mean r=-0.08), while the esophagus was most the coherent with all other tissues (mean r=0.22) 

(Figure 4E). As in mice, the brain substantia nigra and nucleus accumbens showed medium 

positive correlation (r=0.44, p<0.0001, Figure 4F), consistent with conserved cross-species 

neuroanatomical and functional connectivity. Also in agreement with our mouse cohort, the 

amygdala and the liver both showed negative correlations with adrenal gland (Figure 4G-H). 

Individuals with greater mito-nDNA% in their amygdala and liver tended to have lower adrenal 

gland mito-nDNA%, indicating minimal co-regulation and potentially the existence of negative 

tradeoffs between these tissues.  

 Repeating this analysis with mtDNA% of transcriptome, or with specific functional 

mitochondrial pathways, yielded similar results (Supplemental Figure 4). While different 

mitochondrial pathways (specialized subsets of genes) exhibited relatively distinct correlation 

structures, all exhibited medium correlations between brain regions and among some body 

tissues. However, regardless of the mitochondrial gene subsets selected, there was a uniform 

lack of coherence among brain-body tissue pairs, confirming the results above for mito-nDNA%. 

The multi-tissue network architecture of mitochondrial gene expression highlighting tissue pairs 

with the strongest and weakest coherence are visualized in Figure 5. The equivalent network 

for mtDNA% is presented in Supplemental Figure 5. Tissues of the same type (e.g., brain 

regions, digestive tube segments) exhibit the greatest coherence, as expected, highlighting the 

tissue specialization of mitochondria 18. 

 

mtDNAcn-based inter-tissue correlation patterns are consistent with mitochondrial transcript-

based patterns in humans 
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 To validate our transcriptome-based findings indicating low coherence between brain 

and body tissues using a different method, we leveraged the recently reported qPCR-based 

catalog of mtDNAcn across 52 tissues from 952 GTEx subjects 15. We asked if individuals who 

have higher or lower mtDNAcn relative to other people in one tissue also have higher or lower 

mtDNAcn in other tissues. The resulting inter-tissue correlation structure of mtDNAcn across the 

same 45 tissues used in our transcript-based analyses is shown in Supplemental Figure 6. 

The resulting correlation pattern was highly consistent with that observed using transcript-based 

indices of mitochondrial expression. Again, brain-body tissue pairs exhibited the lowest 

coherence (median r=-0.03). Body-body inter-tissue correlations had a median of r=0.10. And 

again, the highest coherence was observed between brain tissues (median r=0.24), with an 

effect size highly consistent with both the mouse (median r=0.25) and human transcript-based 

indices of coherence (median r=0.26) Thus, these results confirm the consistent yet modest 

coherence between regions of the same organ (brain) and the lack of coherence in 

mitochondrial biology across brain and body tissues. 

 

Low inter-tissue coherence at the proteomic level 

 We also tested the trait-level inter-tissue coherence hypothesis at the level of proteins 

using the same approach as above but with available proteomics data from a subset of the 

GTEx cohort: 201 samples from 32 tissues across 14 GTEx subjects (n=19 tissue-tissue pairs 

after filtering the data) 19. There was an insufficient number of brain samples in this dataset to 

perform brain-body inter-tissue correlation analyses. The resulting multi-tissue correlation 

structure and frequency distribution of correlation coefficients (Supplemental Figure 7) agreed 

with the transcriptomics data, indicating no strong inter-tissue coherence. Several tissue pairs 

showed weak, and in some cases negative, correlations in mitochondrial protein abundance, 

meaning that an individual with high mitochondrial protein abundance in one tissue can have 

low abundance in others. Although the strength of the correlations are likely inflated due to the 

low sample size in this analysis, the median correlation coefficient (r=0.26) from the proteomic 

data in non-brain tissues indicated potential modest inter-tissue coherence. 

 

Mitochondrial gene expression is driven in part by canonical energy sensing pathways 
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 If mitochondrial content is not driven by a systemic trait-level factor, this raises the 

question: what determines the abundance of mitochondria in each tissue of an organism? We 

hypothesized that mitochondrial content may be driven by two potential pathways: 1) the 

transcriptional co-activator and master regulator of mitochondrial biogenesis peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) 20, or 2) the integrated 

stress response (ISR), which is a pathway that regulates energy balance and is induced by 

reductive stress and mitochondrial OxPhos defects in a tissue-specific manner 21,22. If correct, 

PGC-1α and ISR expression should exhibit positive intra-tissue correlations with mitochondrial 

gene expression.  

 Expression of PGC-1α was quantified by calculating the percentage of nuclear 

transcripts mapping to PGC-1α, and then correlating this to mito-nDNA% (Figure 6A) or 

mtDNA% (Supplemental Figure 8A), separately for each of the 45 tissues. As expected in 

skeletal muscle and heart where PGC-1α was initially discovered to induce mitochondrial 

biogenesis 23,24, individuals with high PGC-1α expression had significantly higher values for 

mito-nDNA%. This pattern was observed in 24 tissues (ps<0.05). The highest correlations were 

observed for the transverse colon and left ventricle of the heart. However, 7 tissues exhibited 

significant negative correlations (ps<0.05), including the adrenal gland, visceral and 

subcutaneous adipose tissues where greater PGC-1α expression was related to lower 

mitochondrial gene expression (rs=-0.24 to -0.36, ps<0.05).  

 The ISR was quantified by calculating the percentage of nuclear transcripts mapping to 

four key mammalian ISR genes: ATF4, ATF5, DDIT3 and GDF15 25-28. Like PGC-1α, ISR 

expression was significantly associated with higher mito-nDNA%, but only in 12 tissues 

(ps<0.05) (Figure 6D). Interestingly, in 13 tissues individuals with higher ISR activation 

exhibited lower mito-nDNA% (ps<0.05), demonstrating strong tissue specificity and a relatively 

equal number of tissues with positive and negative associations between ISR and mitochondrial 

gene expression. The strength and direction of the correlations between mitochondrial gene 

expression and either PGC-1α or the ISR were not significantly correlated (r=0.02-0.18, p=0.25-

0.90), indicating that these pathways are not consistently co-regulated across human tissues. 

 Thus, if a nutritional, behavioral or other stressor activated PGC-1α or ISR systemically, 

and if these pathways influenced mitochondrial gene expression, we would expect that some 

tissues would exhibit an increase, some tissue would not change, while others would exhibit a 

decrease in mitochondrial gene expression and/or biogenesis in response to the same stimulus. 
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At the level of correlations, these organ-specific regulatory pathways would produce the lack of 

coherence and some apparent negative tradeoffs, as observed in our mouse and human 

cohorts.  

 

The discrepancy between mtDNA and nDNA-encoded transcripts is explained by tissue 

proliferation 

 The correlations between PGC-1α or ISR with mito-nDNA% were remarkably different 

than those with the marker of mitochondrial content, mtDNA% (Supplemental Figure 8). For 

example, in the heart (left ventricle), whereas PGC-1α expression was positively correlated with 

the fraction of the nuclear genome devoted to mitochondria as expected (mito-nDNA%, r=0.63, 

p<0.0001, Figure 6A), it was negatively correlated with the abundance of mtDNA-derived 

transcripts (mtDNA%, r=-0.36, p<0.0001, Supplemental Figure 8A). Brain tissues also 

exhibited this seemingly counterintuitive pattern where nDNA and mtDNA mitochondrial 

transcripts appear uncoupled or negatively correlated (Figure 6A). Negative correlations 

between mtDNA and nDNA transcripts have been reported previously in human brain tissues 

from the GTEx cohort 29,30. The same pattern of opposite associations across certain tissues 

was observed for the ISR pathway (see Supplemental Figure 8 for the heart as an example), 

suggesting that a cell-level or tissue-level factor is responsible for these tissue differences in the 

coupling of mtDNA- and nDNA-derived transcripts.  

 Based on i) the dilution of mitochondria occurring during cell division in proliferating 

tissue (digestive tract, reproductive organs) 31,32, and ii) the striking stability of mitochondrial 

proteins in non-replicative tissues (e.g., brain, heart, muscle) 33,34, we reasoned that this 

discrepancy between mtDNA and nDNA-encoded transcripts and their associations with drivers 

of biogenesis could be attributable to tissue-specific differences in proliferative activity. Indeed, 

tissue proliferation (indexed by the average expression of 3 key proliferation genes: KI67, 

TOP2A, RRM2) 35,36 showed that the correlation of mtDNA% vs mito-nDNA% was positively 

associated with proliferation. In highly proliferative tissues (where newly made mitochondria are 

rapidly diluted by cell division; Figure 7C, bottom), tissues investing a large portion of their 

nuclear transcriptome into mitochondrial biogenesis also have high mtDNA-derived transcripts 

(positive correlation), likely as a means to replenish the ~50% dilution that regularly takes place 

in symmetrically dividing cells. On the other hand, non-proliferative tissues with high 

mitochondrial mass tend to have proportionally lower nDNA-derived transcripts than the 
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abundant mtDNA-derived transcripts contained in their numerous cytoplasmic mitochondria, 

consistent with the ability to maintain mitochondrial mass without sustained nuclear 

mitochondrial biogenesis in post-mitotic tissues (Figure 7C, top). Tissue replicative activity 

therefore accounts for the relative abundance of mtDNA- and nDNA-derived mitochondrial 

transcripts across human tissues. 

 

Sub-groups of individuals display distinct multi-tissue mitochondrial distribution patterns 

 Our analysis of the multi-tissue correlation structure in GTEx showed that individuals can 

have a high mitochondrial investment in some tissues, but low in other tissues. Based on the 

notion that different organs age at different rates in different individuals 9-11, this led us to 

examine if there are sub-groups or clusters of individuals who exhibit distinct multi-tissue 

mitochondrial distribution patterns. To address this question, we performed k-means clustering 

on mitochondrial gene expression data from 113 subjects with complete data across 4 tissues, 

interrogating the ratios in mito-nDNA% between each tissue pairs: Brain (cortex), Heart (atrial 

appendage), Muscle (skeletal), Adipose (subcutaneous) (Figure 8A).  

 Principal component analysis (PCA) of these data showed that the first two principal 

components accounted for 78.8% of variance, from which 3 clusters of GTEx participants 

emerged. A two-way ANOVA on the mito-nDNA% values for each tissue confirmed that the 

identified subgroups of individuals exhibited significant differences in mitochondrial transcript 

abundance across the 4 tissues analyzed (Figure 8B-C). The mitochondria-defined subgroups 

differed on clinical and phenotypic profiles including causes of death and known medical 

diagnoses at the time of death (Figure 6D). This association among multi-tissue mitochondrial 

profiles and clinical phenotypes provides preliminary evidence that distinct mitochondrial 

distribution strategies among the multi-organ network may be associated with different 

resilience or vulnerability profiles to disease.  

 

Discussion   

 Here we tested the hypothesis that the regulation of mitochondrial biology among 

dozens of organs and tissues is driven by an individual trait-level factor. We address this 

question by examining the multi-tissue correlation structure among direct enzymatic 

measurements of mitochondrial OxPhos respiratory chain enzyme activities in two cohorts of 
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mice, and from the transcriptome and mtDNAcn of 45 human tissues. Contrary to the default 

hypothesis that mitochondrial content is a trait-like attribute of each person exhibiting high 

coherence across the organism, our results show a striking spectrum of mitochondrial 

distribution patterns. In particular, we show that individuals who have high markers of 

mitochondrial content in some tissues can have low markers of mitochondria in other tissues. 

We find that these differences may be partially explained by the energy sensing pathways PGC-

1α and ISR, and by proliferative activity of different tissues, expanding our understanding of the 

factors that may regulate the highly heterogenous and tissue specific regulation of mitochondrial 

biology in humans and other animals. These results emphasize how genetic and systemic 

factors are insufficient to explain the mitochondrial expression patterns across the brain and 

body, suggesting instead that different individuals display relatively idiosyncratic patterns of 

mitochondrial regulation. 

 The results of our investigation of the inter-tissue correlation structure of mitochondria in 

mouse and human tissue is consistent with there being partial coherence between the 

organs/tissues of an individual. This indicates that there is a certain degree of inter-tissue 

coregulation of mitochondria, particularly between tissues of the same type. We observed 

distinct distributions in coherence between brain-brain, body-body, and brain-body tissues. 

Different brain regions showed the highest coherence. However, there was minimal evidence of 

coherence between brain and body tissues. The specific tissues with the highest average 

coherence were esophagus - gastroesophageal junction and esophagus - muscularis. Adrenal 

gland, liver and kidney displayed the lowest average inter-tissue coherence. Overall, given that 

the highest correlations of mito-nDNA% did not exceed r=0.6, and many tissues show no 

evidence of coherence, this indicates that every person may have an idiosyncratic mitochondrial 

distribution pattern, contributing to the uniqueness of each individual. 

 Our analysis of the relationship between mitochondrial gene expression and energetic 

stress sensing metabolic pathways (PGC-1α and ISR) revealed a strongly tissue-dependent 

association. The results for PGC-1α were particularly striking. While consistent with previous 

evidence in skeletal muscle and heart, it appears that PGC-1α does not drive mitochondrial 

biogenesis in all tissues at the transcript level. In fact, an opposite association was observed in 

several tissues, calling for a more refined understanding of the forces that regulate 

mitochondrial biology and biogenesis in particular, in different organ systems. The novel 

association of mtDNA:nDNA ratio with proliferative activity across tissues provides an example 

of such a force that governs mitochondrial biogenesis in a tissue-specific manner. 
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 The significant differences in mitochondrial gene expression patterns between 

subgroups of individuals suggest that some individuals “invest” more of their energetic 

resources in some tissues compared to others. This aligns with recent studies identifying distinct 

ageotypes (i.e., aging phenotypes or strategies) among individuals 9,11,37. In our data, these 

groups also displayed different patterns of clinical phenotypes, opening the possibility that 

distinct mitochondrial distribution patterns among the multi-organ network may be associated 

with differences in resilience or vulnerability to specific diseases. This notion aligns with an 

emerging systemic understanding of mitochondrial biology with regulatory signals and even 

whole mitochondria transferred between organ systems and cell types 2,38. It remains an open 

question whether these clusters are permanent traits of an individual (determined, for example, 

by genetics or developmental conditions), or are adjusted temporally within an individual based 

on current conditions.  

 

Study limitations 

 An important limitation of this study is the use of post-mortem tissue. In GTEx, post-

mortem interval time is associated with tissue-specific changes in transcripts abundance 39. This 

could have affected the transcriptome-based mitochondrial profiling and inter-tissue correlation 

analyses using GTEx data, but not the mtDNAcn-based analyses in human tissues nor the 

enzymatic and mtDNA-based measures in mouse tissue. Moreover, our sensitivity analyses 

showed that our transcriptome-based inter-tissue correlation patterns were stable across 

various RNA integrity number (RIN) cut-offs. Another limitation is that not all tissues were 

available for all individuals, which limited the number of tissue-tissue pairs available for some 

pairs of organs and tissues. Future studies with complete data in greater numbers of tissues 

and individuals, and with direct measures of mitochondrial functions (respiration, OxPhos, ROS 

production), would be useful in extending and validating these results. 

 

Methods 

Mouse tissue homogenization, enzymatic activity assays and qPCR 

 Enzymatic activity assays and qPCR were performed on mouse tissue as described 

previously 40. The first mouse cohort included n=16 c57bl/6J female and male mice, from which 
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5 tissues were sampled, as described in 41. The second mouse cohort (n=27 mice, 22 tissues) is 

described in 40. All cohort 2 mice were 52-week-old male c57bl/6J animals. mtDNA density was 

quantified as described in 40. Raw data was used to compute inter-tissue correlations for each 

mitochondrial feature including Complex I activity, Complex II activity, Complex IV activity, 

Citrate Synthase activity and mtDNA density. A total of 50 (10 per mitochondrial feature) 

comparisons were computed for Cohort 1, and 1,155 (231 per mitochondrial feature) for Cohort 

2.  

GTEx dataset 

 The GTEx v8 RNAseq dataset consists of 17,382 samples across 54 tissues from 948 

donors. The GTEx cohort is 67.1% male and 32.9% female, among which 84.6% are White, 

12.9% are African American, 1.3% are Asian and 1.1% other. The age range of donors is 20-70 

years (mean ± SD = 52.8 ± 12.9). Further information on the GTEx v8 dataset can be found on 

the GTEx portal at https://gtexportal.org/home/tissueSummaryPage. 

Transcriptomics  

 RNA sequencing data was downloaded as TPM from the GTEx portal. Data is available 

for download at https://gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression. 

Subject clinical phenotype data is part of the protected access data and was obtained through 

the dbGAP accession #phs000424.v8.p2 under project #27813 (Defining conserved age-related 

gene expression trajectories). All samples with an RNA integrity number (RIN) of less than 5.5 

were filtered out of the data. For inter-tissue correlation analysis, a minimum sample size of 10 

shared subjects was set for each tissue pair and all tissue pairs with less than 10 subjects were 

not included in the analysis. Tissues that did not meet this shared sample size with more than 

50% of other tissues were not included in the analysis. Cell lines were also removed from the 

dataset. After applying these filters to the data, 45 tissues and 16,205 samples remained and 

were included in the analysis. The mitochondrial genes included in analyses were the Mitocarta 

3.0 genes (of which we identified 1133 in the dataset) and all other mtDNA genes. TPM values 

were normalized separately for mtDNA and nDNA genes. mtDNA genes were expressed as a 

percentage of all transcripts in a sample. Nuclear genes were normalized by removing all 

mtDNA transcripts from the sample, and then expressed as a percentage of all remaining 

transcripts (proportion of nuclear transcriptome). We performed a sensitivity analysis by 

repeating our mito-nDNA% inter-tissue correlation analysis with a sample RIN cut-off of RIN�6 

and RIN�7. This had a negligible effect on the median inter-tissue correlation and correlation 
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structure, but it greatly reduced the number of tissue pairs that could be included in the analysis. 

Therefore, we chose a less stringent RIN cut-off of 5.5 to maximize inter-tissue sample sizes 

and the number of tissue pairs included in our analysis.   

Proteomics 

 Proteomics data were obtained from the supplemental information in Jiang et al 2020 19. 

Supplemental table S2C "protein normalized abundance" was downloaded and used for 

analysis. The abundances of mitochondrial genes, of which we identified 1002, were summed 

and expressed as a percentage of total protein abundance to establish a proximate marker of 

mitochondrial abundance in each sample. Replicate measurements of samples from multiple 

proteomics runs were averaged for the pairwise inter-tissue correlation analysis. Only tissue 

pairs with a minimum of 8 shared subjects were included in the analysis. Tissues that did not 

meet this minimum sample size with at least 4 other tissues were excluded. This resulted in 7 

tissues and 14 subjects included in the analysis. 

mtDNAcn 

mtDNAcn data on the GTEx cohort were downloaded from the supporting information in 

Rath et al 2024 15. The data was filtered for the same 45 tissues used in transcriptomics data 

analysis. Only tissue pairs with a minimum of 10 shared subjects were included in analysis. 

Individual mtCN values for each GTEx tissue sample were used for inter-tissue correlation 

analysis. 

Tissue proliferation index 

 Our criteria for selecting genes to include in the proliferation index were as follows; (i) 

the genes are known in the literature to be markers of proliferation 35,36, (ii) the gene must 

display high expression in tissues that are known to be proliferative (e.g. blood, digestive tract) 
31, (iii) the genes must show internal consistency (i.e. positively correlated within tissues), (iv) 

the genes must display high expression during periods of rapid cell division in a human primary 

tissue culture system 42. The genes selected for the tissue proliferation index were KI67, 

TOP2A, RRM2. The index was established by averaging the expression of these 3 genes in 

each tissue sample. 

Multi-tissue Network Graph 
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 The multi-tissue network graph in figure 5 was generated with the R package iGraph. An 

adjacency matrix was generated from the inter-tissue correlation matrix shown in Figure 4B, 

setting the edge threshold to r=0.2. The layout of nodes was determined by Fruchterman-

Reingold layout force-directed algorithm. 

 

Statistics 

 Statistical tests were performed with R version 4.4.0 (2024-04-24) and GraphPad Prism 

version 10. The correlations between pairwise tissue comparisons were assessed using 

spearman rank correlation. Clustering was performed on inter-tissue ratios using k-means 

method and was visualized using principal component analysis. Two-way ANOVA was used to 

test mitochondrial gene expression of identified clusters for significant differences. Effect sizes 

were estimated using hedge’s g. The significance level for P-values was set at P<0.05.   

 

Code and data availability 

The GTEx v8 RNAseq dataset can be downloaded from the GTEx portal at 

https://gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression. All R code used in the 

analyses can be found at github.com/mitopsychobio. 
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Figure legends 

Figure 1. Expectations and hypotheses on individual phenotypes of multi-tissue 

mitochondrial biology. Figure illustrating the multi-tissue coherence hypothesis. The 

expectation is that some individuals will have high mitochondrial content in all tissues and some 

will have low mitochondrial content in all tissues. This would result in strong correlations 

displayed between tissues in measures of mitochondrial biology. 

 

Figure 2. Mitochondrial enzymatic activity and mtDNA density measures display low 

between tissue correlations across 22 tissues from 27 mice. (A) Enzymatic activity and 

mtDNA density-based multi-tissue mitochondrial distribution patterns displayed as correlation 

matrix of enzymatic activity measures (CI, CII, CIV and CS) and mtDNA density across 17 brain 

tissues and 5 peripheral tissues from 27 male mice in Cohort 2 (n=1,155 tissue pairs). (B) 
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Frequency distribution of spearman r correlation coefficients of pairwise tissue comparisons 

showing brain-brain (red), body-body (green), and brain-body (yellow) tissue comparisons. (C) 

Boxplot of brain-brain, body-body and brain-body inter-tissue correlations. (D-F) Bivariate plots 

of mitochondrial enzyme activity measures between tissues. Abbreviations: Cereb = 

Cerebellum,  NAc = Nucleus Accumbens,  CA3 = CA3 region, PAG = Periaqueductal grey, DGd 

= dorsal dentate gyrus, DGv = ventral dentate gyrus, mPFC = medial prefrontal cortex, CPu = 

caudoputamen, M1 = primary motor cortex,, VN = vestibular nucleus, Thal = thalamus, VTA = 

ventral tegmental area, mOFC = medial orbitofrontal cortex, Hypo = hypothalamus, Amyg = 

amygdala, V1 = primary visual cortex, SN = substantia nigra, Soleus = red oxidative skeletal 

muscle, AG = adrenal gland, WG = white glycolytic skeletal muscle. 

 

Figure 3. Transcriptome-based mitochondrial profiling across human tissues. (A) The 

percentage of total transcripts from the mtDNA, nuclear mitochondrial genes and non-

mitochondrial nuclear genes were quantified in each sample (n=16,205). (B) The average 

percentage of transcripts that are from mtDNA and nuclear mitochondrial genes (1120 genes 

Mitocarta 3.0) in each tissue. (C) Ranked mean percentage of total transcripts that are mtDNA 

transcripts in each tissue (each datapoint represents a person). (D) Ranked mean percentage of 

nuclear transcripts that are transcripts of mitochondrial nuclear genes (each datapoint 

represents a person). 

 

Figure 4. Mitochondrial gene expression patterns in human tissue display low between-

tissue correlations. (A) Experimental set-up of multi-tissue correlation analysis of GTEx 

RNAseq data. (B) Heatmap of correlation matrix showing the pairwise spearman r correlations 

of mito-nDNA% between 45 organs/tissues. The dotted line is highlighting body tissues showing 

medium positive correlations. (C) Frequency distribution of spearman r correlation coefficients 

(983 tissue comparisons) between brain-brain, body-body and brain-body tissues. (D) Boxplot 

displaying median of spearman r correlation coefficients of brain-brain, body-body and brain-

body tissue pairs. (E) Average inter-tissue correlation of each tissue. (F-H) Bivariate plots of 

mito-nDNA% between tissues. 

 

Figure 5. Multi-tissue network architecture of mitochondrial gene expression. Network 

representation of multi-tissue correlation matrix of mito-nDNA%. Each node represents a tissue, 
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the size of each node is proportional its degree, edge thickness is proportional to the strength of 

the correlation. 

 

Figure 6. Mitochondrial gene expression is driven in part by canonical energy and stress 

sensing metabolic pathways. (A) Ranked spearman r correlation coefficients of PGC-1α% vs 

mito-nDNA% transcripts in each tissue. (B) Biplot showing the correlation of mito-nDNA% with 

PGC-1α expression in the heart (left ventricle). (C) Biplot showing the correlation of mito-

nDNA% with PGC-1α expression in the adrenal gland. (D) Ranked spearman r correlation 

coefficents of ISR% vs mito-nDNA% transcripts in each tissue. (E) Biplot showing the 

correlation of mito-nDNA% with ISR expression in the pancreas. (F) Biplot showing the 

correlation of mito-nDNA% with ISR expression in the heart (left ventricle). 

 

Figure 7. Discrepancy between mtDNA and mito-nDNA transcripts is explained by 

proliferation gene expression. (A) Ranked spearman r correlation coefficients of mtDNA% 

and mito-nDNA% transcripts in each tissue. (B) Biplot of proliferation score (average of KI67, 

TOP2A, RRM2) and spearman correlation coefficient of mtDNA% vs mito-nDNA% in each 

tissue. (C) Illustration of mitochondrial biogenesis in proliferative and non-proliferative tissues. In 

non-proliferative tissues that are also rich in mitochondria, such as heart and brain, transcripts 

for nDNA-encoded mitochondrial proteins are relatively low as biogenesis is not prioritized, 

nevertheless mtDNA-encoded transcripts remain high due to the abundance of mitochondria. 

However, in actively proliferating tissues, such as the colon and testes, mitochondrial biogenesis 

is upregulated resulting in high mito-nDNA and mtDNA transcripts in order to replenish the 

regular dilution of mitochondria in dividing cells.  

 

Figure 8. Sub-groups of individuals display different mitochondrial distribution patterns. 

(A) K-means clustering on mito-nDNA% ratios between 4 tissues (Muscle - skeletal, Heart - 

Atrial Appendage, Brain - Cortex, Adipose - Subcutaneous) from 113 subjects. Cluster 1 (n = 

37), cluster 2 (n = 32), cluster 3 (n = 44). (B) Bar plot of mean mito-nDNA% in each cluster 

across 4 tissues. Cluster means of each tissue were tested for significant difference by two-way 

ANOVA. Effect sizes were computed by hedge’s g. (C) Network visualization of z-score 

transformed mito-nDNA% of each cluster across the 4 tissues analyzed. (D) Heatmap showing 

the z-score percentage of subjects in each cluster recorded as positive for each clinical variable. 
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Supplemental Material 

Supplemental File 1. Excel file containing the two mouse mitochondrial enzymatic activity and 

mtDNA density datasets used in analyses. Sheet 1 contains mouse cohort 1 dataset. Sheet 2 

contains mouse cohort 2 dataset. 

Supplemental File 2. Excel file containing the average, standard deviation, minimum and 

maximum values of mito-nDNA% (sheet 1) and mtDNA% (sheet 2) in each of the 45 tissues 

analyzed using the GTEx RNAseq v8 dataset. 

Supplemental Figure 1. (A) Correlation matrix of enzymatic activity measures (CI, CII, CIV and 

CS) and mtDNA density across 5 tissues (hippocampus, brown fat, liver, muscle and bone) from 

16 male mice in Cohort 1. (B) Frequency distribution of spearman r correlation coefficients in 

which only the inter-tissue correlations of the same measure are included (n=50 pairwise tissue 

comparisons). (C-E) Bivariate plots of mitochondrial enzyme activity measures between tissues. 

 

Supplemental Figure 2. Correlation of average mtDNA% with average mito-nDNA% across 45 

tissues. 

 

Supplemental figure 3. Heatmap showing sample size of every pairwise tissue comparison in 

the same order as Figure 4B. 

 

Supplemental figure 4. Multi-tissue mitochondrial correlation patterns of mitochondrial 

pathways. Correlation matrix and frequency distribution of correlation coefficients of mtDNA 

genes, OxPhos genes, fission and fusion genes, ROS and glutathione metabolism. 

 

Supplemental Figure 5. Multi-tissue network architecture of mitochondrial gene 

expression based on mtDNA-encoded genes. Network representation of multi-tissue 

correlation of mtDNA%. Each node represents a tissue, the size of the node is proportional its 

degree, edge thickness is proportional to the strength of the correlation. 

 

Supplemental Figure 6. mtDNAcn-based inter-tissue correlation structure. (A) Heatmap of 

correlation matrix showing the pairwise spearman r correlations of mtDNAcn between 45 

tissues. (B) Frequency distribution of spearman r correlation coefficients between brain-brain 
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(red), body-body (green) and brain-body (yellow) tissues. (C) Network architecture of mtDNAcn-

based inter-tissue correlations. (D-F) Bivariate plots of mtDNAcn between tissues. 

 

Supplemental Figure 7. Proteomics-based mitochondrial correlation patterns across 7 

tissues from 14 GTEx subjects 19. (A) Heatmap of correlation matrix showing pairwise tissue 

comparisons of mitochondrial protein abundance. (B) Frequency distribution of spearman 

correlation coefficients of inter-tissue correlations of mitochondrial protein abundance. (C-E) 

Bivariate plots of mitochondrial protein abundance between tissues. 

 

Supplemental Figure 8. Mitochondrial gene expression is driven in part by canonical 

energy and stress sensing metabolic pathways. (A) Ranked spearman r correlation 

coefficients of PGC1a% vs mtDNA% transcripts in each tissue. (B) Biplot showing the 

correlation of mtDNA% with PGC-1α expression in the colon (transverse). (C) Biplot showing 

the correlation of mtDNA% with PGC-1α expression in the anterior cingulate cortex. (D) Ranked 

spearman r correlation coefficients of ISR% vs mtDNA% transcripts in each tissue. (E) Biplot 

showing the correlation of mtDNA% with ISR expression in the heart (left ventricle). (F) Biplot 

showing the correlation of mtDNA% with ISR expression in the colon (transverse). 

 

Supplemental Figure 9. Sub-groups of individuals display different mitochondrial 

distribution patterns. (A) K-means clustering on mtDNA% ratios between 4 tissues (Muscle - 

skeletal, Heart - Atrial Appendage, Brain - Cortex, Adipose - Subcutaneous) from 113 subjects. 

Cluster 1 (n = 46), cluster 2 (n = 29), cluster 3 (n = 38). (B) Bar plot of mean mtDNA% in each 

cluster across 4 tissues. Cluster means of each the tissue were tested for significant difference 

by two-way ANOVA. Effect sizes were computed by hedge’s g. (C) Network visualization of z-

score transformed mito-nDNA% of each cluster across the 4 tissues analyzed. (D) Heatmap 

showing the z-score percentage of subjects in each cluster who are recorded as positive for 

each clinical variable. 
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Figure 5

mito-nDNA% inter-tissue network architecture
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Cellular proliferation score explains the discrepancy 
between mtDNA and mito-nDNA expression

rs = 0.58 
p < 0.0001

Figure 7
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BA Clustering of Individuals 
across 4 tissues (n=113)
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