
IJC Heart & Vasculature 34 (2021) 100792
Contents lists available at ScienceDirect

IJC Heart & Vasculature

journa l homepage: www. journals .e lsevier .com/ i j c -hear t -and-vascula ture
Late neointimal volume reduction is observed following biodegradable
polymer-based drug eluting stent in porcine model
https://doi.org/10.1016/j.ijcha.2021.100792
2352-9067/� 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author at: Department of Cardiology, Kindai University, Faculty
of Medicine, 3-4-1 Kowakae, Higashiosaka City, Osaka 577-8502, Japan.

E-mail address: gnakazawa@med.kindai.ac.jp (G. Nakazawa).
1 This author takes responsibility for all aspects of the reliability and freedom from

bias of the data presented and their discussed interpretation.
Takeshi Ijichi a,1, Gaku Nakazawa b,⇑,1, Sho Torii a,1, Hirofumi Nagamatsu a,1, Ayako Yoshikawa a,1,
Shintaro Nakamura c,1, Junko Souba c,1, Atsushi Isobe c,1, Hitomi Hagiwara c,1, Yuji Ikari a,1

aDepartment of Cardiology, Tokai University, School of Medicine, Kanagawa, Japan
bDepartment of Cardiology, Kindai University, Faculty of Medicine, Osaka, Japan
c TERUMO Corporation Evaluation Center, Kanagawa, Japan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 28 February 2021
Received in revised form 23 April 2021
Accepted 29 April 2021

Keywords:
Biodegradable polymer-based drug-eluting
stents
Durable polymer-coated everolimus-eluting
stents
Optical frequent domain imaging
Background: The BP-SES has an abluminally applied biodegradable polymer that is fully resorbed after 3–
4 months but may have longer-lasting effects. The aim of this study was to determine the long-term vas-
cular response to the novel UltimasterTM sirolimus-eluting stent (BP-SES).
Methods: BP-SESs, everolimus-eluting stents (DP-EESs), and bare metal stents were implanted in 22 coro-
nary arteries of 15 mini-swine. All animals underwent optical frequent domain imaging (OFDI) to assess
neointimal volume and quality at either 1 (n = 7) or 3 (n = 8) months and at 9 (n = 15) months and were
euthanized at 9 months. Stents were subsequently histologically investigated to analyze the vascular
response and maturity of neointimal tissue according to cell density.
Results: OFDI revealed greater regression in neointimal volume from 3 to 9 months with BP-SESs than
with DP-EESs (�0.6 ± 0.5 mm2 vs. 0.00 ± 0.4 mm2, p = 0.07). Although there was no significant difference
between BP-SESs and DP-EESs in the inflammation score (BMS, BP-SES, and DP-EES: 0.1 ± 0.1, 0.3 ± 0.4,
and 0.4 ± 0.4, respectively; p < 0.0001) in histological analysis, BP-SESs showed slightly greater maturity
than DP-EESs (1.8 ± 0.3, 1.7 ± 0.3, and 1.6 ± 0.3, p = 0.09).
Conclusions: While both BP-SESs and DP-EESs showed minimal inflammatory responses at 9 months, BP-
SESs showed a trend for greater neointimal maturity and regression, which may be related to earlier com-
pletion of the vascular response.
� 2021 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

In the percutaneous coronary intervention field, drug-eluting
stents (DESs) have improved clinical outcomes by suppressing
neointimal growth after stent implantation. However, several
new concerns have emerged due to delayed arterial healing and
stent endothelialization after DES implantation, including stent
thrombosis, vessel remodeling, and restenotic late catch-up [1–10].

Chronic complications after DES implantation include the late
catch-up phenomenon, linked to excessive neointimal proliferation
in the stented segment, and late stent thrombosis [3,4,11]. Long-
term follow-up of second-generation durable polymer-coated
everolimus-eluting stents (DP-EESs) revealed significantly reduced
stent thrombosis, target vessel revascularization, and myocardial
infarction versus other stents [12]. While DP-EESs show lower
stent thrombosis rates than first-generation DESs in the clinical
setting, the prevalence of restenosis and arterial injury of DP-
EESs is histologically comparable to that of first-generation DESs
[13]. Some important issues remain, such as increased inflamma-
tion, particularly with durable polymers. These adverse complica-
tions can be somewhat attributed to the duration of
hypersensitivity reactions and the inflammatory response after
stenting, and stent polymers may be the stent type most strongly
linked to these late adverse events [3,11,14]. Indeed, after com-
plete elution of the anti-proliferative drug, the persistence of a per-
manent polymer can induce local hypersensitivity and
inflammatory reactions [15].

Recently, novel biodegradable polymers (BPs) have been pro-
posed, as well as low-profile, cobalt, or platinum chromium stent
backbones; these stents are likely associated with an improved
vascular response [16,17]. In contrast to DP-EESs, the polymers of
BP-DESs eventually dissolve, leaving behind a bare metal stent
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Fig. 1. Study Flow Chart. All animals underwent OFDI at either 1 or 3 months and
at 9 months. After euthanasia at 9 months, stents were histologically investigated to
analyze the vascular response and its maturity. One animal died before the
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(BMS) [18,19]. Previous pooled analyses found that the risks of tar-
get lesion revascularization (hazard ratio 0.82, 95% confidence
interval 0.68 to 0.98, p = 0.029) and very late stent thrombosis
(hazard ratio 0.22, 95% confidence interval 0.08 to 0.61,
p = 0.004) were significantly lower in patients with a BP-DES than
in those with a durable polymer DES [20–23]. Therefore, BPs may
partly help to reduce the late catch-up phenomenon.

A clinical trial reported that comparable vessel healing was
achieved after abluminal BP-coated sirolimus-eluting stent (BP-
SES) implantation [24]. The CENTURY II trialh(BP-SES vs. DP-EES)
demonstrated comparable clinical outcomes (target lesion revas-
cularization and very late stent thrombosis) with both stents up
to five years of follow-up [25]. However, full elucidation is required
of the detailed long-term tissue vascular response after BP-DES
implantation. We thus evaluated the long-term vascular healing
after BMS, BP-SES, and DP-EES implantation in a porcine coronary
artery model.
euthanasia in each of the 2 BMS groups.
2. Materials and methods

2.1. Study design

Three different types of DESs were implanted into 17 mini-pigs
(Japan Farm Co., Ltd., Kagoshima, Japan) (Fig. 1): DP-EESs (XIENCE
PrimeTM; Abbott Vascular, Tokyo, Japan; n = 8), BP-SESs (Ultimas-
terTM; Terumo Corp., Tokyo, Japan; n = 8), and BMSs (Kaname; Ter-
umo Corp.; n = 8), with 1 of each type implanted into each pig (1
stent per vessel). The DP-EES is an everolimus-eluting stent with
a uniform coating of durable fluoropolymer (polyvinylidene
fluoride-co-hexafluoropropene) [26]. The BP-SES has an abluminal
coating with a matrix containing sirolimus and poly (DL-lactide)-
co-caprolactone [27,28]. The BP is completely metabolized into
carbon dioxide and water within 3–4 months. The number of ani-
mals required was determined from previous work [29]. All ani-
mals were sacrificed at 9 months to investigate the early
vascular response. The stents were then histologically examined.
This study was approved and performed according to the guideli-
nes of the Institutional Animal Care and Use Committee of R&D
Headquarters at Terumo Corp.
2.2. Animal preparation and procedures

The current study was based on US Food and Drug Administra-
tion guidance. Briefly, the animals’ clinical conditions were
observed at least once per day, except on non-workdays, during
the period from the day before the implantation to the scheduled
day of euthanization. The mini-pigs were visually observed and
observations recorded, including external appearance, appetite,
respiratory condition, nutrition status, and fecal condition, as well
as any other abnormalities. All animals were individually housed in
pens for pigs. About 1.5 kg of forage for miniature swine (M-16;
CLEA Japan, Inc.) was provided once daily.

All animals were administered oral clopidogrel (75 mg/day) and
aspirin (330 mg/day) from 3 days before the procedure until the
day before euthanization. The animals were also fasted for more
than 15 h from the day before the procedure. After 2%–4% sevoflu-
rane anesthesia, surgical access was obtained via the carotid artery
using general sterile techniques. During cardiac catheterization,
heparin (300 IU/kg) was given to maintain an adequate activated
clotting time. Vessel allocation to experimental groups was prede-
termined to distribute the different stent types equally among 3
different coronary arteries, with a targeted oversize of 1.1–1.2:1
[29]. After stent implantation, coronary angiography was per-
formed to ensure vessel patency and the absence of coronary arte-
rial dissection.
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The animals were euthanized under general anesthesia at
9 months. Their hearts were excised and pressure-perfused with
0.9% saline until clear of blood, followed by pressure perfusion fix-
ation in 10% neutral buffered formalin until hardening of the heart
muscle was evident.

2.3. OFDI imaging acquisitions and assessments

All stent segments were imaged with optical frequent domain
imaging (OFDI) to assess lumen and stent area, stenotic area,
neointimal volume, and stent strut coverage at either 1 (n = 10)
or 3 (n = 12) months and at 9 months (Fig. 1). A 0.014-inch guide
wire was introduced into the vessel followed by an OFDI catheter
(FastView; Terumo Corp.) and sequential images were acquired
at a pullback rate of 20 mm/s (8 frames/mm). Image analysis was
conducted as in a previous study [30]. For quantitative analysis,
cross-sectional OFDI images were analyzed at 1-mm intervals.
For image matching, we used the distance from the stent edge
and landmarks such as side branches to match the location of
the cross-sections among the 1-, 3-, and 9-month examinations.
Struts were classified as uncovered if any part of the strut was vis-
ibly exposed to the lumen and as covered if a tissue layer was vis-
ible over all reflecting surfaces. Neointimal thickness was
measured from the stent strut to the vessel–lumen border (neoin-
timal surface or strut surface if uncovered) for each stent strut. The
frequency of uncovered struts (%Uncovered struts) was calculated
as the number of uncovered struts divided by the total number of
struts for each stent. To assess the unevenness of neointimal thick-
ness, a neointimal unevenness score was calculated for each cross-
section as the maximum neointimal thickness in 1 cross-section
divided by the average neointimal thickness of the same cross-
section.

The peri-strut low-intensity area (PLIA) was also analyzed for
each stent strut (Fig. 2). The PLIA, which is a potential marker of
delayed arterial healing, was defined as the region around stent
struts with a homogeneous lower-intensity appearance than the
surrounding tissue without significant signal attenuation behind
the area [31]. PLIA was measured as previously described [31].
Briefly, the percentage of stent struts with a PLIA (%PLIA) was cal-
culated as the number of struts with a PLIA divided by the number
of visible struts � 100.

2.4. Histologic preparation and assessments

Stented arteries were fixed in 10% neutral buffered formalin and
embedded in Quetol-651 resin. After polymerization, the arteries



Fig. 2. Representative Image of the Peri-strut Low-intensity Area. A represen-
tative image of the peri-strut low-intensity area (red arrow). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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were divided into proximal, middle, and distal blocks, serially sec-
tioned, and then stained with hematoxylin and eosin and a com-
bined Verhoeff and Masson trichrome stain [32].

Injury and inflammation scores were awarded as previously
reported [33,34]. Briefly, the injury score was determined as fol-
lows: 0 = no injury; 1 = break in the internal elastic membrane;
2 = perforation of the media; and 3 = perforation of the external
elastic membrane to the adventitia. The inflammation score was
graded as follows: 0 = no inflammatory cells surrounding the strut;
1 = light, noncircumferential lymphohistiocytic infiltrate surround-
ing the strut; 2 = localized, moderate-to-dense cellular aggregate
noncircumferentially surrounding the strut; and 3 = circumferential
dense lymphohistiocytic cell infiltration of the strut.
Fig. 3. Representative Histologic Sections Stained with a Combined Verhoeff and Mas
(20�) magnification following combined Verhoeff and Masson trichrome staining. Immat
muscle cells. Inflammatory cells, macrophages, and fibrin were mainly observed surround
in neointimal tissue with few inflammatory cells (B).
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Mature neointimal tissue around the stent strut was defined as
tissue with a predominance of smooth muscle cells and infrequent
inflammatory cells, macrophages, fibrin, and proteoglycan [35,36].
To assess the maturity of neointimal tissue, the maturity score was
graded as: 1 (poor smooth muscle cell) = inflammatory cells,
macrophages, and fibrin scattered around stent struts with infre-
quent smoothmuscle cells; and 2 (rich smoothmuscle cell) = neoin-
timal tissue with rich smooth muscle cells with few inflammatory
cells (Fig. 3).

In addition to these mean scores, the percent distribution in
these scores was analyzed in individual struts from each stent to
determine the variability in the vascular response among animals.
The cross-sectional areas (internal elastic lamina and lumen) of
each stented section were digitally detected and measured using
digital morphometry (cellSens Standard; Olympus, Tokyo, Japan).
2.5. Statistics

JMP for Windows version 9.0.2 (SAS Institute Inc., Cary, NC,
USA) and EXSUS version 7.7.1 (CAC EXICARE Corporation, Tokyo,
Japan) were used for the analysis of histopathological findings.
Data are expressed as mean ± standard deviation for continuous
variables and as percentage and interquartile range for categorical
variables. The distribution normality of continuous variables was
assessed using Bartlett’s test for equal variances. Statistical com-
parisons were performed using ANOVA with Dunnett’s post hoc
correction when data sets were normally distributed; otherwise,
Kruskal-Wallis tests with a Steel test were used. Nonparametric
score data, including vascular responses, %Uncovered struts, and
%PLIA, were compared using a Mann-Whitney U test or Fisher’s
exact test. A p value < 0.05 was considered statistically significant.
3. Results

3.1. Stent implantation

Stents were successfully implanted into 3 major coronary arter-
ies of 17 pigs without any differences in quantitative coronary
analyses. Two animals died unexpectedly following the anesthesia,
1 in each of the 2 BMS groups, leaving a total of 22 implants (in 15
son Trichrome for Calculation of the Maturity Score. Sections show a high-power
ure tissue (score = 1) was defined as fiber-rich extracellular matrix with few smooth
ing stent struts (A). Mature tissue (score = 2) showed abundant smooth muscle cells
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Fig. 4. Regression in the Neointimal Volume from 3 to 9 Months. Regression in
the neointimal volume was analyzed by OFDI at 3 and 9 months.
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pigs) available for follow-up at 9 months (Fig. 1). After necropsy, no
abnormalities were found in the heart and other organs.

3.2. OFDI findings

The OFDI findings are detailed in Table 1. While the average
neointimal area was nonsignificantly larger in the BMS group than
in the DES groups at 1 month (BMS, BP-SES, and DP-EES: 1.4 ± 0.
5 mm2, 0.8 ± 0.3 mm2, and 1.0 ± 0.1 mm2, respectively), the BMS
group had a lower average neointimal area than the DES groups
at 3 months (1.6 ± 0.6 mm2, 2.1 ± 0.3 mm2, and 2.5 ± 0.4 mm2,
respectively). Although the DP-EES group had a significantly higher
neointimal area versus the BMS group at 9 months, no differences
were detected between the BP-SES and DP-EES groups (1.4 ± 0.6
mm2, 1.6 ± 0.6 mm2, and 2.5 ± 0.8 mm2, respectively; p < 0.05).
OFDI revealed nonsignificantly higher regression in neointimal vol-
ume from 3 to 9 months in the BP-SES group compared with the
DP-EES group (�0.2 ± 0.2 mm2, �0.6 ± 0.5 mm2, and 0.0 ± 0.4 m
m2; p = 0.07) (Fig. 4). The percentage of uncovered struts and the
PLIA were nonsignificantly greater with DESs than with BMSs
(Table 1). Similarly, among DESs, the %PLIA of struts was nonsignif-
icantly higher with DP-EESs than with BP-SESs at each time point
(Table 1).

3.3. Histomorphometric assessment and measurements

The results of histomorphometric analyses are shown in Table 2.
The injury score was slightly but nonsignificantly higher with BP-
SESs than DP-EESs. The inflammation score was very low in all
stent groups (BMS, BP-SES, and DP-EES: 0.1 ± 0.1, 0.3 ± 0.4, and
0.4 ± 0.4, respectively; p < 0.0001). Regarding the vascular response
distribution, while the number of stent struts with an injury score
greater than 1 was more frequently found with BP-SESs compared
with the other stents (BMS, BP-SES, and DP-EES: injury score � 1,
39%, 57%, and 40%, p < 0.0001) (Fig. 5), the numbers of stent struts
with inflammation and maturity scores greater than 1 were higher
in the DP-EES group (inflammation score � 1, 6%, 30%, and 39%,
p < 0.0001; maturity score 2, 81%, 70%, and 60%, p < 0.0001).

4. Discussion

The major findings of the current animal study are that BP-SESs,
compared with DP-EESs, show (1) greater neointimal regression on
OFDI from 3 months to 9 months; and (2) greater neointimal
maturity.

While vessel wall impairment is correlated with restenosis in
the BMS era, its impact has been minimized by the use of DESs,
which is likely related to the use of powerful anti-proliferative



Table 2
Histological findings.

Stent type (number of struts) BMS (288) BP-SES (384) DP-EES (360) p value

Injury score Mean 0.5 ± 0.6 0.8 ± 0.6 0.6 ± 0.6 p = 0.45
0 176 166 215
1 69 147 75
2 40 68 70
3 3 3 0

Inflammation score Mean 0.1 ± 0.1 0.3 ± 0.4 0.4 ± 0.4 p < 0.01
0 271 268 221
1 17 106 132
2 0 5 7
3 0 5 0

Maturity score Mean 1.8 ± 0.3 1.7 ± 0.3 1.6 ± 0.3 p = 0.09
SMC-rich 233 269 216
SMC-poor 55 115 144

Values are presented as mean ± SD or number (percent); BMS, bare metal stent; BP-SES, abluminal biodegradable polymer-coated sirolimus-eluting stent; DP-EES, durable
polymer-coated everolimus-eluting stent; SMC, smooth muscle cell.

Fig. 5. Percent Distribution of the Vascular Response in Each Stent. Histological distribution of the vascular response at 9 months. The vascular response was assessed
using injury, inflammatory, and maturity scores. *p < 0.05, **p < 0.01.
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drugs with prolonged release kinetics that profoundly inhibit the
reparative response to arterial damage [5]. However, at the same
time, hypersensitivity reactions related to drug toxicity and the
polymer lead to vascular damage and inflammation after DES
implantation. The degree of vascular damage has been reported
to be highly dependent on the type of drug and its dose and release
kinetics [37]. Durable polymers induce granulomatous and hyper-
sensitivity reactions in animal models and these complications
have also been observed with the use of first-generation SESs in
humans at long-term follow-up [4,5,38]. Otsuka et al. [13] pub-
lished an autopsy study comparing second-generation and first-
generation DESs. A total of 204 lesions (SESs, 73; paclitaxel-
eluting stents, 85; DP-EESs, 46) from 149 autopsy cases with a
duration of implantation >30 days and �3 years were pathologi-
cally analyzed. The uncovered strut frequency was markedly lower
with DP-EESs (2.6%) than with SESs (18.0%; p < 0.0005) and
paclitaxel-eluting stents (18.7%; p < 0.0005). Regarding inflamma-
tion, DP-EESs showed significantly lower inflammation scores
compared with SESs. However, Mori et al. [39] suggested that
BP-SESs exhibited significantly faster endothelium coverage and
higher expression of endothelial junctional VE-cadherin vs. DP-
EESs.

Delayed healing, hypersensitivity reactions, and non-functional
endothelium, or its insufficient restoration, along with specific
patient/lesion characteristics, can somewhat be linked to polymer
properties. BPs show superior antirestenotic efficacy to durable
5

and polymer-free stents, without the long-term negative effects
of persistent coverings [21]. In terms of the biological response,
BP-SESs might have positive effects that suppress the injury and
inflammation induced by polymer absorption within 3–4 months,
after which time the DESs is expected to act more like BMSs [27].
At 9 months, the inflammatory reaction distribution was greater
in the present study with DP-EESs than with BP-SESs. Importantly,
the neointimal tissue maturation around the stent strut was the
lowest in DP-EES vs. the other luminal polymer and non-coated
stents. Consistent with these results, there was a trend toward a
higher percentage of neointimal regression with BP-SESs on OFDI
from 3 months to 9 months compared with DP-EESs. Interestingly,
few in vivo results have been obtained on neointimal regression
with BP-DESs. With respect to the EGO-Combo study (not com-
pared with other durable polymer DESs), the Combo stent, an ablu-
minal sirolimus-eluting coating composed of a BP, patients
demonstrated neointimal regression from 9 to 24 months [40]. It
is reasonable to assume that the potential benefits related to the
use of a BP-DES might theoretically appear at a later time point.

The evidence thus far suggests that the neointima peaks 6–
12 months after BMS implantation, with the neointimal volume
subsequently decreasing as type III collagen is replaced by type I
collagen [41]. These observations are consistent with clinical stud-
ies showing that the neointimal growth peaks 6 to 9 months after
BMS implantation and then decreases slowly up to 3 years [42].
Meanwhile, histopathological analyses of human specimens have
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demonstrated that neointimal tissue after DES implantation can
consist of heterogeneous components, including proteoglycan-
rich tissue, organized thrombus, smooth muscle cells, atheroma,
inflammatory cells, and fibrinoids [38]. Therefore, it could be
hypothesized that these tissue types have different optical proper-
ties, resulting in a differential appearance on follow-up optical
coherence tomography. In a previous preclinical study using a por-
cine stent implantation model [31], PLIA on optical coherence
tomography images was demonstrated to represent fibrinogen
deposition surrounded by hypocellular regions consisting of fibrin
or proteoglycans, which are often observed in the healing process.
The incidence of PLIA might be related to late target lesion revas-
cularization [4–6,38,43,44]. In the present study, while no signifi-
cant difference was observed, there was a trend toward greater
presence of PLIA on OFDI in DP-EESs vs. BP-SESs (Table 1). As a
result, it could be assumed that the faster vascular healing con-
tributed to the decreased presence of PLIA in the BP-SES group.
Moreover, a previous study described that the incidence of DP-
EES struts with PLIA decreased from the mid-phase (6–12 months)
to late-phase (24 months) follow-up after stenting (6.2% ± 5.9% to
4.6% ± 4.5%, p = 0.01) [45], suggesting that further progressive ves-
sel healing continued up to 2 years after stenting in the clinical
setting.

These findings indicate a tendency for a better outcome with BP
due to reduced late inflammatory reactions. However, it is still
unclear whether the use of BP-coated DESs instead of other durable
polymer-coated DESs will result in improved late outcomes in the
clinical setting. Therefore, further long-term follow-up is needed to
compare the long-term safety and efficacy of BP-SESs with those of
other DESs. Ongoing studies have been designed to confirm the
efficacy of BP-SESs among patients with acute myocardial infarc-
tion (MASTER study at 12 months, BP-SES vs. BMS: target vessel
failure, 6.1% vs. 14.4%, p < 0.001) [46] and to investigate their per-
formance in consecutive patients undergoing percutaneous coro-
nary intervention in daily clinical practice (e-ULTIMASTER,
NCT02188355).

There are several limitations to the present study. First, the
favorable vascular compatibility of BP compared with permanent
polymer in healthy porcine coronary arteries cannot be extrapo-
lated to diseased human coronary arteries, where disease condi-
tions and atherosclerotic plaque composition might influence
polymer degradation and the inflammatory response [47]. Second,
we examined a particular coating methodology and load of poly
DL-lactide-co-caprolactone and durable fluoropolymer coatings,
respectively, and these results might not be generalizable to other
polymer coating methodologies and load doses. Third, the study
was performed with a limited number of samples. It is likely that
the lack of significance is related to the limited sample number,
which should be addressed in a future histopathological study with
sequential follow-up.
5. Conclusion

Our study demonstrated that abluminal polymer-coated SESs
show greater neointimal maturity and regression, suggesting ear-
lier completion of the vascular response.
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