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ABSTRACT: The ToxCast EPA challenge was managed by
TopCoder in Spring 2014. The goal of the challenge was to
develop a model to predict the lowest effect level (LEL)
concentration based on in vitro measurements and calculated
in silico descriptors. This article summarizes the computational
steps used to develop the Rank-I model, which calculated the
lowest prediction error for the secret test data set of the
challenge. The model was developed using the publicly
available Online CHEmical database and Modeling environ-
ment (OCHEM), and it is freely available at http://ochem.eu/
article/68104. Surprisingly, this model does not use any in vitro measurements. The logic of the decision steps used to develop
the model and the reason to skip inclusion of in vitro measurements is described. We also show that inclusion of in vitro assays
would not improve the accuracy of the model.

■ INTRODUCTION

The prediction of in vivo toxicity based on in vitro measure-
ments is a challenging task, which is in the center of active
development of modern computational toxicology.1−4

The TopCoder data science competition platform in
collaboration with Environment Protection Agency (EPA)
organized the ToxCast challenge in 2014.5 The target property
was lowest effect level or LEL. LEL is defined as “the lowest
dose that shows adverse effects in these animal toxicity tests.
The LEL is then conservatively adjusted in different ways by
regulators to derive a value that can be used by the Agency to
set exposure limits that are expected to be tolerated by majority
of the population.”5

The total ToxCast challenge included five consecutive
subchallenges, which were executed over a seven month period
and attracted 432 registrants from 32 countries. The first
subchallenge was to identify software libraries and/or methods
to describe the chemical structure of various compounds. The
second subchallenge was about identification of a specific
combination of in vitro assays, which could be used to predict
the in vivo systemic LEL. The third subchallenge was executed
privately and was entitled “Predictive Capability Tests”. The
challenge described in this study was the fourth subchallenge. It
had a goal “to build a prediction model (algorithm) using data

from high-throughput in vitro assays, chemical properties, and
chemical structural descriptors to quantitatively predict a
chemical’s systemic LEL.”5 The final fifth subchallenge was
about the documentation of the results of the models.
In this study, we present the results of the Rank-I model for

the prediction challenge. According to the challenge rules, the
participants were strictly forbidden to use any data other than
the data that were provided in this competition. This was done
in order to offer equal conditions to all participants as well as to
better evaluate the performance of models developed using in
vitro measurements. Indeed, the use of any information outside
of the data provided within the challenge, e.g., information
about toxicological chemical pathways, could potentially bias
the comparison of algorithms. The summary of this prediction
challenge was published by the EPA.6 Since September 2015,
this information has been available from the Web archives7 and
included as Supporting Information (see section “EPA ToxCast
LELPredictor Marathon Match Results Summary”) to this
study.
This article analyzes the steps that were taken to develop the

Rank-I submission model by participant “novserj” (notice that
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the participant abbreviation is incorrectly reported as “noveserj”
in the result table6). The Supporting Information also contains
an extended technical description, which was submitted to
TopCoder as part of the contest. Part of this description was
also used by EPA in their report.6,7 Data, Rank-I model, and
model predictions are available at http://ochem.eu/article/
68104. We believe that this article will be interesting to both
participants and organizers of the challenge and will help them
to better understand and interpret the results of the challenge.
It will also help other scientists in developing models with high
prediction power. Moreover, the model reported in this study
has the highest prediction ability for LEL end point as validated
by the challenge organizers and thus can be of potential value
for people working on the risk assessment of chemical
compounds.

■ DATA
Training and Test Data Sets. The in vitro measurements

provided within the scope of the challenge included “a battery
of more than 700 biochemical and cell-based in vitro assays to
identify what proteins, pathways, and cellular processes these
chemicals interact with and at what concentration they
interact.”5

The total data set used during the challenge incorporated
1,854 molecules. The experimental LEL values were provided
for 483 compounds that were used as the training set. The test
set included LEL values for 143 chemicals, which were kept
secret and were split into provisional (63) and final scoring
(80) sets. During the challenge, TopCoder participants could
submit predictions and receive the statistical results for the
provisional set. Such results could be used to optimize the
models during the submission stage. The 80 compounds from
the final scoring set were used only once to rate the final model
submissions.
The challenge organizers did not reveal information about

the compounds, which were used as the test sets. After the
challenge, the experimental values for 143 compounds from the
test set were kindly released by the TopCoder organizers to the
authors of the article. Both training and test set compounds are
publicly available for download from http://ochem.eu/article/
68104.

■ METHODS
The detailed description of the Rank-I submission is provided in
Supporting Information (see “Technical description” section). Below,
we briefly recapitulate the main steps.
Descriptor Packages. Ten different descriptor packages imple-

mented in the public platform OCHEM8 were used individually to
create ten models for the resulting consensus. Four descriptor
packages, E-state,9 QNPR,10 ISIDA fragmentor,11 and GSFrag,12

were based on the 2D representations of the chemical structures. The
other six packages, Inductive,13 ChemAxon,14 Adriana,15 Mera/
Mersy,16 CDK,17 and Dragon18 descriptors, were calculated using
3D representations of the chemical structures. The 3D structure
representation was generated using Corina.19

Unsupervised Descriptor Selection. Within each individual
model, the basic unsupervised descriptor selection procedure was
performed. First, descriptors with constant values for the data set were
removed. Next, duplicated descriptors with pairwise correlation of
more than 0.95 were eliminated. Exactly the same procedure was used
for all models, and thus, the same number of descriptors and
molecules were utilized to develop each model with different machine
learning methods.
The selected descriptors’ count for each model after the

unsupervised filtering is shown in Table 1.

Machine Learning Methods. The model used in the challenge
was developed with Associative Neural Networks (ASNN). The
ASNN exploits the idea of ensemble learning. It can be considered in a
simplified way as a combination of k-nearest neighbor (kNN) method
applied in the space of ensemble predictions. The models developed
with the ASNN were top-ranked in several benchmarking stud-
ies3,20−29 and that is why this method was selected for the EPA
challenge.

The default parameters for the ASNN algorithm, as optimized
during previous studies and provided on the OCHEM Web site were
used. They included 64 neural networks in ensemble, 3 neurons in a
hidden layer trained by the SuperSAB30 algorithm.

In addition to ASNN, we also analyzed kNN, support vector
machines (as implemented in LibSVM),31,32 and partial least squares33

methods. As with the ASNN method, the default parameters of these
algorithms as provided on the OCHEM site were used.

Validation Protocols. The unbiased estimation of the models’
performance is critically important for selection and decision making
for development of models. Two protocols, cross-validation, and
bagging are frequently used to estimate validation accuracy for the
training set. The cross-validation protocol splits the initial data set into
n chunks. It uses n − 1 subsets as the training set and predicts the
remaining chunk of the data.

Bootstrap aggregation (bagging) is another powerful approach to
develop and validate models developed by Leo Breiman.34 It is based
on the aggregation of models, each one of which is developed with its
own training set (“bag” in the terminology of Breiman). Each bag is
formed by random sampling with replacement from the initial training
set and has the same size as the initial set. The molecules (on average
37%), which do not participate in the respective training set, are called
“out-of-the-bag”. The predictions for these molecules are used to
evaluate the predictive power of models. The bag size of 64 models
was used.

Supervised Descriptor Selection Using Neural Network
Pruning. In the 90s, there were several theoretical developments to
identify the most significant descriptors for neural networks.35−39

Some of these methods calculate the sensitivity (importance) of input
parameters according to derivatives of neural network weights with
respect to the error function,35 while others provide such estimations
based on the analysis of the magnitudes of the neural network
weights.37 For this study, we used a method from the second group,
which provided the best results in our previous studies.37−39 The
sensitivity Si of a neuron i was calculated as

Table 1. Number of Descriptors and Models’ Accuracy for
the Prediction of the Test Set Compounds

RMSE

descriptor set

number of
selected

descriptors

whole test
set

(n = 143)

inside of
ADa

(n = 136)
outside of
AD (n = 7)

CDK 159 1.13 1.01 2.4
Dragon 1824 1.15 1.05 2.4
Fragmentor 631 1.18 1.04 2.7
GSFrag 202 1.1 0.97 2.5
Mera, Mersy 242 1.04 0.96 2.1
Chemaxon 97 1.16 1.06 2.4
Inductive 39 1.17 1.03 2.7
Adriana 133 1.14 1.01 2.5
QNPR 381 1.12 1.02 2.7
E-state 185 1.16 1 2.8
in vitro 143 1.21 1.11 2.5
Consensus 4036 1.08 0.96 2.5
aAD is the applicability domain of the model as defined by OCHEM8

(see also ref 20).
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where wij were weights connecting neuron i and j, maxa was taken over
all weights ending at the neuron j having sensitivity Sj, and summation
was taken over all weights connecting the neuron i with the upper
layer neurons. The sensitivity calculations were performed recursively
starting from the last layer neuron, which had sensitivity of 1.
The pruning procedure started once neural network training was

completed. On each step, the least significant descriptors with smallest
Si were eliminated, and the models were retrained with the decreased
set of descriptors. The sets of descriptors, which calculated the
minimal errors, were considered as the optimal ones. In order to avoid
overfitting and overtraining,40 the neural networks were trained using
the efficient partitioning algorithm,41 which uses the early stopping
procedure.40

Statistical Parameters. The root mean square error (RMSE)
metric was used to score models. The RMSE is lower for models with
higher performance. The challenge organizers used the following
scoring function

= × −score 1000000 (2 RMSE) (1a)

to rank the models. As a result, models with lower RMSE got a higher
score and higher rank among the others. In addition to RMSE, the
organizers also reported Pearson correlation coefficients and AUC
defined as “percentage of pairs where predicted1 < predicted2 among
those where ground_truth1 < ground_truth2 (the higher the value,
the better the result)”.6

■ RESULTS
The workflow for the model development used in the challenge
(see “Technical description” in the Supporting Information)
was based on our previous expertise to develop recently
published models.4,22,23,42 Final statistical results for the top-
ranking models are summarized in Table 2. Below, we provide a
detailed analysis of the steps, which were used to develop the
model.
Failed Molecules. There were 37 molecules, including 11

molecules from the training set, for which descriptor generation
failed for different packages. CDK descriptor package does not
support inorganic elements such as [Sn], [Hg], [B], and [As].
The failed molecules either included unsupported atoms for
CDK or some groups, e.g., [N3+]. Several other molecules, e.g.,
rifampicin, α-cyclodextrin, milbemectin, emamectin benzoate,
etc. were large chemical structures and failed either due to time-
out or structure conversion problems. According to the
challenge rules, the participants were required to submit
predictions for all molecules. Therefore, we had to submit some

values. As a simple solution, we used an average value of all
training set molecules, logLEL = −3.2602 log(M), as the
predicted values for the failed molecules

Scoring of Models: How Useful Is the Provisional Test
Statistics? The challenge organizers offered a provisional set of
N = 63 compounds for the purpose of model analysis and
selection. However, we decided to skip the testing on this set
for the following considerations.
The provisional test set was much smaller than the training

set. Thus, an attempt to rely on the models’ performance for
this set by, e.g., submission of multiple predictions and
selection of a “best” model using it, could contribute a higher
uncertainty and result in the selection of a nonoptimal model
for the final set.
Indeed, the final model RMSE was 0.88 ± 0.04 for N = 472

training set molecules. The provisional set was not available,
and thus, we were unable to calculate the confidence intervals
for it. We estimated the intervals by random sampling of N =
63 molecules from the training set, for each of which we
calculated the intervals. The confidence intervals for these sets
were about 2-fold larger ±0.08. Thus, selecting the best model
based on the performance for the provisional test set is about
twice as uncertain compared to selecting based on the training
set. Therefore, instead of relying on the accuracy of models for
the provisional test set, a strategy to rely on the estimated
validated results for the training set is more reliable. An even
better strategy could be to select a model based on the
combined accuracies of the provisional and training sets, but
such an analysis was not implemented.
The confidence intervals for N = 80 molecules were about

the same as that for N = 63 molecules. The wide confidence
intervals for both provisional and final test sets might have
contributed to the fluctuations of ranks of challenge models for
both sets. For example, the top final scoring model was only
ranked #8 for the provisional submission, while the fourth
model was ranked #27. Vice versa, the models ranked top #1
and #4 for provisional submissions were ranked as #9 and #34
(out of 47 participants) for the final test set.5 Thus, indeed, the
provisional ranking score was not strongly predictive of the final
one: provisional and final models’ ranks were correlated only
with correlation coefficient R = 0.76.
The RMSE of the eight top-ranked final models were in the

range 1.12 to 1.16 and thus were within the confidence intervals
of the winning model. Thus, statistically speaking, these models
had the same performance, and their differences in performance
were due to chance.

Table 2. Summary of the Performance of the Top-Ranked Models of the EPA ToxCast Challenge

test set

training set (n = 483)a provisional subset (n = 63) final subset (n = 80) full, n = 143

model RMSE R2 RMSE rank RMSE R2 rank RMSE

novserj 0.88 ± 0.04 0.27 ± 0.04 1.03 ± 0.08b 8 1.12 ± 0.08b 0.31 1 1.08 ± 0.07
NobuMiu 1.03 9 1.13 0.30 2 1.09
a9108tc 1.05 16 1.13 0.29 3 1.10
klo86 min 1.09 27 1.14 0.29 4 1.12
in vitro assaysc 0.97 ± 0.04 0.11 ± 0.03 1.24 ± 0.09
MW + NCd 0.97 ± 0.04 0.11 ± 0.03 1.18 ± 0.08

aPrediction accuracy for the “out-of-the-bag” samples. bConfidence intervals were estimated using the subsets, which were sampled from the training
set, and each had the same size as the respective test set (see for more details ref 23). cBest model based on the in vitro assay descriptors developed
using the LibSVM method (see also Table S1). dModel based on molecular weight (MW) and number of carbon atoms (NC) developed using the
same approach as the above in vitro model.
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Analysis of the Machine Learning Methods. The model
submitted to the TopCoder challenge was a consensus of the
bagging models developed with the ASNN method. In this
section, we briefly describe the considerations that were used to
develop and select this model for the challenge. The OCHEM
Web site provides several machine learning methods and
descriptors. Below, we compare the performance of different
methods, which are described in the Methods section.
Bagging vs cross-validation was compared. Table S1 in

Supporting Information demonstrates that models developed
using bagging had consistently smaller validation RMSEs as
compared to the cross-validation results. This result is in
agreement with our previous observations.4,21,22,24 Therefore,
the bagging approach was used.
Comparison of different machine learning methods (Table

S1) shows that combinations of machine learning methods and
descriptors provided quite similar performances with RMSE
ranging from 0.9 to 1.2 log units. Considering that 95%
confidence intervals of RMSE were ±0.4 log units, the majority
of these models were not significantly different.
The LibSVM approach resulted in the lowest RMSE for

individual models. The highest RMSE = 1.2 (i.e., the lowest
performance) was calculated using the PLS method for Mera/
Mersy descriptors. Actually, the failure of this method was due
to several outlying molecules that had predictions far beyond
the range of the training set values. They may be due to the
sparseness of descriptors used to develop models and
insufficient number of data points used to fit the coefficients
in PLS. If we limited the predicted values for all compounds to
the range of the training set values, the results of PLS models
became similar to those of other methods.
It is interesting that the model developed using in vitro assay

measurements consistently provided the lowest accuracy
compared to the other descriptors.
Development of the Rank-I Submission Model.

Considering that models developed with different descriptor
sets had approximately similar performance, we decided to
build our consensus models using a simple average of individual
models. For each machine learning approach, a consensus
model was built for all descriptor packages. Since the individual
models were calculated using the bagging approach, the
developed consensus models were also validated using the
same protocol. The model based on the ASNN method
calculated the lowest RMSE error compared to consensus
models developed using other machine learning approaches.
The exclusion of the model based on in vitro descriptors did

not change the accuracy of the ASNN consensus model. The
model based on a combination of both in silico and in vitro
descriptors requires both sets of descriptors. This limits its
application to compounds for which in vitro measurements are
present, while the model based exclusively on in silico
descriptors can be applied to any new compounds. Therefore,
we decided to submit the model developed using only in silico
descriptors to the challenge.
The model development steps were based on simple

decisions, which followed “Occam’s razor” principle. First, we
found that the models developed on the training set have large
validation RMSE and that the provisional set statistics had a
limited value for model selection. Therefore, we followed the
model development steps, which were successful in our
previous studies.20,21,23−27,42 This strategy allowed us to
develop the Rank-I model.

Comparison with a Simple Two-Descriptors Based
Model. Did the complexity of the final model (a consensus of
several individual models, each of which uses a different
descriptor set and is a bootstrap aggregation of multiple neural
network submodels) add any value, or could we get some
similar results using a simpler approach? In order to answer this
question, we developed models using just two descriptors:
molecular weight and number of carbon atoms using linear
regression. The RMSE of this model on the training set was 1.0
± 0.04 log unit. The use of the same descriptors for the bagging
approach decreased RMSE to 0.97 ± 0.04 log unit for the
LibSVM method (Table 2). This error was significantly higher
than that of the Rank-I model. Interestingly, the best model
calculated based on the in vitro assay measurements had exactly
the same accuracy (RMSE = 0.97 ± 0.04).

Analysis of the Test Set Compounds. The TopCoder
organizers kindly released information about the experimental
values for the N = 143 test set molecules. It allowed us to
provide an additional analysis of the results for this set and to
better evaluate the influence of the in vitro descriptors on the
prediction accuracy.

Analysis of Several Models Involving in Vitro
Descriptors. The model developed using in vitro descriptors
(see Table 2) had higher RMSE = 1.24 for the test set as
compared to that of the consensus model, RMSE = 1.08, based
on in silico descriptors. The extension of the consensus model
by inclusion of the model based on in vitro descriptors
increased the RMSE of the new consensus model to 1.10 log
units. We also explored whether extension of in silico
descriptors with in vitro descriptors can provide better
prediction accuracy. For this study, we developed models
using combinations of each descriptor set with in vitro
descriptors. The RMSE of the models developed with in silico
+ in vitro sets were changed in the range of −0.02 to 0.01 log
units compared to RMSEs of models calculated using only in
silico descriptors. The RMSE of the consensus model based on
in silico + in vitro sets was 1.09, i.e., 0.01 log units higher
compared to that of the model based only on in silico
descriptors.

Chemical Diversity. The RMSE calculated for the test set
was significantly higher than that for the training set
compounds (Table 2). An analysis of extended functional
groups (EFG)43 was done to identify whether both sets
contained chemically different compounds. The EFG consists
of 583 manually curated functional groups, which provide
comprehensive coverage of heterocyclic compounds and are
relevant for medicinal chemistry. The SetCompare tool23 was
used to determine statistically significantly overrepresented
chemical groups in training and in test sets using hyper-
geometric distribution. It was found that hydroxy compounds,
amines, saturated six-membered heterocycles containing one
heteroatom, etc., were overrepresented in the test set, while
pnictogens, thiophosphoric acid esters, halogen derivatives, etc.
were overrepresented in the training set. The full list of
overrepresented groups is available at http://ochem.eu/article/
68104. Thus, the chemical diversity of molecules in both sets
may have contributed to the observed differences in the RMSEs
for the training and test sets.

Analysis of Compounds Predicted with Large Errors.
The EFG and SetCompare tools were also used to analyze
which chemical features contributed to predictions with high
errors. A difference of 1.5 log units between predicted and
experimental values was used to identify N = 62 compounds
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with high prediction errors. Most of these compounds had
extreme LEL values, i.e., either low or high values, and only 7
compounds (10%) were within [−2, −4] log(M) interval as
compared to 420 (75%) of compounds that were within this
region for the remaining group. Thus, the model had difficulties
in predicting highly toxic and nontoxic compounds.
Applicability Domain. According to the TopCoder rules,

the submitted results were scored using predictions for all test
set compounds. However, of course, some of the compounds
from the test set could be outside of the applicability domain
(AD) and have lower prediction accuracy. OCHEM uses
standard deviation of the predictions of models, which
contribute to the consensus model, as distance to the model
(abbreviated as STD-CONS).20 STD-CONS was found as the
best definition of the distance to the model.20,27 OCHEM
defines AD of a model as the value of STD-CONS that covers
95% predictions from the training set. In the previous
benchmarking study of 12 definitions of distances to the
model applied to 11 models, we found that STD-CONS
provided the best separation of molecules with large and low
prediction errors notwithstanding the used model.20 Therefore,
we concluded that AD of models is determined by the
composition of the training set of molecules rather than by the
used descriptors or machine learning methods. In the current
study, seven compounds from the test set were outside of the
AD of the consensus model. The consensus model as well as
individual submodels calculated significantly higher RMSEs,
which were in the range of 2.1 to 2.7 log units, for these seven
compounds (Table 1). This result supports the previous
conclusions about the universal nature of the AD of models and
good discriminating power of STD-CONS distance to the
model. It also indicates that taking into consideration the AD of
the models is important to avoid predictions with high errors.
It is interesting that four out of seven compounds had LEL <

3, while other three compounds had LEL > 5.5. Thus, the used
AD has identified compounds that had experimental toxicity
values in the ranges that are difficult to predict.
Development of Models Using Descriptors Optimized

with Pruning. The final consensus model was based on 10
submodels, which were developed with N = 4036 descriptors
(Table 3). These descriptors were selected from the initial set

following the unsupervised filtering procedure. We explored
whether the performance of this model can be further improved
by using a supervised descriptor selection procedure based on
neural network pruning of the least sensitive descriptors. The
application of this procedure decreased the numbers of
descriptors in 5 to 100-fold (Table 3). Models developed
using these descriptors had on average lower training set
RMSEs as compared to those based on descriptors selected by
the unsupervised filtering, while the opposite result was
calculated for the test set RMSEs (Table 3). Thus, selection
of descriptors optimal for the training set introduced variable
selection bias.44 Indeed, during supervised selection of
descriptors we evaluated the performance of models for the
training set molecules multiple times. This resulted in selection
of descriptors with improved fit for this set but at the same time
decreased the prediction accuracy for test set compounds,
which have different chemical diversities. The neural networks
are very efficient methods to work with high-dimensional data45

and can be also efficiently used without a need of supervised
variable selection.

■ DISCUSSION
In this study, we highlighted the steps used to develop the
Rank-I submission for the EPA ToxCast challenge, which was
organized by the TopCoder community. We have shown how
to consider limitations of the training and test data sets and that
following “Occam’s razor” principle helps to provide a top-
entry to the challenge. This conclusion is supported by other
studies. A similar consensus approach was used to achieve the
overall best balanced accuracy for 12 end points for another
ToxCast challenge3 organized by NIH.46 The consensus
modeling was also successfully used in the CERAPP project
to identify potential endocrine disruptors.47

It is rather surprising that the Rank-I model did not involve
the in vitro descriptors. This can be attributed to several factors.

Poor Definition of the Predicted End Point. The LEL is
defined as lowest effect level dose across multiple animal
studies. This can contribute to considerable differences in the
determined quantitative toxicity thresholds due to interspecies
variations as well as differences in the experimental protocols.
These factors could contribute to the biological noise of the
measured values and make their prediction a difficult task.

Lack of Domain-Specific Modeling Approaches. The
relatively weak performance of this model and all others in the
challenge can also point out the limitation of the brute-force
machine learning approach to this problem. The in vitro assay
data may need to be treated as more than just a table of
numbers, and one will need to incorporate biological
knowledge into the structure of the model. Indeed,
pharmacokinetic and pharmacodynamics properties of the
analyzed molecules could be essential for their toxicity. Thus,
we can expect that the use of systems biology methods can
contribute to more accurate predictions of the LEL. It should
be mentioned that the use of external data was explicitly
forbidden for the purpose of the ToxCast challenge.

Insufficiency of Used in Vitro Assays.We cannot exclude
the possibility that some of the currently used in vitro assays
could be insufficient for the analyzed end point. For example, if
toxicity is caused by metabolites of the analyzed compound the
in vitro assays ignoring metabolic activation may not correctly
report toxicity. Currently, it is not clear whether such problems
frequently occur, but recent studies suggest that taking into
consideration the metabolic activation was an important factor

Table 3. Performances of Models Developed Using Different
Descriptor Selection Proceduresa

unsupervised selection neural network pruning

RMSE RMSE

descriptor set N training test N training test

CDK 159 0.93 1.13 6 0.89 1.2
Dragon 1824 0.93 1.15 18 0.87 1.19
Fragmentor 631 0.98 1.18 12 0.92 1.21
GSFrag 202 0.97 1.1 24 0.97 1.18
Mera, Mersy 242 0.93 1.04 10 0.93 1.18
Chemaxon 97 0.93 1.16 11 0.92 1.16
Inductive 39 0.94 1.17 21 0.93 1.16
Adriana 133 0.93 1.14 8 0.92 1.1
QNPR 381 0.95 1.12 74 0.89 1.13
E-state 185 0.96 1.16 11 0.9 1.24
Consensus 4036 0.88 1.08 186 0.85 1.13

aN is the number of descriptors selected to develop the respective
model. RMSE is the root mean squared error calculated for the
training (n = 483) and full test set (n = 143).
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for prioritization of potentially emerging contaminants.21 Of
course, the same problem can also contribute to difficulties with
prediction of toxicity based on in silico descriptors.
Which of these factors contributed to the low accuracy of the

model? Such analysis is beyond the scope of the article and will
hopefully be answered in the future with new computational
studies by the scientific community. Importantly, the public
availability of the test set compounds released in this article will
help other users to develop and benchmark new approaches to
predict LEL and benchmark their results against the Rank I
model of the ToxCast challenge. Moreover, since the model is
publicly available and does not use in vitro descriptors, it can be
used to predict the LEL of new compounds in prospective
studies and can be benchmarked using new measurements,
which may be available in the future. We believe publishing
models online in a usable and reproducible manner will become
an integral part of future computational chemistry.48

In summary, we have described the protocol for developing
the Rank-I model of the EPA ToxCast challenge. The model is
based only on in silico descriptors, and we were not able to
increase its prediction ability using in vitro measurements in a
postmarathon study presented in this article. The relatively low
accuracy of this model indicates high complexity of the LEL
and suggests that pure brute-force machine-learning approaches
may not be sufficient to accurately predict such a complex
biological end point. Possibly, systems biology approaches can
help to develop better models for the prediction of LEL using
the available in vitro measurements. At the same time, we
cannot exclude the possibility that the currently used in vitro
assays may not be sufficient to correctly characterize this end
point. The developed model and used data are publicly
available at http://ochem.eu/article/68104 and can be used by
interested users to answer these questions as well as to
benchmark new ideas, methods, or approaches.
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