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Abstract

Background: Hairy/Enhancer of Split (Hes) proteins are targets of the Notch signaling pathway and make up a class of basic
helix-loop-helix (bHLH) proteins that function to repress transcription. Data from Hes1 deficient mice suggested that Hes1,
like Notch1, is necessary for the progression of early T cell progenitors. Constitutive activation of Notch is known to cause T
cell leukemia or lymphoma but whether Hes1 has any oncogenic activity is not known.

Methodology/Principal Findings: We generated mice carrying a Hes1 transgene under control of the proximal promote of
the lck gene. Hes1 expression led to a reduction in numbers of total thymocytes, concomitant with the increased
percentage and number of immature CD8+ (ISP) T cells and sustained CD25 expression in CD4+CD8+ double positive (DP)
thymocytes. Hes1 transgenic mice develop thymic lymphomas at about 20 weeks of age with a low penetrance. However,
expression of Hes1 significantly shortens the latency of T cell lymphoma developed in Id1 transgenic mice, where the
function of bHLH E proteins is inhibited. Interestingly, Hes1 increased expression of a subset of Notch target genes in pre-
malignant ISP and DP thymocytes, which include Notch1, Notch3 and c-myc, thus suggesting a possible mechanism for
lymphomagenesis.

Conclusions/Significance: We have demonstrated for the first time that Hes1 potentiates T cell lymphomagenesis, by up-
regulating a subset of Notch target genes and by causing an accumulation of ISP thymocytes particularly vulnerable to
oncogenic transformation.
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Introduction

T cell development requires the productive assembly and

expression of antigen receptor genes. For ab T cells, expression of

a functional T cell receptor b (TCR b) chain in complex with pre

Ta protein on CD42CD82 (DN) thymocytes promotes cellular

expansion and differentiation to the corresponding CD4+CD8+
(DP) stage through a CD8 immature single positive (ISP) stage

[1,2]. Next, functional rearrangement and expression of TCRa
chains lead to formation of surface ab TCR, which allows for

signals that induce further development to mature CD4 or CD8

single positive (SP) T cells [3]. To ensure the development of T

cells able to recognize MHC/peptide complexes, thymocytes are

programmed to undergo apoptosis if they do not receive pre-TCR

or TCR-mediated survival signals. Precise regulation of the signals

that control proliferation vs. apoptosis is therefore critical for

ensuring the proper differentiation of thymocytes that may be

particularly vulnerable to oncogenic transformation during this

highly dynamic phase of T cell development.

Notch signaling pathways regulate lineage specification decisions

during development of numerous tissues [4]. Activation of

transmembrane Notch receptors is triggered by interaction with

Notch ligands Jagged and Delta-like on adjacent cells that results in

proteolytic cleavage of Notch and subsequent release of the

intracellular domain (IC) [5]. Notch-IC is then transported into

the nucleus and associates with RBP-Jk/CBF-1, resulting in the

activation of target genes including the Hes family of proteins [6–8].

Notch mediates the development of T cells from multipotent

lymphoid progenitors derived from bone marrow (BM) precursors

that enter the thymus via the bloodstream [9–13]. Moreover,

expression of a constitutively active form of Notch1 in BM

progenitors results in ectopic T cell development outside the

thymus and T cell leukemia [14,15]. Hes1 is a basic Helix-Loop-

Helix (bHLH) protein and forms homodimers to repress transcrip-

tion by binding to N boxes and recruiting the transcriptional co-

repressor Groucho [16,17]. Data from analyses of Hes1 deficient

mice suggested that Hes1 is required for normal T cell development,

particularly in the expansion of early T cell progenitors [18]. On the

other hand, overexpression of Hes1 in BM-derived progenitors

impairs both myeloid and B lymphocyte differentiation [19].

T cell acute lymphoblastic leukemia (T-ALL) in humans is

frequently associated with mutations or chromosomal rearrange-
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ments that result in Notch activation [20,21]. Ectopic expression

of activated forms of Notch induces rapid T cell transformation

[15]. In childhood T-ALL, Tal1/SCL is often found to be

expressed and thought to inhibit the function of bHLH proteins

such as E2A and HEB, collectively called E proteins [22,23].

Interestingly, a large fraction of these T-ALL cases accumulate

activating mutations in the Notch1 gene [24]. Likewise, gain of

function mutations within Notch are also found in several animal

models of T-ALL such as T cell lymphoma developed in E2A

deficient mice [25,26]. Thus, Notch appears to cooperate with loss

of E protein function in T cell tumorigenesis. The precise

mechanism by which Notch activation leads to transformation is

still unclear, though several potential targets have been identified

[7,27,28]. To determine whether constitutive expression of Hes1

might contribute to T cell transformation, we have generated

transgenic mice that express Hes1 from the proximal Lck

promoter. We find that constitutive expression of Hes1 in the

thymus leads to T cell lymphomas with low efficiency. However,

Hes1 promotes rapid tumorigenesis in a well-studied model of T-

ALL in which expression of Id1 inhibits the function of E2A and

HEB transcription factors [29], whose deficiency leads to T cell

lymphoma [30]. Therefore, we demonstrate for the first time that

Hes1 itself possesses oncogenic activity. We also show that ectopic

expression of Hes1 in pre-malignant ISP and DP thymocytes

increases a subset of genes known to be activated by Notch

signaling, such as Notch1, Notch3, and c-myc, thereby providing a

potential mechanism by which Hes1 potentiates tumorigenesis.

Materials and Methods

Mouse models
To generate Hes1 transgenic mice, sequence encoding an HPC4

epitope tag was attached onto the 59-end of murine Hes1 cDNA to

facilitate detection of transgenic protein [31]. The construct was

then cloned into the vector containing the proximal promoter of the

lck gene [32]. The DNA fragment containing the transgene was

injected into FVB/N blastocysts and two lines (H5 and H12) were

selected for continued breeding and analysis. Id1 transgenic mice, in

which the Id1 gene is expressed from the same lck promoter, were

previously described as Id1-28 by Kim et al. [29].

Flow Cytometry and cell sorting
Single cell suspensions from lymphoid tissues were stained with

fluorochrome-conjugated antibodies and analyzed on a BD LSRII

flow cytometer using standard procedures. To delineate DN

thymocyte populations, thymocyte suspensions were stained with

lineage specific antibodies for CD8, TCRc/d, B220, Gr1 and

CD3. Upon gating on lineage negative cells, DN populations were

further assayed based on CD44 and CD25 staining. The CD8

immature single positive (ISP) and DP cell populations were

isolated based on CD4, CD8 and TCRb expression after gating

out all cells staining with propidium iodide. The ISP population

was defined as CD4-CD8+TCRblo cells. Cell sorting was

performed on a MoFlo (Dako Colorado, Inc., Fort Collins, CO)

using thymocytes from mice of different genotypes around 3 weeks

of age.

Real time PCR analysis
Total RNA from sorted T cells was isolated using Trizol reagent

as per manufacturer’s protocol. Five mg of total RNA was then used

to synthesize cDNA using M-MLV reverse transcriptase (Invitrogen,

Carlsbad, CA). Quantitative PCR was performed using SYBR green

1 (Qiagen, Valencia, CA) on an Applied Biosystems 7500 Real Time

PCR and software analysis system. The primers used to detect

Notch1, Notch3, Deltex1 and c-myc were purchased from Qiagen.

Other primers are total Hes1F, CCAGCCAGTGTCAACACGA;

total Hes1R, AATGCCGGGAGCTATCTTTCT; endogenous

Hes1F, TCCTTGGTCCTGGAATAGTGCTA; endogenous

Hes1R, ACTGAGCAGTTGAAGGTTTATTATGTCT; Nrarp

F, CTACACATCGCCGCTTTCG; and Nrarp R, CGCGTAC-

TTGGCCTTGGT.

Sequence analysis of the Notch1 allele
Genomic DNA was isolated from cells of individual tumors, of

which tumor cells constitute at least 90%, and used for PCR-

mediated amplification of the PEST domain of the Notch1 gene

with the following primers: TACCAGGGCCTGCCCAACAC

and GCCTCTGGAATGTGGGTGAT. The resulting PCR

products were separately cloned into the pGEM-T easy vector

(Promega, Madison, WI). At least 5 colonies were analyzed by

DNA sequencing to identify mutations.

Statistical analyses
Student’s t tests were performed using the Prism 5 software.

Kaplan-Meier curves were constructed and the age of median

survival was determined using the same software. Statistical

significance was estimated with the log-rank test.

Results

Generation and characterization of Hes1 transgenic mice
We have generated transgenic mice in which Hes1 cDNA is

expressed from the proximal promoter of the lck gene, which

directs gene expression beginning at the DN stages of T cell

development. Two independent lines, H5 and H12, were

characterized and used in this study. Using quantitative PCR

assays, we found that the H5 and H12 lines contained about 15

and 55 copies of the transgene, respectively (Fig. 1A). Corre-

spondingly, we detected slightly higher levels of Hes1 protein level

in the H12 line compared to the H5 line using antibodies against

Hes1 or the HPC4 tag (Fig. 1B). The level of Hes1 in wild type

thymocytes was undetectable with the anti-Hes1 antibodies

commercially available. We next compared levels of total Hes1

transcripts in subsets of thymocytes (Fig. 1C). Although endoge-

nous Hes1 was expressed at high levels in wild type DN

thymocytes, its levels in ISP and DP cells were extremely low. In

comparison, transgenic expression elevated total Hes1 levels by 6–

32 folds in the DN compartments. However, the levels of Hes1 in

ISP and DP thymocytes of the transgenic mice were 3,214 and

22,901 times higher than their wild type counterparts. These

profound differences in Hes1 levels could have significant impact

on the transgenic thymocytes.

Since Hes1 is a bHLH protein and suggested to serve as an

inhibitor of E proteins [33,34], we tested its ability to influence the

DNA binding activities of E proteins using electrophoretic mobility

shift assays and an E-box probe. Nuclear extracts were isolated

from CD42CD82 DN thymocytes of 3 week-old wild type, Hes1

or Id1 transgenic mice (Fig. 1D). While the DNA binding activity

in extracts isolated from Id1-expressing cells was almost com-

pletely abolished, the level of E-box binding complexes in Hes1

transgenic thymocytes was comparable to that detected in wild

type cells. We also did not detect any new DNA binding

complexes that might correspond to E protein and Hes1

heterodimers. Since the DNA binding activity was not reduced,

E protein levels were unlikely diminished. Collectively, it appears

that Hes1 did not significantly alter the function of E proteins in

these transgenic mice.

Hes1 Induces T Cell Lymphoma
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Ectopic Hes1 expression results in altered thymocyte
development

To investigate the effect of constitutive expression of Hes1 on

thymocyte development, we analyzed thymocytes from 3 to 5-

week old mice by flow cytometry and found an approximate 4-

fold reduction in total thymocyte counts in Hes1 transgenic mice

compared to littermate controls (Fig. 2A). This was accompanied

by a decrease in the ratio of CD4 to CD8 SP thymocytes, (Fig. 2A

and B). Although wild type CD4+CD8+ thymocytes no longer

express CD25, the majority of Hes1 transgenic DP thymocytes

express substantial levels of CD25 on their surface (Fig. 2C). The

reduction in thymic cellularity was also accompanied by an

increase in the percentage of CD42CD82 double negative cells

(Fig. 2A and B). Furthermore, staining DN cells with antibodies

against CD44 and CD25 revealed a consistently larger propor-

tion of DN3 cells expressing intermediate levels of CD25 (20%

versus 12%) in Hes1 transgenic mice (Fig. 2D). These cells could

represent those transitioning from the CD442CD25+ DN3 stage

to the CD442CD252 DN4 stage following productive TCRb
rearrangement and functional pre-Ta expression. The percent-

ages of DN4 cells were variable in individual Hes1 transgenic

mice and were not significantly different from those of wild type

mice.

One of the striking phenotypes of Hes1 transgenic mice was the

accumulation of cells at the CD8 immature single positive (ISP)

stage, which is an intermediate stage that occurs during the

developmental transition from DN to DP stages [35,36]. The ISP

stage is characterized by low levels of TCRb expression in

comparison with that found on mature CD8+ thymocytes. We

found a significant increase in the proportion of CD8+ thymocytes

that expressed low levels of TCRb in Hes1 transgenic mice

compared to wild type littermates (Fig. 3A). Compared to wild type

mice, the average percentages of the phenotypic ISP cells were

increased by approximately 7 fold whereas the total numbers of

these cells were 3 times higher in Hes1 transgenic mice (Fig. 3A). To

rule out the possibility that these phenotypic ISP cells represent

CD8+ cells without the rearrangement or expression of the TCRb
gene, we performed intracellular staining with antibodies against

TCRb. As shown in Fig. 3B, the peak level of intracellular TCRb in

CD8+ cells of Hes1 transgenic mice fell between those of DP and

CD4+ cells. In contrast, the level in CD8+ cells of wild type mice was

similar to those of CD4+ cells. This is consistent with the notion that

a significant fraction of CD8+ cells expressed lower levels of TCRb.

Figure 1. Generation and analysis of Hes1 transgenic mice. (A)
Copy numbers of the Hes1 transgene determined using real-time PCR

with primers as depicted by the arrows in the diagram of the transgenic
construct. HPC4-tag was added to the N-terminus of Hes1. Numbers of
Hes1 coding sequences in the H5 and H12 lines of Hes1 transgenic mice
are shown as relatives to that of WT mice. (B) Hes1 protein expressed by
total thymocytes from WT and the H5 and H12 lines of Hes1 transgenic
mice were detected with antibodies against Hes1 or the HPC4 tag.
Levels of tubulin were used as loading controls. (C) Comparison of total
Hes1 mRNA levels encoded by the endogenous gene and transgene in
thymocyte subsets sorted from WT and Hes1 (H12) transgenic mice. The
level of Hes1 in each sample was normalized against that of b-actin.
Expression levels relative to that in WT DP cells are shown in log scale.
The fold of increase in Hes1 transgenic cells relative to their wild type
counterparts is labeled on top of the bars. Data shown in (A) and (C) are
means6SD of triplicates. (D) Electrophoretic mobility shift assay for E-
box DNA-binding activity. Nuclear extracts were prepared from sorted
DN thymocytes from the indicated mouse strains at the age of 3–4
weeks, and incubated at room temperature with 32P–labled probes and
1 mg of poly(dI:dC) as described [51]. For supershift assays, 1 ml of anti-
E47 antibodies was added at the end of binding reaction and incubated
for 5 minutes. DNA binding and super-shifted complexes are indicated
by closed and open arrows. Oct-1 binding was used as a control.
doi:10.1371/journal.pone.0006678.g001

Hes1 Induces T Cell Lymphoma
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However, if Hes1 transgenic CD8+ cells failed to express TCRb, its

staining intensity would have been similar to that of the major peak

seen in DN3 cells (Fig. 3B). Therefore, we concluded that Hes1

transgenic mice have an accumulation of ISP cells.

Consistent with this finding, BrdU incorporation assay detected

an increase in the percentage of BrdU positive cells in total

thymocytes of Hes1 transgenic mice (Fig. 3C). Co-staining for

CD4, CD8 and TCRb with anti-BrdU showed that the proportion

of BrdU positive cells in the total CD8+ population was

dramatically different between wild type and Hes1 transgenic

cells. However, when analyzed separately for mature CD8+ and

ISP subsets, the percentages of BrdU incorporating cells were

similar, suggesting that the larger fraction of BrdU positive cells in

the total CD8+ population was due to the increased representation

of ISP. These results thus suggested that Hes1 expression did not

alter the rate of BrdU incorporation, which was also found to be

similar in other thymocyte subsets (data not shown).

Collectively, constitutive expression of Hes1 impairs develop-

ment of thymocytes at several stages. However, no significant

abnormalities were detected in peripheral T cells, particularly in

regulatory T cells, despite the elevated expression of CD25 in

thymocytes (Fig. 2).

Hes1 transgenic mice develop CD25+ thymic lymphomas
Ectopic expression of Notch proteins leads to the rapid

development of thymic lymphomas in mice. Given that Notch

induces the expression of Hes1 during thymopoiesis, we

investigated whether Hes1 expression alone is sufficient for T cell

transformation. T cell lymphomas were found in greater than 25%

of either the H5 or H12 line of Hes1 transgenic mice with an

average age of onset of 20 weeks (Fig. 4 and Table 1). Cell surface

expression of T cell markers was found to vary between tumor

samples, though the majority expressed both CD4 and CD8. The

majority of lymphomas also expressed high levels of CD25,

consistent with previous studies of Notch3-induced T cell

lymphomas [37].

All mice that developed tumors had clear evidence of thymic

involvement, though tumor cells were frequently detected in

peripheral tissues including spleen and lymph nodes. Whenever

spleen or lymph node involvement was detected, the surface

marker phenotypes on leukemia cells were identical to that of cells

isolated from the thymus of the same animal, suggesting that

tumorigenesis originated in the thymus, which was followed by

metastasis to peripheral lymphoid organs.

Hes1 synergizes with Id1 in tumorigenesis
Models of T cell leukemia or lymphoma involving activated

Notch display rapid onset leukemias that develop at about 6–8

weeks of age [14,37]. In contrast, overexpression of Hes1 caused T

cell lymphoma with a longer latency and lower penetrance (Fig. 4).

This suggested that activation of Hes1 transcription by Notch

signaling could not fully explain the potent oncogenic effects of

Notch receptors. We thus explored possible cooperation between

Hes1 and other factors in T cell lymphomagenesis. Tumorigenesis

due to loss of E protein function is another well studied example of

T-ALL [29,30,38,39]. Previous studies have also shown that

expression of Id1, a naturally occurring inhibitor of E proteins,

leads to a high incidence of thymic lymphomas in mice [29].

Constitutive expression of Id1 from the lck proximal promoter

leads to tumorigenesis with the age of 50% tumor free survival

being 20 weeks (Fig. 4). When Hes1 transgenic mice were crossed

with these mice, the resulting trans-heterozygotes expressing both

Hes1 and Id1 developed thymic lymphomas at 100% frequency

within 25 weeks and with a median onset of only 14 weeks (Fig. 4).

The enhancement of tumorigenesis by Hes1 was statistically highly

significant. Thus it appears that Hes1 and Id1 act synergistically to

promote tumorigenesis.

Figure 2. Analysis of thymocyte development in Hes1 trans-
genic mice. (A) Cell numbers of the different thymocyte populations
are shown as an average of 4 mice at 3–5 weeks of age. (B) FACS
analysis was performed on thymocytes isolated from individual wild
type (WT) or Hes1 transgenic littermates and stained with indicated
antibodies. (C) CD4+CD8+ DP cells shown in (B) were further analyzed
for CD25 expression. (D) Thymocytes isolated from WT or Hes1
transgenic littermates were stained with antibodies against CD8,
B220, TCRc/d, GR1 and CD3. The lineage negative thymocytes were
further stained with anti-CD44 and anti-CD25. Percentages of cells in
each gate are as labeled.
doi:10.1371/journal.pone.0006678.g002

Hes1 Induces T Cell Lymphoma
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Hes1 up-regulates a subset of Notch target genes in pre-
malignant thymocytes

To understand the mechanism whereby Hes1 promotes T cell

lymphomagenesis, we tested whether overexpression of Hes1 might

have similar effects as Notch signaling. We generated cDNA from

RNA isolated from various thymocyte populations of 3 week-old

wild type and Hes1 transgenic mice, which did not exhibit any sign

of thymic lymphoma. We next performed quantitative RT-PCR

assays of several Notch regulated genes. As shown in Fig. 5A and B,

mRNA levels of both Notch1 and Notch3 in wild type thymocytes

progressively increased in the DN compartments but dramatically

decreased in ISP and DP subsets. However, expression of the Hes1

Figure 3. Accumulation of ISP in Hes1 transgenic mice. (A) FACS
analysis was performed on thymocytes isolated from individual 3 to 5
weeks old WT or Hes1 transgenic littermates with antibodies against
CD4, CD8 and TCRb. The percentage of TCRblow/2 cells in total CD8

single positive cells is shown in the histograms. Data shown are
representatives of independent analyses of 7 WT and 11 Hes1
transgenic mice. Percentages of ISP in total CD8+ thymoyctes as well
as absolute numbers of ISP thymocytes are shown in bar graphs as
means6SE. (B) Thymocytes isolated from individual WT or Hes1
transgenic mice were stained for surface markers with antibodies
against CD4, CD8, CD44, and CD25, which was followed by intracellular
staining for TCRb. The fluorescent intensities of color-coded popula-
tions in WT or Hes1 transgenic mice are overlaid in histogram.
Representatives of independent analyses of multiple mice are shown.
(C) Thymocytes isolated from individual WT or Hes1 transgenic
littermates 1.5 hours after intraperitoneal injection with 1 mg BrdU.
After staining with antibodies against CD4, CD8, CD44, and CD25,
intracellular staining was performed using a labeling kit from BD
Biosciences (San Jose, CA). Percentage of cells in each gate is indicated.
Representatives of independent analyses of multiple mice are shown on
the top. The percentage of BrdU labeling cells within indicated
populations are shown on the bottom as means6SD.
doi:10.1371/journal.pone.0006678.g003

Figure 4. Incidence of thymic lymphomas in Hes1 and Id1
transgenic mice. Different strains of mice as indicated by symbols
shown were monitored for onset of thymic lymphoma using outward
signs such as respiratory distress. The presence of tumors was
confirmed by autopsy. The cohort of Id1/Hes1 double transgenic mice
included approximately equal representations of progenies of Id1
transgenic mice crossed with either the H5 or H12 line of Hes1
transgenic mice. Median time span of tumor free survival was calculated
using the Prism software and shown below the graph. Statistical
significance between the 50% tumor free survival in Id1 single and Id1/
Hes1 double transgenic mice was determined using the Log-rank test.
Numbers of animals in each cohort (n) are listed in the inset.
doi:10.1371/journal.pone.0006678.g004

Hes1 Induces T Cell Lymphoma
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transgene sustained Notch1 and Notch3 expression in these subsets.

Notch3 levels in ISP and DP cells of Hes1 transgenic mice were

similar to the peak level of Notch3 found in wild type DN3

thymocytes. Hes1 expression had little or no influence on the

already high levels of Notch1 and Notch3 in DN subsets.

Next, we examined the effect of Hes1 on expression of the c-

myc gene, which is known to be a downstream target of Notch

signaling [7,8]. Like the expression patterns of Notch genes, c-myc

levels were high in DN subsets of wild type mice and gradually

decrease as the cells enter the ISP and DP stages (Fig. 5C). Hes1

again sustained c-myc expression in ISP cells at a level comparable

to that seen in wild type DN3 cells. In DP thymocytes of Hes1

transgenic mice, the level of c-myc was 11 fold higher than their

wild type counterparts. High levels of c-myc expression were also

observed in ISP cells of Id1tg/Hes1tg but not in Id1tg mice (data

not shown). Given the potent oncogenic effect of c-myc, up-

regulation of c-myc by Hes1 could significantly contribute to the

lymphomagenic effect of Hes1.

To address whether Hes1 expression uniformly enhances the

transcription of all Notch targets, we interrogated additional target

genes. Nrarp is considered a gene regulated by Notch and serves as

a negative regulator of Notch signaling [40]. However, its

expression pattern in wild type thymocytes did not follow the

same trend as other Notch targets (Fig. 5D). Nevertheless, Hes1

increased Nrarp levels by less than 2.9 fold in various subsets.

Surprisingly, two of the best known target genes of Notch

signaling, Deltex1 and endogenous Hes1, were not stimulated by

Hes1. Instead, transgenic expression of Hes1 resulted in reduction

in most of the subsets. In particular, Deltex1 and endogenous Hes1

levels in the ISP faction were reduced by 5 and 7 fold, respectively.

Therefore, it appears that ectopic expression of Hes1 selectively

up-regulates a subset of but not all Notch target genes in pre-

malignant thymocytes. Whether this is achieved by facilitating

Notch-mediated transcription or through the action of indepen-

dent mechanisms remains to be determined.

Acquisition of stabilizing mutations of the Notch1 gene
in Id1 and Hes1 expressing tumors

Gain-of-function mutations in the Notch1 gene are frequently

found in several models of T cell lymphoma as well as in human T

cell leukemias, including those resulted from loss of E protein

function [24–26]. We were therefore interested in learning if

expression of one of the Notch targets, Hes1, could by-pass the

need for mutations of Notch receptors. We surveyed 7–10

individual tumors developed in Id1 and Hes1 single or double

transgenic mice for mutations in the PEST domain capable of de-

stabilizing Notch1. PEST domain mutations represent the

majority of mutations found in mouse T cell lymphomas and

are thus good representatives. As shown in Fig. 6A, most of the

alterations led to frame-shift or nonsense mutations in the gene,

which is likely to abolish the function of the domain and cause

stabilization of the mutant proteins. It is worth noting that there

appear certain hotspots in PEST domain prone to mutations and

most of the mutations occur at the N-terminus of the domain

(Fig. 6A). Unexpectedly, similar percentages of tumors from Id1

and Hes1 transgenic mice (60% and 66%, respectively) accumu-

lated mutations in the Notch1 gene (Fig. 6B). Three out of seven

(43%) double transgenic tumors also contained mutations and this

percentage, given the limited number of cases, is statistically

insignificant compared to the 60–66% occurring in single

transgenic tumors. Taken together, it appears that although

Hes1 is able to turn on a subset of Notch targets, further

enhancement of Notch signaling could provide advantages for

tumor growth or survival. However, these PEST domain mutants

alone are not sufficient to cause T cell leukemia [41].

Analyses of gene expression in Hes1 transgenic tumors
To obtain further insights into the mechanism underlying tumor

initiation or growth, we examined mRNA levels of Notch targets in

the lymphomas. We sampled 4 Hes1 transgenic tumors along with 3

Id1 transgenic tumors as controls. Hes1 tumor A had a 140-bp

insertion in the PEST domain that resulted in a frame-shift whereas

the other three tumors did not have mutations in this region. Tumor

A of Id1 transgenic mice did not carry a PEST domain mutation

and Notch1 sequence in the other two tumors were not analyzed.

All tumors from Hes1 transgenic mice produced high levels of Hes1

but Id1tg tumors A and B had very low levels and tumor C expressed

a moderate level of Hes1 (Fig. 7A). Consistent with uniformly high

levels of Hes1, all Hes1tg tumors expressed higher levels of c-myc

(Fig. 7B). This agrees with our finding of elevated c-myc levels in

pre-malignant ISP and DP thymocytes (Fig. 5). Although transgenic

expression of Hes1 did not increase Deltex1 expression in pre-

malignant thymocytes, elevated Deltex1 expression was seen in all

Hes1tg tumors and Id1tg tumor C (Fig. 7D). Expression of Notch1

and Notch3 was elevated in Hes1tg tumors A, C and D, as well as

Id1tg tumor C (Fig. 7E and F). Intriguingly, Hes1tg tumor B had

very low levels of Notch1 and Notch3, as well as lower levels of Hes1

and Deltex1 than other tumors. However, this tumor produced the

highest levels of c-myc and Nrarp (Fig. 7B and C). Likewise, Id1

transgenic tumor B expressed a large amount of c-myc without up-

regulating other Notch target genes except Nrarp. Collectively,

elevation of different subsets of Notch target genes appears to occur

in these T cell lymphomas of Hes1 transgenic mice. This probably

represents the end result of natural selection for expression of a

faction but not necessarily all of Notch targets, which in turn

facilitate tumor cell growth and survival. No correlation between the

expression patterns of these genes and the surface phenotypes of the

tumors were detected in these analyses of limited numbers of

samples.

Discussion

Aberrant Notch signaling is well known to cause T cell leukemia

or lymphoma with high efficiency. Hes1 is one of the first known

Table 1. Hes1 expression induces thymic lymphoma in mice.

Tumor #
Age at onset
(weeks) Tumor phenotype Tissue involved

430 5 CD4+CD8+CD25+ Thy,Spl, LN

786 8 CD4+CD8+CD25+ Thy,Spl, LN

996 10 ND Thy,Spl, LN

382 10.5 CD4+CD8+CD25+ Thy,Spl, LN

279 15 CD42CD8+CD252 Thy

662 15 CD4+CD8+CD25+ Thy

280 17 CD4+CD8+CD25+ Thy

798 22 CD4+CD8+CD25+ Thy

457 23 CD42CD8+CD252 Thy

254 24 CD4+CD8+CD25+ Thy

697 26 CD4+CD8+CD25+ Thy

741 31 CD42CD8+CD252 Thy,Spl, LN

633 47 ND Thy

doi:10.1371/journal.pone.0006678.t001
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target genes whose transcription is stimulated by Notch signaling

[6]. Here, we show that ectopic expression of Hes1 predisposes

mice to develop T cell lymphoma, which suggests that Hes1 up-

regulation by Notch signaling is one of the components involved in

Notch-mediated tumorigenesis. However, Hes1 transgenic mice

develop lymphomas with a much longer latency and with a lower

frequency compared to Notch1 or Notch3 expressing animals

[37,42]. This indicates that additional mechanisms besides Hes1

up-regulation play a role in Notch-induced tumorigenesis.

We have also demonstrated that Hes1 expression acts

synergistically with Id1 to promote lymphoma development. Id1

is a naturally occurring inhibitor of bHLH E protein transcription

factors such as E2A. E proteins are considered tumor suppressors

because genetic ablation of the E2A gene results in T cell

Figure 5. Ectopic expression of Hes1 elevates mRNA levels of a subset of Notch target genes. Real-time RT-PCR assays were performed
using total RNA isolated from thymocyte subsets of WT and Hes1 (H12) transgenic mice as described for Fig. 1C. Relative levels of expression of each
indicated transcript are presented in reference to that in WT DP cells. N.D. stands for not detectable. Data are means6SD of triplicates. The ratio of
mRNA level in Hes1 transgenic versus WT cells is labeled on the top of the bar. Statistical significance was assessed with Student’s t-test. *, P,0.05, **,
P,0.01, ***, P,0.001.
doi:10.1371/journal.pone.0006678.g005
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lymphoma [30]. Id1 expression also promotes T cell lymphoma-

genesis [29]. In addition, aberrant activation of Tal1, another

bHLH inhibitor of E proteins, is the most common cause of

human pediatric T cell acute lymphoblastic leukemia (T-ALL)

[22,43]. Transgenic expression of the p22 form of Tal1 also causes

T cell lymphoma in mice [44]. When both Hes1 and Id1 are

expressed in thymocytes, lymphomas develop rapidly in all

animals examined (Fig. 4). The age of 50% tumor-free survival

is 14 weeks. This efficiency is comparable to that seen in animals

expressing Notch-IC [42]. Does this mean that T cell lymphoma

resulting from constitutive Notch signaling involves both up-

regulation of Hes1 and down-regulation of E protein function?

This possibility is not entirely unreasonable because work from our

laboratory has shown that Notch signaling accelerates ubiquitin-

mediated degradation of E2A proteins in cellular environments

with sufficient Erk activities [45,46]. One can envision such a

scenario in T cells immediately following pre-T cell receptor (pre-

TCR) or TCR signaling. Notch signaling has also been shown to

stimulate expression of Id genes such as Id1 or Id3 [47,48].

Previous studies have revealed that loss of E protein function

lowers the thresholds of TCR signaling [49–51]. Furthermore,

Notch is known to facilitate T cell survival, which may contribute

significantly to the manifestation of T cell lymphoma.

It has been shown that tumors developed from E2A deficient or

Tal1 expressing T cells accumulate stabilizing mutations in the

Notch1 gene [24,25]. We found similar mutations in tumors

Figure 6. Mutations in the Notch1 gene from tumors developed in Id1 and Hes1 single or double transgenic mice. DNA samples
isolated from individual tumors from indicated transgenic strains were used as templates to amplify the sequence encoding the PEST domain of
Notch1. PCR products were cloned and sequenced as described in Materials and Methods. (A) Sequence of the mutations. Wild type Notch1
sequence in the relevant regions is shown in blue and amino acid numbers for each region are indicated. Mutant sequences from the tumors are
aligned underneath and the type of the mutation is indicated at the end of each sequence (FS = frame-shift, Stop = nonsense mutation). (B)
Frequency of Notch1 mutation. Numbers of tumors containing mutations and those with wild type sequence are depicted with black and blue bars,
respectively.
doi:10.1371/journal.pone.0006678.g006
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Figure 7. Analyses of gene expression in Hes1 transgenic T cell lymphomas. Total RNA was isolated from individual lymphoma samples of
Hes1 or Id1 transgenic mice. Expression levels of indicated genes were determined in three independent experiments as described for Fig. 5 and
compared to that in WT thymocytes.
doi:10.1371/journal.pone.0006678.g007
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expressing Id1, Hes1 or both (Fig. 6). This suggests that Hes1

expression cannot entirely substitute for enhanced Notch signaling

during tumor progression. However, it is important to point out

that ectopic expression of Hes1 did increase the frequency and

shorten the latency of lymphomagenesis in Id1 transgenic mice.

Hes1-mediated expression of a subset of Notch target genes

occurred in pre-malignant thymocytes, which could constitute

partial Notch signaling and lead to weak intrinsic oncogenic

effects. Furthermore, Hes1 acts synergistically with Id1 to

significantly enhance tumorigenesis in double transgenic mice.

Although mutations in the Notch1 gene have been detected in

various T cell leukemias or lymphomas triggered by loss of

function of transcription factors or increases in signaling

transduction [24,25,41], the exact role of these mutants is not

well understood. For instance, the PEST domain mutants have

very low activities in Notch-mediated transcription and T cell

differentiation. They also fail to cause T cell leukemia when

expressed from retroviral vectors [41]. In contrast, activation of a

subset of Notch target genes occurs in pre-malignant thymocytes

of Hes1 transgenic mice, which do not carry mutations in the

PEST domain (data not shown). Therefore, the contribution of

other oncogenic factors should not be dismissed simply because

stabilizing Notch mutations are found in the tumors. These Notch

mutants could merely cooperate with other oncogenic factors to

promote the growth of existing tumor cells.

How does Hes1 potentiate tumor formation by itself and in

cooperation with E protein inhibitors? Examination of T cell

development in Hes1 transgenic mice revealed an accumulation of

CD8 immature single positive cells. This stage coincides with the

proliferative burst following pre-TCR expression, making cells

uniquely susceptible to tumorigenesis. This is particularly relevant

to the situations when E protein functions are compromised. For

example, heterozygous Id1 transgenic mice, where T cell

development is partially impaired, develop high incidence of T

cell lymphoma [29]. However, homozygous Id1 transgenic mice,

in which T cell development is blocked at the DN1 stage, do not

develop T cell lymphoma (data not shown). On the other hand,

conditional disruption of the E2A gene in DP thymocytes also did

not result in thymic tumors [52], suggesting the window of

opportunity for transformation occurs prior to this stage. It is also

interesting that retrovirus-mediated expression of Hes1 in bone

marrow cells does not promote tumorigenesis in transplant

recipients [18,19]. This may be explained by the differences in

target cells and the timing of Hes1 expression.

At the molecular level, we have detected elevated levels of c-myc

expression in pre-malignant thymocytes, particularly in the ISP

and DP populations, where c-myc is normally expressed at low

levels. It is well documented that c-myc exhibits potent

transforming activity in T cell leukemia and lymphoma [53,54].

The c-myc gene is a known target of the Notch signaling pathway

[7], and with Hes1 being downstream from Notch receptor

signaling, it is therefore plausible that Hes1 can cause c-myc up-

regulation. Interestingly, c-myc, along with Notch1, Notch3 and

CD25, is among a subset of Notch target genes to be stimulated by

Hes1. In contrast, Deltex1 and endogenous Hes1 genes were not

up-regulated in pre-malignant thymocytes by transgenic Hes1.

Likewise, PTEN expression was not altered in pre-malignant

thymocytes of Hes1 transgenic mice (data not shown). These

findings argue against the idea of a uniform elevation of Notch

signaling in pre-malignant Hes1 transgenic thymuses. Instead,

they suggest that different Notch target genes are regulated

differently, or at least, have different thresholds for Notch signals.

This notion is further reaffirmed by data obtained from a limited

analysis of gene expression in Hes1 transgenic tumor samples,

showing expression of a combination of different Notch targets at

varying levels in different tumors.

Despite the positive effects of Hes1 on gene expression, Hes1 is

known to repress transcription by binding to N-box DNA

sequences and recruiting the transcriptional co-repressor, Groucho

[16,17]. How Hes1 conversely brings about increases in gene

expression needs to be understood in the future. Up-regulation of

Notch targets by Hes1 constitutes a positive feedback for Notch

signaling. Elucidation of the molecular mechanisms by which

Notch signaling and its downstream effectors influence tumori-

genesis will facilitate therapeutic intervention of T cell leukemia

and lymphoma and also shed light on the oncogenic effect of

Notch on other cell types.
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