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ABSTRACT: An easy and simple spiroannulation of the Morita−
Baylis−Hillman adduct of isatin derivatives with anthracene was
achieved in moderate-to-good yields (37−75%). The spiroder-
ivatives synthesized in this work exhibited green fluorescence
properties. The reaction occurred in metal-free eco-friendly K-10
clay-mediated conditions. The final products have multiple
structural features such as 3-spirooxindole, fluorophoric anthra-
cene, phenanthracene, phenalene, and perylene cores.

1. INTRODUCTION
Contributions of organic fluorescent materials1 and their
related findings play important roles in the advancement and
applications of chemical and biological research.2 The novel
synthesis of an organic fluorophore molecule1 is relevantly
observed with attention focused on modern technological
developments such as organic light-emitting diodes, organic
thin-film transistors,3 and electroluminescent, polymeric,
optoelectronic, and semiconductive devices.4

The existence of spirooxindoles in a large number of natural
products and pharmaceutically important molecules has been
clearly highlighted in several synthetic organic chemistry
reports.5 Notably, from its discovery in 1832 to the present
modern days, the chemistry of anthracene6 has grown for a
wide range of applications. The Morita−Baylis−Hillman
chemistry7 is significantly suitable to establish synthetically
important core structures and useful transformations, which
garner the attention of organic chemists. Because of our field of
interest in the area of MBH chemistry, a novel attempt for the
derivatization of anthracene using Morita−Baylis−Hillman
adducts of isatin was deduced to achieve compounds with
featured electrochemical and photophysical functionalities.
Thus, we planned to establish an interesting new methodology
for the construction of 3-spirooxindole fluorescent derivatives
applying the [3 + 3] spiroannulation reaction in metal-free eco-
friendly Mont. K-10 clay-mediated facile conditions, with the
aim to achieve structural features such as 3-spirooxindole,
fluorophoric anthracene, phenanthracene, phenalene, and
perylene cores, as highlighted in Figure 1.
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Figure 1. Multiple structural features of the targeted products.
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2. RESULTS AND DISCUSSION

As shown in Scheme 1, we began the initial study by treating
the Morita−Baylis−Hillman adduct 1a with anthracene and
50% w/w Mont. K-10 clay in a sealed tube to heat over an oil
bath at 120 °C for 30 min to afford an interesting green
fluorescent product after silica gel column purification. The

UV−visible spectral analysis showed characteristic absorption
bands at 406, 432, and 460 nm, as shown in Figure 2. Based on
the results of our previous studies,7n it was suspected that the
allylic arylation followed by allylic proton shift 1B may be
responsible for the fluorescent nature of the product. However,
this was not supported by the NMR and mass spectral

Scheme 1. Initial Study of Fluorescent Product Formation

Figure 2. (A) Column fraction in 20% EtOAc/hexane; (B) silica gel slurry; (C) UV−visible spectrum of green fluorescent compound 1c.
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analyses. Especially, the mass peak supposed to appear at m/z
407 and m/z 408(m+1) was absent, and only a peak with
respect to a spiro-derivative was seen at m/z 406, which
matched the m+1 peak of a spiroannulated product 1c.

The possible and preferred attacks of anthracene on the
MBH adduct of isatin are shown in Scheme 1. To increase
product formation and to determine the reaction pathway
alternative to neat reaction conditions, chlorobenzene was used
as a solvent. In the chlorobenzene heating, intermediates 1b,
1b′, and 1b″ were identified by NMR and mass analyses.

For the optimization of the methodology, the reactions were
performed, as shown in Table 1. Thus, the MBH adduct 1a
(50 mg, 0.202 mmol) with 2 equiv of anthracene using 50% w/
w freshly activated K-10 clay was taken in a sealed tube, and
the tube conventionally heated at 120 °C to yield the desired
fluorescent compound (3-spiro-oxindalone) 1c/c′ in 23% yield
(Table 1, entry 1). In microwave irradiation conditions, the
reaction was tested, and a slightly improved yield of 35% was
found, as shown in Table 1 (entry 2). Further, to increase the
formation of the target molecule, the amount of K-10 clay was
increased to 100% w/w, and the reaction mixture was
immersed in chlorobenzene to heat over an oil bath at 120
°C. Interestingly, the yield improved to 55% (Table 1, entry 3).
To assess the progress of the reaction in the absence of K-10
clay, only the MBH adduct and 1.5 equiv of anthracene were
heated for the period of 2 h in neat conditions and in the
presence of chlorobenzene. No fluorescent product formation
was observed (Table 1, entries 4 and 5). The use of 1.2 equiv
of anthracene and 100% w/w K-10 clay in chlorobenzene
under conventional heating for 2 h was found to be the
optimum conditions for fluorescent compound formation
(Table 1, entries 6 and 7).

Encouraged by the optimized study, different MBH adducts
2a−16a were tried with anthracene to assess the generality of
the methodology (Table 2). All reactions proceeded smoothly
with moderate-to-good yields. Thus, the simple isatin-derived
MBH adducts 2a and 3a afforded the green fluorescent
compounds 2(cc′) and 3(cc′) in moderate yields. 1-Methyl,
1,5-dimethyl, and 1-ethyl isatin-derived MBH adducts 4a−10a

underwent [3 + 3]-spiroannulation in 42−68% yields.
Similarly, N-propargyl and N-benzyl isatin-derived adducts
11a−16a afforded products 11(cc′)−16(/cc′) in 43−72%
yields. While performing the generality study, UV−visible
spectral comparisons between anthracene and fluorescent
products were performed to determine the progress of the
reactions, as shown in Figure 3. Thus, the absorption band
intensity decreased between 300 and 390 nm of anthracene,
and the appearance followed by enhancement of bands
between 400−470 nm confirmed the formation of green
fluorescent compounds.

It was noticed that the reaction between N-propargylisatin
methyl acrylate MBH adduct 11a and anthracene provided
interesting evidence for the regio- and stereochemistry aspects
of [3 + 3] the spiroannulation product formation in proton
NMR analysis.

The appearance of four triplet peaks in the alkyne proton
chemical shift range of 2.0−2.5 ppm and a geminal and vicinal
coupled doublet of doublet (dd) pattern in the chemical shift
range of 2.7−2.9 ppm were indicative of possible diastereo-
and regioisomer formation in the [3 + 3] spiroannulation
(Figure 4).

It was observed that the perylene core formation was due to
the possibility of a reaction between the MBH adduct and
anthracene in a 2:1 ratio, as shown in Scheme 2. While
performing column purification of the reaction mixtures
obtained in the cases of adducts 1a, 7a, and 11a, orange-
colored products 1d, 7d, and 11d were collected by column
purification. The mass and UV−visible spectra of the orange
products supported the perylene core.

Thus, the perylene core appeared in the mass spectral
analysis as a peak at m/z 661(m+1) found for the orange
fluorescent fraction 7d. The UV−visible spectral comparison
between green (1c) and orange (1d) fluorescent products was
recorded. The appearance of red-shifted additional new
absorption bands at 501 and 538 nm was seen for the orange
fraction, as shown in Figure 5.

The representative UV−visible and photoluminescence
(PL) spectra for compound 11c/c′ were recorded in CHCl3.

Table 1. Optimization Study for Fluorescent Product Formation

entry (A+B) (amount) condition time (h) % yield of 1c/c′a

1 2 equiv. + (50% w/w) 120 °C, neat conventional 1 23
2 2 equiv. + (50% w/w) neat, 70%PL, MW irradiation 0.5 35
3 2 equiv. + (100% w/w) 120 °C in Cl−C6H5 conventional 1.5 65
4 1.2 equiv. + (0% w/w) 120 °C, neat conventional 2 0
5 1.2 equiv. + (0% w/w) 120 °C, in Cl−C6H5 conventional 2 0
6 1.2 equiv. + (100% w/w) 120 °C, in Cl−C6H5 conventional 2 75
7 2 equiv. + (100% w/w) 70%PL, MW in Cl−C6H5 0.5 45

aCombined yield of inseparable mixtures based on proton NMR.
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The PL spectral study showed emission peaks at 482, 502, and
540 nm, as shown in Figure 6.

3. CONCLUSIONS

In conclusion, we developed a novel synthetic transformation
of the MBH adduct of isatin with anthracene to identify a
green fluorescent derivative. The newly formed compounds
were characterized by preliminary UV−vis spectroscopy, mass
spectrometry, and NMR spectroscopy analyses. Further studies
using these results are in progress in our laboratory.

4. EXPERIMENTAL PROCEDURE
4.1. General Considerations. NMR spectra were

recorded at 400 (1H) and 100.6 (13C) MHz on a Bruker
Advance 400 MHz NMR spectrometer using chloroform-d1 as
the solvent. Chemical shifts are given in the δ-scale with
tetramethylsilane as the internal standard. Coupling constants
(J) are reported in hertz (Hz). Yields refer to quantities
obtained after chromatography. IR spectra were recorded on a
Nicolet (Impact 400D FT-IR) spectrophotometer or a Bomem
MB-series FT-IR spectrophotometer. Abbreviations used in
1H NMR are as follows: s, singlet; d, doublet; dd, doublet of a

Table 2. Generality of the Method for Fluorescent Product Formationa

aAll regioisomers reported as combined yield (c/c′ inseparable mixtures with ∼1:1 ratio based on 1H NMR spectroscopy)
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doublet; and m, multiplet. Analytical thin layer chromatog-
raphy (TLC) was performed on glass plates coated with silica
gel (Merck) containing 13% calcium sulfate as a binder.
Column chromatography was performed using 100-(200)

mesh silica gel, and an appropriate mixture of petroleum ether
(60−80 °C) and ethyl acetate was used as the solvent system
for elution unless otherwise specified. The solvents were
removed (under reduced pressure where necessary) using a
Heidolph or Buchi rotary evaporator. All solvents were distilled
before use, and reactions requiring dry conditions were carried

Figure 3. UV−visible spectral comparisons.

Figure 4. 1H NMR spectra confirming the possible regio- and stereo- isomers formations.

Scheme 2. Formation of the Perylene Core
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out using dry solvents, which were dried according to the
literature procedure.

4.2. General Experimental Procedure for [3 + 3]
Spiroannulation of the MBH Adduct of Isatin with
Anthracene using K-10 Clay.

• (a)Neat conditions: A mixture of 50 mg of MBH adduct
(0.20 mmol), 1.5 equiv of anthracene, and 100%w/w K-
10 clay was ground in a mortar/pestle in solvent-free
conditions at room temperature (3 min). The mixture
was taken in a sealed tube to heat over an oil bath at 120
°C for 1 h. The crude mixture was purified by silica gel
column chromatography using EtOAc/hexane (20:80)
as the eluent to afford the desired green fluorescent
compound as a semisolid.

• (b)Using chlorobenzene as solvent conditions: A mixture of
50 mg of MBH adduct (0.20 mmol), 1.2 equiv of
anthracene, and 100%w/w K-10 clay was ground in a
mortar/pestle in solvent-free conditions at room
temperature (3 min). The mixture was taken in a sealed
tube and mixed with 2 mL of chlorobenzene to heat over
an oil bath at 120 °C for 2 h. The crude mixture was
purified by silica gel column chromatography using

EtOAc/hexane (20:80) as the eluent to afford the
desired green fluorescent compound as a semisolid.
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