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Abstract

The galling habit represents a complex type of interaction between insects and plants, rang-

ing from antagonism to mutualism. The obligate pollination mutualism between Ficus and fig

wasps relies strongly on the induction of galls in Ficus flowers, where wasps’ offspring

develop. Even though gall induction plays an important role in many insect-plant interac-

tions, the mechanisms that trigger gall formation are still not completely known. Using a fin-

gerprinting approach, we show here that venom protein profiles from galling fig wasps differ

from the venom profiles of non-galling species, suggesting the secretion plays different

roles according to the type of interaction it is involved in. Each studied cleptoparasitic spe-

cies had a distinct venom profile, suggesting that cleptoparasitism in fig wasps covers a vast

diversity of molecular interactions. Fig wasp venoms are mainly composed of peptides. No

low molecular weight compounds were detected by UPLC-DAD-MS, suggesting that such

compounds (e.g., IAA and cytokinines) are not involved in gall induction. The differences in

venom composition observed between galling and non-galling fig wasp species bring new

perspectives to the study of gall induction processes and the role of insect secretions.

Introduction

Venoms play an important role in modulating animal interactions with the surrounding envi-

ronment, usually being involved in defense or prey capture [1]. Venoms commonly consist of

a mixture of peptides, proteins and other compounds that are injected in the prey or host and

interfere with its vital systems [2–4]. Venom has evolved independently in more than twenty

lineages in Metazoa and is produced by exocrine glands located in different parts of verte-

brates’ and invertebrates’ bodies [5].
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In Hymenoptera the venom apparatus is associated with the female ovipositor, and its

ancestral function was probably associated with coating of the eggs [6]. However, major shifts

in venom function took place throughout the evolutionary history of Hymenoptera, possibly

related to the great diversification experienced by the group. Hymenoptera is one of the mega-

diverse orders in Insecta, which is reflected in the diversity of life histories, including socialisa-

tion, phytophagy, parasitoidism and cleptoparasitism [7]. Specifically in parasitoid

Hymenoptera, venoms are injected in the host by the female during oviposition, and are

related to host manipulation by interfering with its development, immune response and motor

control [8]. Such venoms consist of proteins and polypeptides of high molecular weight and of

an acidic nature [8,9]. Most of them are hydrolases that rupture cells and tissues, enabling the

action of neurotoxic, paralysing, immunosuppressant and cytotoxic components [10,11]. Phe-

noloxidases and protease inhibitors are also commonly found in parasitoid venoms [8].

In phytophagous insects, venom might play a role in manipulating plant tissues, leading to

the induction of a gall [12–14]. Insect gall induction is a rather complex process that leads to

the formation of an entirely new structure, which shelters and nourishes a developing larva

[15– 17]. Galls may be induced in response to salivary secretion from larvae (e.g., Diptera:

Cecidomyiidae) [18] or to venom injected by the female during oviposition (e.g., Hymenop-

tera: Cynipidae and Tenthredinidae) [14,18]. Some phytohormones such as auxin and cytoki-

nins, which stimulate cell growth and division, have been described in larval salivary

secretions and in secretions injected by insects during oviposition [14,16]. Moreover, salivary

proteins and peptides probably play a role in gall induction since their expression is detected

in galled tissues [19,20]. However, the mechanisms leading to gall formation are still poorly

understood [17,21].

The composition and functional role of insect venoms are of particular importance for eco-

logical studies of insect-plant communities, as they help understand mechanisms of species

interaction and coexistence in the same system. However, the current knowledge in this field

is mainly based on specific studies (e.g., Zhu, Ye & Hu, 2008 [22]; Goeks et al., 2013 [23]), so

that a comprehensive comparative approach is limited [24,25]. In this context, we use Ficus–
associated wasps (Hymenoptera: Chalcidoidea) as a model of a complex insect-plant commu-

nity with representatives of different life histories (i.e., cleptoparasites, gallers and parasitoids).

Besides encompassing these different strategies, the system includes independent phylogenetic

lineages [26], allowing a comparative approach.

Fig wasps use Ficus (Moraceae) pistillate flowers as oviposition sites and create a complex

microenvironment inside Ficus inflorescences, which contain up to a thousand flowers and

are nurseries to up to 30 species of invertebrates [27]. Some fig wasps belonging to Agaonidae

have an obligate mutualistic relationship with Ficus plants. They enter the fig inflorescence (or

fig), deposit their eggs in flower ovaries and pollinate some of the flowers. They are among the

few organisms adapted to entering the fig and the only ones that are able to perform pollina-

tion [27,28] (but see Compton et al., 1991 [29] and Jousselin, Rasplus & Kjellberg, 2001 [30]).

Other fig wasp species belonging to Eurytomidae, Pteromalidae, Torymidae and Ormyridae

do not enter figs and oviposit from the exterior, inserting their ovipositors through the fig

wall. Some of them are able to induce galls, but none performs pollination [31]. Thus, they are

called non-pollinating fig wasps (NPFW).

Gall induction may be triggered by the deposition of the wasp’s venom gland secretion dur-

ing oviposition [32,33]. Indeed, venom glands have very large reservoirs in most fig wasp spe-

cies [32,34], which is consistent with the important role their secretion may play [32,33]. After

oviposition, each flower ovary becomes a gall, initially by an increase in the volume of nucellus

and integument cells, which may be followed by abnormal cellularisation of the endosperm

[35,36]. These galls can be exploited by non-galling fig wasp species (cleptoparasites and
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parasitoids), which use the plant tissue or the developing larvae as resources for their offspring

[33,37]. Thus, the secretion injected by the female wasp during oviposition might have differ-

ent functions, e.g. gall induction or host manipulation.

Cleptoparasitism is a term widely used in fig wasp studies to describe the general strategy of

using the gall induced by another galling species (usually the fig pollinators) as resource for off-

spring development. Cleptoparasites, though phytophagous, are unable to induce galls [33].

Some cleptoparastic species are early-colonising species that oviposit few days or even hours

after the galling species [38]. Other cleptoparasitic fig wasps oviposit some weeks after gall

induction by the fig pollinator [39]. Therefore, cleptoparasitism in fig wasps encompasses dif-

ferent feeding strategies.

In this study we investigated the venom profile of seven fig wasp species with different life

histories (i.e., gallers, cleptoparasites and parasitoids), encompassing six genera from the main

clades of Agaonidae, Sycophaginae and Pteromalidae [26,40]. We used a comparative venomic

fingerprinting approach in order to establish a suggestion of relationship between venom com-

position and function according to different life histories. Specifically we aimed (1) to elucidate

differences among fig wasps venom fingerprints, using MALDI-TOF-MS (Matrix Assisted

Laser Desorption/Ionization time-of-flight Mass Spectrometry), according with their life histo-

ries; and (2) to investigate the presence of low molecular weight components commonly

described to participate in gall induction (e.g., phytohormones) in the venoms of one galling

and one non-galling fig wasp species.

Materials and methods

Species and study sites

Wasps were collected from F. citrifolia Mill. in the Ribeirão Preto campus of Universidade de

São Paulo, Brazil (21˚100 S; 47˚480 W) and from F. auriculata Lour., F. hispida L. and F. semi-
cordata Buch.- Ham. ex Sm. at the Xishuangbanna Tropical Botanical Garden (XTBG), in

Menglun, China (21˚41’ N; 101˚25’ L) (Table 1). The first author (LGE) was affiliated to Uni-

versidade de São Paulo throughout the development of this study and was formally accepted at

XTBG to development part of her study under supervision of Dr.Yang-Qiong Peng. Therefore,

no other field permission was necessary.

The species studied include representatives of ovary galling (two pollinating and two

NPFW species), cleptoparasitic (two species) and parasitoid species (one species). Information

about each species’ life history was based on literature [33,39,42] or on personal observation by

the authors. These species belong to four subfamilies (Table 1 and S1 Fig).

Chemical analyses of venom gland reservoirs

Venomic fingerprinting by MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ioni-

zation Time-Of-Flight Mass Spectrometry). In order to determine the chemical fingerprint

of fig wasp venoms, samples were prepared as a pool of five to 10 reservoirs, which were repre-

sentative of the chemical variation in each species. Samples from C. solmsi (n = 3 reservoir

pools), Idarnes sp.1 (n = 2), Idarnes sp.3 (n = 2) and P. aerumnosus (n = 3) were prepared

using five reservoirs in each pool (biological replicates) and each sample was analysed in tripli-

cates (technical replicates). Samples from Ph. pilosa (n = 3 reservoir pools), Sycophaga sp.

(n = 3) and S. aff. trifemmensis (n = 3) were prepared using 10 reservoirs in each pool and ana-

lysed with replicates when possible. Data in S2 Fig shows spectra obtained from the three sam-

ples collected from P. aerumnosus, which is used here as model species to illustrate variation

among samples.
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Samples were added to 3 μl of 0.1% TFA and then to a DHB matrix (at 20 mg mL-1, pre-

pared with acetonitrile: water with 0.1% TFA 3:7 v/v) at a ratio of 1:1 (v/v). Subsequently, they

were homogenised, and 1 μl of the mixture was spotted onto a ground stainless steel MALDI

target. For MALDI-TOF MS analysis, acquisitions were performed in positive linear ion mode

for two ranges: m/z 1,000–20,000 and 15,000–55,000. The laser frequency of the equipment

was set to 1000 Hz, and 3000 shots were averaged for the generation of each mass spectrum.

External calibrations were conducted with a mixture of proteins (protein calibration standard

I and II of Bruker). Optimization of MALDI-TOF MS methods and stability of reservoirs sam-

ples are described in the Supplemental Information (S3 Fig and Supplemental Material and

Methods).

Gas chromatography-mass spectrometry (GC-MS) analyses of reservoir samples. The

GC-MS was used to allow the detection of compounds with low molecular weight, including

non-polar and polar compounds e.g. auxins and cytokinins. Samples were analysed by a gas

chromatograph directly coupled to a mass spectrometer (SHIMADZU, model

GCMS-QP2010) equipped with a DB-5MS chromatography column, using helium as carrier

gas at a flow rate of 1 mL min-1. The column was initially set at 50˚C, then programmed to

reach 240˚C at a rate of 3˚C min-1 and held at 240˚C for 5 min. Next, the rate was set to 15˚C

min-1 until 300˚C, and the temperature was held at 300˚C for 5 min. The injection mode was

splitless, the injection temperature was 250˚C, and the volume of the sample injected was 1 μL.

Samples (n = 2 reservoir pools for each species) were prepared using a pool of 25 venom

reservoirs. They were added to 40 μl of solvent (chloroform and hexane at a ratio of 1:1) and

sonicated before injection. We analysed venom from one galling (Idarnes sp. 3) and one non-

galling (Idarnes sp.1) species.

Liquid chromatography—Mass spectrometry analyses of reservoir samples

(UPLC-DAD-MS). Ultra-performance liquid chromatography coupled to diode array detec-

tor and mass spectrometry (UPLC-DAD-MS) was used to allow the detection of compounds

with low molecular weight, including non-polar and polar compounds e.g. auxins and

cytokinins.

UPLC-DAD-MS analyses were performed using the ACQUITY system (Waters Assoc.,

Milford, USA) and an ACQUITY C18 BEH (1.7 μm, 2.1 mm × 50 mm) column. The mobile

phase applied was acetonitrile (B) and deionized water (A), the column temperature was main-

tained at 30˚C, and temperature in the automatic injection was 10˚C. The flow rate and the

Table 1. Life history and taxonomy of the study species.

Wasp species Subfamily Life history Fig host

Ceratosolen solmsi Mayr Kradibiinae ovary gallerc Ficus hispida
Pegoscapus aerumnosus (Grandi) Agaoninae ovary gallerc Ficus citrifolia
Idarnes sp. 3 (flavicollis groupa) Sycophaginae ovary gallerd Ficus citrifolia
Sycophaga sp.b Sycophaginae ovary gallerd Ficus auriculata
Idarnes sp. 1 (carme groupa) Sycophaginae cleptoparasited Ficus citrifolia
Philotrypesis pilosa Mayr Sycoryctinae cleptoparasited Ficus hispida
Sycoryctes aff. trifemmensis Sycoryctinae parasitoidd Ficus semicordata

aBouček, 1993 [41]
bsensu Cruaud et al. (2011) [26]
c Pollinating species
d Non-pollinating species

https://doi.org/10.1371/journal.pone.0207051.t001

Different venom fingerprints among galling and non-galling fig wasp species

PLOS ONE | https://doi.org/10.1371/journal.pone.0207051 November 8, 2018 4 / 14

https://doi.org/10.1371/journal.pone.0207051.t001
https://doi.org/10.1371/journal.pone.0207051


injection volume were 0.3 mL min-1 and 5 μL, respectively, and the applied elution profile was

the following: 0–10 min, 10–50% B; 10–10.4 min, 50–100% B; and 10.4–11.2 min, 100% B.

Nitrogen was used as the nebulizing and drying gas and the following parameters were

applied: cone voltage of 25 V, capillary voltage of 2.5 KV, extractor voltage of 3.0 V, desolvation

gas flow of 650 L h-1, desolvation temperature of 350˚C, and cone gas flow of 55 L h-1.

Samples were analysed using UPLC-DAD-MS in negative and positive ion mode using

total ion chromatogram (TIC) and single ion monitoring (SIM) modes. Analyses were focused

on ions such as m/z 174 [M-H]- (indole-3-acetic acid), 220 [M+H]+ (t-zeatin), 204 [M+H]+

(isopentenyladenine) and 336 [M+H]+ (isopentenyladenosine).

Samples (n = 2 reservoir pools for each species) were prepared using a pool of 10 venom

reservoirs. They were added to acetonitrile and deionized water (150 μL) and filtered through

Millex filters (0.22 μm, PTFE). We analysed venom from one galling (Idarnes sp. 3) and one

non-galling (Idarnes sp.1) species.

Data analyses

Processing of MALDI-TOF MS spectra for data from venom reservoirs. Venom finger-

prints were determined based on MS data of each sample (distribution of peaks for each mass

range) obtained by MALDI-TOF MS. All the spectra obtained from linear mode analyses for

the seven species studied were externally calibrated in FlexAnalysis software, exported as text

files and subsequently imported into the R environment [43]. Spectra were processed using

the MALDIquant package [44].

Mass spectra were square-root transformed and smoothed using both Moving Average and

Savitzky-Golay methods. Baseline correction was performed using TopHat. Then, mass spec-

tra were aligned and peak detection was performed using a signal-to-noise ratio of 5.

MALDI-TOF MS multivariate data analysis. In order to differentiate among the profiles

of fig wasps’ venom, the intensity matrix for all detected peaks from all samples was used to

perform an unsupervised principal component analysis. Analyses were performed in R using

"pcaMethods" [45], and "rgl" [46] packages and principal components were displayed in a

three-dimensional score plot. After tests of scaling methods listed by van den Berg et al. (2006)

[47], we observed that the scale transformation carried out by MALDIquant processing was

efficient to reduce within cluster member distances and no additional scaling was applied to

the data set.

The same data were also used to perform a supervised analysis, enabling the detection of

discriminant peaks (m/z values) which have highest separation power regarding ecological

groups (pollinating ovary-galling wasps, non-pollinating ovary-galling wasps, cleptoparasites

and parasitoids). We used a Partial Least Squares Discriminant Analysis (PLS-DA) with the

classical orthogonal score algorithm. The coefficient of multiple determination (R2) and cross-

validated R2 (Q2) were used to assess model fitting. Then, a ranking of discriminant peaks was

generated using a weighted average of PLS loadings according to Xia et al.(2015) [48]. Analyses

were performed in R using the "pls" package [49].

Results

Chemical analyses of venom gland reservoirs

Venomic fingerprint by MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ioniza-

tion Time-Of-Flight Mass Spectrometry). MALDI-TOF MS analysis of the venom reservoir

content of the studied fig wasp species revealed complex mixtures of peptides and proteins

with the highest ion intensities within the mass range m/z 2400–7000. The venom fingerprint
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shows that galling and non-galling species have distinct peptide profiles, suggesting that their

venoms may differ in composition (Fig 1).

The parasitoid species S. aff. trifemmensis has the most distinct spectrum among the studied

wasps. It is the species with the lowest complexity concerning the compounds with m/z 1,000–

20,000, including an intense ion at m/z 4119.9522, whose mass was accurately determined

using reflectron mode analyses (S4 Fig). On the other hand, Ph. pilosa was the only species that

showed a low mass peptide at m/z 1307, which represented the highest ion intensity in the

range analysed (Fig 1).

Regarding the range m/z 15,000–55,000, the differences among spectra are striking. S. aff.

trifemmensis is the only species that presents multiple peaks in this range (Fig 2 and S5 Fig).

Idarnes sp. 1 presents two ions in this range, but the most intense was observed at m/z 17483

(Fig 2). However, no peaks were observed in this range for any of the other species.

Fig 1. Mass spectra obtained from venom reservoirs using MALDI-TOF MS (linear positive ion mode) in the range m/z 1,000–20,000. The image on the left shows

a schematic representation of the location of venom gland reservoir in the wasps’ body (grey circle). The arrow points to an image of a dissected venom reservoir. Red

spectra correspond to pollinating ovary-galling species, green spectra correspond to non-pollinating ovary-galling species, black spectra correspond to cleptoparasitic

species and the blue spectrum corresponds to the parasitoid species.

https://doi.org/10.1371/journal.pone.0207051.g001
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MALDI-TOF MS multivariate data analysis. Overall, venom spectra at m/z 1,000 to

20,000 showed that ovary-galling species (pollinators and non-pollinators) cluster together

and are clearly separated from non-galling species (parasitoid and cleptoparasites, Fig 3).

The analysis defined four different groups among the studied fig wasps. The first axis

explained 26% of the variation and separated the galling species + Idarnes sp. 1 from cleptopar-

asitic Ph. pilosa and from the parasitoid S. aff. trifemmensis (Fig 3). The second axis separates

the Pteromalidae species (Ph. pilosa and S. aff. trifemmensis) from pollinating + Sycophaginae

species, explaining 12% of the variation. The third axis separates the cleptoparasitic Idarnes
sp. 1 from the gallers. The non-galling species, however, did not form a distinct group (Fig 3).

Regarding cross-validation data for the supervised partial least squares analysis, the accu-

mulated R2 and Q2 for three components were 0.998 and 0.94, respectively. According to the

analysis, the 10 most important ions separating the species according to their life histories

were, in this order, m/z 4124, 4140, 4068, 1307, 4192, 8260, 2456, 2398, 8245 and 8281 (S6 and

S7 Figs).

GC-MS and UPLC-DAD-MS analyses of reservoir samples. We did not detect any of

the most common auxins and cytokinins nor their precursors, such as indole-3-acetic acid, t-

zeatin, isopentenyladenine and isopentenyladenosine, or other ions of low molecular weight,

from the venom reservoir content of galling and non-galling species (S8–S13 Figs).

Discussion

Our results show that MALDI-TOF MS was an adequate tool for differentiating venom finger-

prints according to life history. The results also suggest that venom composition is not phylo-

genetically constrained, probably due to its significant functional role. Indeed, Idarnes sp. 1

(cleptoparasite) and Idarnes sp. 3 (galler) belong to sister clades in Agaonidae [50], but have

different venom compositions, which seem to be related to their different life histories and to

venom function.

The venom fingerprints of galling species were more similar to each other than to those of

non-galling species. However, initial gall induction strategies might differ among them. For

instance, the pollinating Pegoscapus larvae depend on endosperm for their nutrition and there-

fore gall development usually occurs after fertilisation of the flower ovule, and involves cellu-

larisation of the endosperm [35]. On the other hand, non-pollinating Idarnes sp. 3 larvae do

not rely on endosperm as a resource, and gall induction by this species involves major modifi-

cations in nucellus and integument cells [36]. Gall induction by fig wasps is probably related to

the venom injected by the female during egg deposition since ovary tissues show anatomical

modifications as early as four days after oviposition [35]. Pollinator larvae usually hatch from

the eggs two to six days after oviposition, however, sclerotised mouthparts do not develop

until the second larval stage (16–18 days after oviposition). At this stage, when larvae start to

feed actively and may release salivary secretion, galls are almost completely developed [35],

excluding the possibility of a salivary secretion effect, as described for other insects [16,51].

We did not detect any of the most common auxins or cytokinins nor their precursors in

any of the analysed reservoir samples of galling and non-galling species, suggesting that the

secretion might be involved in signalling molecular and physiological changes in plant tissue

rather than directly inducing them. On the other hand, we detected abundant peptides that

could be related to gall induction. Some of these peptides were also detected inside the galls,

supporting our hypothesis (L.G Elias, unpublished data). However, the role of peptides and

proteins in gall formation is still incipient [51], and more information is needed to expand the

range of studies about gall formation.
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The venom profiles of the two cleptoparasitic species (i.e., Idarnes sp. 1 and Ph. pilosa) are

different from each other, as well as from the other species studied, suggesting that venoms

from these species have distinct functions. Ph. pilosa females oviposit in figs of F. hispida
shortly (one or two days) after oviposition by its host C. solmsi [52]. At this stage, no macro-

scopic gall development by C. solmsi is observed, and secretion from the female Ph. pilosa may

be involved in enhancing gall induction or in delaying development of the host larva. On the

other hand, Idarnes sp.1 wasps oviposit in figs of F. citrifolia about 15–20 days after the pollina-

tor oviposition (i.e., Pegoscapus sp.), when galls are fully developed [39,53]. Species belonging

to the Idarnes carme group are typical representatives of the late-colonising cleptoparasites

[53]. The parasitoid strategy is not likely because the host galling larva at this time is not large

enough to sustain the Idarnes carme group larva. Moreover, it has been demonstrated that

Idarnes carme group species are indeed phytophagous, as they are able to bore good seeds

when there is a shortage of host galls [54]. Thus, these two examples of feeding strategies show

that cleptoparasitism involves complex trophic interactions, with particular ecological and

developmental implications. Some early cleptoparasitic species [e.g., Diaziella yangi and

Fig 2. Mass spectra of venom reservoirs obtained using MALDI-TOF MS (linear positive ion mode) in the range m/z 15,000–55,000

KDa. Red spectra correspond to pollinating ovary-galling species, green spectra correspond to non-pollinating ovary-galling species, black

spectra correspond to cleptoparasitic species and the blue spectrum corresponds to the parasitoid species.

https://doi.org/10.1371/journal.pone.0207051.g002
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Lipothymus sp. (Pteromalidae)] are even described as secondary gallers, as they independently

stimulate additional gall growth [55]. Therefore, the venoms of Idarnes sp.1 and Ph. pilosa
probably play different roles. Idarnes sp1 venom is not related to gall formation and is probably

involved in interaction with the host larva. Indeed, at this stage, the host larva is in the second

or third larval instar and has already developed mouthparts [35]. Venom might be related to

paralysis or developmental arrest of the host larva, allowing the cleptoparasitic larva to

Fig 3. Principal component analysis based on the intensity matrix of ions detected using MALDI-TOF MS at m/z 1,000 to 20,000. Top

plots represent bidimensional principal components. The bottom plot is a tridimensional representation of principal components 1, 2 and 3.

G = galler; NG = non-galler.

https://doi.org/10.1371/journal.pone.0207051.g003
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compete for resources in the gall. The presence of two ions at m/z higher than 17,000 in

Idarnes sp.1 venom support this hypothesis since higher molecular weight proteins are nor-

mally characteristic of parasitoid species [9], which manipulate the host larva. Very little is

known about the physiological basis of interaction between cleptoparasites and their hosts,

and our results suggest that the definition of cleptoparasitism covers a vast diversity of molecu-

lar interactions.

The parasitoid S. aff. trifemmensis presented the most distinct venom profile among the spe-

cies studied. This was the only species with multiple proteins in the range of m/z 15,000–

55,000, corroborating data for other parasitoid species that, in general, present large proteins

in their venoms which may interfere with host development and immune response [9].

Conclusions

The galling habit represents a complex type of interaction between insects and plants, ranging

from antagonism to mutualism, as is the case for Ficus plants. However, the molecular and

chemical signals involved in gall induction in this and other systems are poorly known.

This study sheds light on the understanding of species interactions from a molecular per-

spective. We showed that venoms from fig wasps are mainly constituted of peptides and pro-

teins, which brings a new perspective to the investigation of gall-inducing molecules, so far

deeply focused on phytohormones. We also show that venom protein fingerprints from galling

fig wasps differ from the venom fingerprints of non-galling species, suggesting the secretion

plays different roles according to the type of interaction it is involved in. The differences in

venom composition observed between galling and non-galling fig wasp species bring new per-

spectives to the study of gall induction processes and the role of insect secretions.
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(PDF)
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