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Abstract: Complementary metal-oxide-semiconductor (CMOS) image sensors can cause noise in
images collected or transmitted in unfavorable environments, especially low-illumination scenarios.
Numerous approaches have been developed to solve the problem of image noise removal. However,
producing natural and high-quality denoised images remains a crucial challenge. To meet this
challenge, we introduce a novel approach for image denoising with the following three main contri-
butions. First, we devise a deep image prior-based module that can produce a noise-reduced image
as well as a contrast-enhanced denoised one from a noisy input image. Second, the produced images
are passed through a proposed image fusion (IF) module based on Laplacian pyramid decomposition
to combine them and prevent noise amplification and color shift. Finally, we introduce a progressive
refinement (PR) module, which adopts the summed-area tables to take advantage of spatially corre-
lated information for edge and image quality enhancement. Qualitative and quantitative evaluations
demonstrate the efficiency, superiority, and robustness of our proposed method.

Keywords: noise removal; deep image prior; edge enhancement; contrast enhancement

1. Introduction

Noise usually accompanies images during acquisition or transmission, resulting in
contrast reduction, color shift, and poor visual quality. The interference of noise not only
contaminates the naturalness of an image, but also damages the precision of various com-
puter vision-based applications, such as semantic segmentation [1,2], motion tracking [3,4],
action recognition [5,6], and object detection [7–12], to name a few. Consequently, noise
removal for these applications has attracted great interest as a preprocessing task over the
last two decades. The classical description for the additive noise model can be defined as
follows [13]:

In = Igt + β, (1)

where In, Igt, and β represent an image accompanied with noise, a noise-free image, and
noise, respectively.
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Numerous approaches have been introduced to obtain noise-free images from the observed
noisy ones; these approaches are generally categorized into two groups [14]: (1) model-based
denoising methods [14–18], and (2) learning-based denoising methods [19–22].

Model-based denoising methods are considered as traditional techniques that use
filters, such as median-type filter, Gaussian filter, and Gabor filter to remove noise. In
efforts to remove impulse noise, Lin et al. [14] proposed a morphological mean filter that
first detects the position and number of pixels without noise, and then uses these detected
pixels to substitute neighboring noisy pixels in the image. Zhang et al. [15] introduced a
new filter, named adaptive weighted mean (AWM). The main idea of this proposed filter is
to reduce the error of detecting noise pixel candidates and replace them with suitable value
computed using noise-free pixels. The proposed median filter [16] did not require any
iteration to detect noises, but could directly identify low- and high-density salt-and-pepper
noises as the lowest and highest values, respectively; it then utilized prior information to
capture natural pixels and remove these noises. In the work [17], a hybrid filter combining
fuzzy switching and median adaptive median filters was introduced for noise reduction in
two stages. In the detection stage, the noise pixels are recognized by utilizing the histogram
of the noisy images. Then, the detected noise pixels are removed whereas noise-free pixels
are retained during the filtering stage to preserve the textures and details included in the
original image. Based on the unsymmetrical trimmed median filter, Esakkirajan et al. [18]
presented a modified decision method, in which the mean of all elements of a selected
3× 3 window is used to replaced noise pixels for restoration of both color and gray images.
In addition, various filtration algorithms [23], such as Wiener filtration, multistage Kalman
filtration, and nonlinear Kalman filtration, which are commonly used for the formation
of images containing characteristics close to those of real signals, can also be applied for
denoising problems. However, although these approaches are simple to implement and
achieve satisfying denoising performance in the presence of low-density noise, they are
generally unsuitable for processing images featuring high-density noise.

Learning-based denoising methods consist of two main categories, including prior
learning and deep learning. Between these methods, deep learning has shown outstanding
results for noise removal in recent years. Xu et al. [19] recognized that simple distributions,
such as uniform and Gaussian distributions are insufficient to describe the noise in real
noisy images. They thus proposed a new method that could first learn the characteris-
tics of real clean images and then use these characteristics to recover noise-free images
from real noisy ones. The method in [20] removed noises and retrieved clean images
by employing ant-colony optimization to generate candidate noise pixels for sparse ap-
proximation learning. Hieu et al. [21] introduced a lightweight denoising model using
a convolution neural network (CNN) with only five deconvolutional and convolutional
layers, which can be optimized in an end-to-end manner and achieves high running time
on high-density noise images. In [22], the authors proposed a model based on a CNN,
named DnCNNs, to denoise image with random noise levels. DnCNN accomplished the
objective by modifying the VGG network [24] to extract features of the input samples,
and engaging the batch normalization and residual learning for effective optimization.
Unfortunately, while these methods yield high rates of success for denoising task, they
require high computational costs and only work well when trained on a dataset with a
massive number of image samples.

To reduce the dependence of the deep CNNs on a large training dataset,
Ulyanov et al. [25] presented a deep image prior (DIP) approach, in which a handcrafted
prior can be replaced with a randomly-initialized CNN for obtaining impressive results in
common inverse tasks, such as blind restoration, super-resolution, and inpainting. Many
research works based on DIP have been proposed [26–28], which introduce an additional
regularization term to achieve robust performance. The method in [26] coped with the
problem of denoising by combining both denoised and contrast-enhanced denoised results
generated by DIP model. Cheng et al. [27] explained DIP from a Bayesian point of view
and exploited a fully Bayesian posterior inference for better denoising result. In [28], DIP
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was adopted for image decomposition problems, such as image dehazing and watermark
removal. The authors showed that stacking multiple DIPs and using the hybrid objective
function allow the model to decompose an image into the desired layers.

Inspired by DIP, in this paper, we propose a novel method to address the problems of
noise removal, which can reach remarkable denoising performance without necessitating
a large training dataset. Our proposed model is comprised of three modules: (1) a DIP-
based module, (2) an image fusion (IF) module, and (3) a progressive refinement (PR)
module, as displayed in Figure 1. In the proposed model, first, the DIP-based module
applies DIP to learn contrast enhancement and noise removal, simultaneously. Next, the
IF module based on Laplacian pyramid (LP) decomposition, is used to avoid color shift
and noise amplification during image production. Finally, the summed-area tables (SATs)
are employed in the PR module to enhance edge information for acquiring high-quality
output noise-free images of our proposed model. The details of these three modules are
further presented in Section 2.

Deep Image Prior-Based Module
Image Fusion Module

Progressive Refinement Module Noise-Free Image

In

Supervision Fusion

Fixed Random
Tensor (z)

Id

Ied

Ien

Summed Area Tables

Icd

Figure 1. Flowchart of the proposed denoising method. In is a noisy image, Ien is an enhanced noisy
image obtained by applying a contrast enhancement method to In. Id and Ied represent two denoised
images that are supervised by In and Ien, respectively.

In summary, three technical contributions of our work are listed below:

1. Noise removal and contrast enhancement are simultaneously learned for effective
performance improvement without requiring large amounts of training data.

2. The color distortion of denoised images is prevented by applying LP decomposition.
3. Edge information is enhanced to achieve high-quality output images by taking ad-

vantage of spatially correlated information obtained from SATs.

To prove the efficiency of the proposed method, we use images from the DIV2K
dataset [29] and create noisy images with various noise levels for evaluation. Our approach
improved the results of competitive methods on 10 randomly selected test images by up to
16.7% in terms of noise removal.

The rest of our paper is organized as follows. In Section 2, we present the proposed
method, including the DIP-based module, the IF module, and the PR module, in detail.
Quantitative and qualitative evaluations, as well as a discussion of our findings, are
provided in Section 3. Finally, we conclude our work in Section 4.

2. Proposed Method

This section presents a novel image denoising approach that could effectively remove
noise and enhance edge information for image quality improvement. The proposed method
is composed of three modules, namely, (1) a DIP-based module, (2) an IF module, and (3)
a PR module, as illustrated in Figure 1. The details of each module are described in the
following subsections.

2.1. DIP-Based Module

As mentioned in Section 1, numerous CNN-based noise removal models have been
introduced to boost the denoising performance. However, these methods must be trained
on a large dataset to learn better the features of images for the noise removal. In addition,
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the work [30] showed that although the deep CNN model learns well on a massive number
of samples, it might also over fit the samples when labels are randomiized.

By contrast, not all sample priors need to be learned from the data, DIP [25] represents
a self-supervised learning model based on a nested U-net with a randomly initialized
input tensor trained on a noisy image for denoising; this model obtains impressive results
compared with state-of-the-art denoising approaches. Thus, to enhance the denoised
results, we first introduced DIP-based module to generate two different denoised images
Id and Ied. Our DIP-based module employs an encoder–decoder U-net architecture as a
backbone network and relies on two target images, including a noisy image In and an
enhanced noisy image Ien, to supervise the production of Id and Ied, respectively. Here, Ied
is acquired by applying the contrast enhancement method [31] to In.

The architecture of the DIP-based module is displayed in Figure 2, where the input
z and the output image have the same spatial resolution. The LeakyReLU [32] is used as
a non-linearity. The strides executed within convolutional layers are applied for down-
sampling, while the bilinear interpolation and nearest neighbor techniques are utilized for
upsampling. In all convolutional layers, except for the inversion of feature, zero padding
is replaced with reflection padding. The detailed architecture of the DIP-based module is
depicted in Table 1.

Input z

ds1

ds2

ds3

ds4

ds5

Output image

us1

us2

us3

us4

us5

sc1

sc2

sc3

sc4

sc5

Figure 2. The architecture of the DIP-based module. Note that sc, us, and ds denote skip-connections,
upsampling, and downsampling, respectively.

Table 1. The detailed architecture of the DIP-based module.

Type Filter Size Number of Filters

Downsampling [3 × 3, 3 × 3, 3 × 3, 3 × 3, 3 × 3] [128, 128, 128, 128, 128]

Upsampling [3 × 3, 3 × 3, 3 × 3, 3 × 3, 3 × 3] [128, 128, 128, 128, 128]

skip-connections [1 × 1, 1 × 1, 1 × 1, 1 × 1, 1 × 1] [4, 4, 4, 4, 4]

For training the DIP-based module, the objective function is described as follows.

Ldip = E
[
||F(z, In, θ)− In||2

]
+ E

[
||F(z, Ien, θ)− Ien||2

]
, (2)

where F(.) represents the DIP-based module, θ are parameters of F(.), and F(z, In, θ) and
F(z, Ien, θ) represent the generated images Id and Ied, respectively.
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2.2. Image Fusion Module

Direct application of contrast enhancement to the noise removal stage may cause noise
amplification and color shifts, resulting in the introduction of many visual artifacts [26]. To
address this problem, we introduce an IF module to combine two denoised images Id and
Ied generated by the DIP-based module.

LP was introduced by Burt et al. [33] to represent a compact image. The basic concept
of the LP includes the following steps: (1) a lowpass filter w, such as the Gaussian filter, is
used to transform the original image Io and downsample it by two to produce a decimated
lowpass version; (2) the resulting image is upsampled by padding zeros between each
column and row and convolving it with the filter w to interpolate the missing values and
create an expanded image Ie. Subsequently, a detailed image Idi is created by subtracting Ie
pixel by pixel from Io. Based on the LP, many image fusion methods have been studied
and acquired impressive results [34].

Inspired by the works in [33,34], our IF module employs LP decomposition to combine
images effectively and prevent the image from shifting color and amplifying noise. Both
denoised images Id and Ied are fed in the IF module and performed by the LP decomposition,
denoted as PL(Id)

n and PL(Ied)
n. The output image of the module is defined as follows:

Icd = αPL(Id)
n + (1− α)PL(Ied)

n, (3)

where n = 1, 2,. . . , l denotes the n-th level in the pyramid, l denotes the number of pyramid
levels, α is a hyperparameter, controlling the relative of two the LP decompositions. In our
experiments, l is set to 5, and α is set to 0.7 to achieve the best results.

2.3. Progressive Refinement Module

After the combined image Icd is produced by the IF module, the edge information
of this image is purified to improve the image quality. This objective is accomplished by
utilizing our proposed PR module.

The PR module adopts SATs [35], which functions as a spatial filter and takes advan-
tage of spatially correlated information for edge information enhancement. In the image
Icd, for each color component c with each pixel Icd(k, c) at position (x, y), the SAT calculates
the summation of a patch as follows:

S(k, c) = ∑
k′≤k

Icd(k′, c) (4)

We facilitate fast calculations by passing through the image with the SAT only once to
achieve each pixel. Equation (4) is rewritten as follows:

S(k, c) = Icb(k, c) + S(k + λ, c) + S(k + µ, c) + S(k + ν, c), (5)

where λ = (−1, 0), µ = (0,−1), and ν = (−1,−1) present the direction offsets.
Through the SAT, the pixels that are unrepresentative of their surroundings in the

image Icd are effectively eliminated. Thus, the proposed method could achieve enhanced
edge information and generate high-quality images.

3. Experimental Results

All experimental results of our method for noise removal are summarized in this
section. To conduct the experiments, we use the DIV2K dataset [29], randomly select
10 images and then resize these images to 512× 512 for testing, as shown in Figure 3.
Noisy images are obtained by applying additive white Gaussian noise (AWGN) [36] with
amplitudes following a Gaussian distribution:

A(v) =
1

σ
√

2π
e−

(v−µ)2

2σ2 , (6)
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where σ and µ represent the noise standard deviation and mean value of the distribution,
respectively. For zero-mean AWGN, µ is set to 0, and σ is a key parameter.

We create test noisy images by adding zero-mean AWGN with noise levels (σ) of 60,
70, and 80. Some examples of created noisy images are displayed in Figure 4. Since the
number of runs necessary to obtain good denoised results are contingent upon the noise
level, we run 1500, 1000, and 980 epochs on average to acquire our denoised results. For
comparison, competitive denoising methods are used, including DIP [25], combination
model of contrast enhancement method CLAHE [31] and DIP, denoted as CLAHE-DIP, and
the method of Cheng et al. [26], denoted as DIPIF.

For quantitative assessment, we utilize a full-reference metric that exploits deep
features to evaluate a perceptual similarity between a denoised image and a ground-truth
image, called the Learned Perceptual Image Patch Similarity (LPIPS) metric [37]. Here,
smaller LPIPS values indicate greater perceptual similarity of the compared images.

Figure 3. The images from the DIV2K dataset.

Noise level σ = 60 Noise level σ = 70 Noise level σ = 80Original image

Figure 4. Example of “chicken” image with three noise levels.

3.1. Ablation Study

To investigate the impact of some important design factors and select the best ones for
our model, we conduct experiments using many different settings on a “chicken” image with
60%, 70%, and 80% noise corruptions, as shown in Figure 4. Four different structures are
established to select the factors of the designed model: (1) model with DIP, Id, Ied, and the IF
module, denoted as DIP-IF, (2) model with DIP, Id, and the IF and PR modules, denoted as
DIP-IF1-PR, (3) model with DIP, Ied, and the IF and PR modules, denoted as DIP-IF2-PR, and
(4) model with DIP, Id, Ied, and the IF and PR modules, denoted as DIP-IF-PR.

Figure 5 reveals that the DIP-IF-PR model achieves an LPIPS score of 0.318, which
is better than DIP-IF, DIP-IF1-PR, and DIP-IF2-PR models by 1.6%, 1.1%, and 2.3%, re-
spectively, in terms of denoising. Therefore, all the components used to constitute the
DIP-IF-PR model are adopted in our proposed model, as shown in Figure 1.
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Figure 5. The average LPIPS scores of the models with different settings on a “chicken” image with
60%, 70%, and 80% noise corruptions. Note that a smaller value of LPIPS implies a better result
in denoising.

3.2. Quantitative Results

Tables 2 and 3 list the average LPIPS values and LPIPS values, respectively, computed
by the compared methods on test noisy images with three noise levels of σ = 60, σ = 70, and
σ = 80. The best LPIPS results achieved by the denoising methods are shown in boldface.
As can be seen, our method surpasses the other methods on all randomly selected test
images. The average LPIPS scores of compared methods on test images with 60% noise
corruption are presented in the second column of Table 2. In this case, our proposed
method reaches an LPIPS score of 0.248, outperforming the DIP(In), DIP(Ien), CLAHE-DIP,
and DIPIF methods by 1.8%, 5.5%, 8.4%, and 1.1% in noise reduction, respectively. The
average LPIPS scores of compared methods on test images with 70% noise corruption are
shown in the third column of Table 2. Here, our proposed method obtains an LPIPS score
of 0.283, improving the DIP(In), DIP(Ien), CLAHE-DIP, and DIPIF methods by 3.4%, 9%,
14.1%, and 1.5%, respectively, in terms of noise reduction. The average LPIPS scores of the
compared methods on test images with 80% noise corruption are listed in the fourth column
of Table 2. Our proposed method achieves an LPIPS score of 0.326, surpassing DIP(In),
DIP(Ien), CLAHE-DIP, and DIPIF methods by 4%, 9.9%, 16.7%, and 2.3%, respectively, in
terms of noise reduction.

Table 2. The average LPIPS values of our proposed method and the competitive denoising methods
on 10 randomly selected test images. Note that a smaller value of LPIPS implies a better result
in denoising.

Method
Noise Level (σ)

60 70 80

DIP(In) [25] 0.266 0.317 0.366

DIP(Ien) [25] 0.303 0.373 0.425

CLAHE-DIP [25,31] 0.332 0.424 0.493

DIPIF [26] 0.259 0.298 0.349

Proposed Method 0.248 0.283 0.326
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Table 3. The LPIPS values of our proposed method and the competitive denoising methods on 10 randomly selected test images. Note that a smaller value of LPIPS implies a better result
in denoising.

Image Chicken Temple Jellyfish House 1 Horse House 2 Cactus Pyramid Airplane Statue

Noise Level σ = 60

DIP(In) [25] 0.285 0.241 0.262 0.256 0.284 0.248 0.275 0.261 0.276 0.267

DIP(Ien [25]) 0.339 0.269 0.305 0.278 0.327 0.275 0.313 0.296 0.319 0.310

CLAHE-DIP [25,31] 0.381 0.295 0.321 0.308 0.360 0.301 0.347 0.315 0.352 0.336

DIPIF [26] 0.273 0.238 0.259 0.251 0.271 0.246 0.267 0.256 0.269 0.262

Proposed Method 0.265 0.225 0.247 0.237 0.259 0.236 0.256 0.245 0.251 0.254

Noise Level σ = 70

DIP(In) [25] 0.353 0.282 0.311 0.299 0.351 0.294 0.326 0.306 0.331 0.315

DIP(Ien) [25]) 0.408 0.318 0.379 0.354 0.399 0.349 0.384 0.375 0.386 0.381

CLAHE-DIP [25,31] 0.496 0.314 0.415 0.367 0.513 0.331 0.489 0.386 0.492 0.433

DIPIF [26] 0.327 0.255 0.298 0.279 0.333 0.272 0.307 0.289 0.317 0.302

Proposed Method 0.316 0.244 0.277 0.26 0.304 0.281 0.292 0.274 0.293 0.286

Noise Level σ = 80

DIP(In) [25] 0.423 0.309 0.361 0.324 0.412 0.317 0.386 0.342 0.408 0.375

DIP(Ien [25]) 0.496 0.347 0.412 0.388 0.485 0.363 0.455 0.398 0.478 0.425

CLAHE-DIP [25,31] 0.559 0.414 0.484 0.465 0.543 0.437 0.512 0.472 0.539 0.506

DIPIF [26] 0.404 0.288 0.345 0.303 0.391 0.294 0.382 0.325 0.393 0.364

Proposed Method 0.374 0.270 0.323 0.298 0.362 0.283 0.348 0.312 0.355 0.330
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3.3. Qualitative Results

We visually display the denoised image results of our proposed method and the
competitive methods for various images corrupted by noise with three levels σ = 60,
σ = 70, and σ = 80.

The denoised results of our method and compared methods on a “jellyfish” image,
“house” image, and “statue” image with 60%, 70%, and 80% noise corruption are depicted
in Figures 6–8, respectively. As can be observed, the denoised results of the competitive
methods still contain visible noises, resulting in blurred edges, darkening effects, and
visual artifacts. By simultaneously optimizing denoising and contrast enhancement, and
applying an edge enhancement technique, our method produces fewer artifacts and clearer
natural-looking denoised images.

(b) (c) (d)(a)

(e) (f) (g)

Noisy image DIP(In) DIP(Ien)Original image

CLAHE-DIP DIPIF Proposed method

Figure 6. Noise-free images produced by our proposed method and competitive denoising methods
on a “jellyfish” image with 60% noise corruption. (a) Clean image, (b) noisy image In, (c) image
restored by the DIP method using the original noisy image In for supervision, (d) image restored by
the DIP method using enhanced noisy image Ien for supervision, (e) image restored by the CLAHE-
DIP method, (f) image restored by the DIPIF method, and (g) image restored by our proposed method.

Noisy image DIP(In) DIP(Ien)Original image

CLAHE-DIP DIPIF Proposed method

(b) (c) (d)(a)

(e) (f) (g)

Figure 7. Noise-free images produced by our proposed method and competitive denoising methods
on a “house” image with 70% noise corruption. (a) Clean image, (b) noisy image In, (c) image restored
by the DIP method using the original noisy image In for supervision, (d) image restored by the DIP
method using enhanced noisy image Ien for supervision, (e) image restored by the CLAHE-DIP
method, (f) image restored by the DIPIF method, and (g) image restored by our proposed method.
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(b) (c) (d)(a)

(e) (f) (g)

Noisy image DIP(In) DIP(Ien)Original image

CLAHE-DIP DIPIF Proposed method

Figure 8. Noise-free images produced by our proposed method and competitive denoising methods
on a “statue” image with 80% noise corruption. (a) Clean image, (b) noisy image In, (c) image restored
by the DIP method using the original noisy image In for supervision, (d) image restored by the DIP
method using enhanced noisy image Ien for supervision, (e) image restored by the CLAHE-DIP
method, (f) image restored by the DIPIF method, and (g) image restored by our proposed method.

4. Conclusions

In this paper, we propose to apply deep image prior, image fusion, and edge en-
hancement techniques for the noise removal task. To succeed in denoising, our proposed
method is structured using three modules, namely, the DIP-based module for concurrently
learning noise reduction and contrast enhancement, the IF module for combining images
and counteracting color shift and noise amplification, and the PR module for enhancing
edge information. The experimental results on randomly selected test images proved that
our method is able to yield satisfactory denoised images. Quantitative and qualitative
assessments showed that the proposed method outperforms the competitive methods in
terms of noise removal and image reconstruction.

Although the DIP is successfully applied to our proposed method for noise removal,
the use of images Id and Ied as the inputs of the IF module can limit the speed of the whole
model. This problem could be addressed by using features from the DIP module instead of
its output images. We leave this work for future research.
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