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The p53 family reaches the final frontier: the variegated regulation of the dark
matter of the genome by the p53 family in cancer
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ABSTRACT
The tumour suppressor p53 and its paralogues, p63 and p73, are essential to maintain cellular homo-
eostasis and the integrity of the cell’s genetic material, thus meriting the title of ‘guardians of the
genome’. The p53 family members are transcription factors and fulfill their activities by controlling the
expression of protein-coding and non-coding genes. Here, we review how the latter group transcended
from the ‘dark matter’ of the transcriptome, providing unexpected and intriguing anti-cancer therapeu-
tic strategies.
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Introduction

Almost twenty years ago, the sequencing of the human gen-
ome was officially completed [1]. This Herculean effort lasted
for almost two decades and had already produced its preli-
minary results in 2001 [2,3], when it became irrefutable that
the protein coding portion of the genome – i.e. that behaving
accordingly to the central dogma of molecular biology – was
not as large as expected. Indeed, despite the fact that more
than 85% of the human genome is actively transcribed [4],
only ~2% of this transcriptome corresponds to messenger
RNAs (mRNAs). Most of the remaining 98% comprises
a large amount of RNA species with poorly characterized or
completely unknown functions, which were initially dubbed
as the ‘dark matter’ of the genome [5] and have since then
represented an intensive field of research. This research has
contributed to the expansion of the ever-growing classifica-
tion of RNA species. In addition to the long-known yet still
surprising groups of ribosomal RNAs (rRNAs), transfer RNAs
(tRNAs), and small nuclear and nucleolar RNAs (snRNAs and
snoRNAs), there are 4 other main classes of RNA molecules
[6]. The largest of these classes comprises the PIWI-
interacting RNAs (piRNAs), whose expression is limited to
specific developmental stages of germ cells [7]. The remaining
categories are more widely expressed and include the ~22
nucleotides long microRNAs (miRNAs) [8], the longer than
200 nucleotides long non-coding RNAs (lncRNAs) [9], and
the back-splicing generated circular RNAs (circRNAs) [10].
Notably, many members of these RNA species are dysregu-
lated in human cancers [11–15] underscoring the relevance of
these RNA molecules for tumour initiation and progression.
This dysregulation is intertwined with the genetic alterations
affecting one of the most important tumour suppressive path-
ways, the p53 pathway. Indeed, the tumour suppressor p53 is
the main cellular hub responsible for maintaining cellular

homoeostasis and genome integrity, and it fulfils its roles by
controlling the expression of protein-coding and non-coding
genes alike [16–18]. Given its centrality in counteracting
stimuli that can perturb the physiological conditions of cells
[19,20], the loss of p53 functions is a common feature of
human cancers [21], and numerous animal models have
shown that either lack [22,23] of or mutations [24,25] in the
TP53 gene determines the onset of a variety of tumours and
can recapitulate the human tumour-predisposing syndrome,
known as Li-Fraumeni.

Despite being considered unique to the point of deserving
the title of the ‘guardian of the genome’[26], it is now clear
that p53 is supported in its activities by the other members of
its family, p63 and p73 [27–29]. These three transcription
factors share a similar DNA binding domain, that allows
them to regulate the expression of a common pool of genes
crucial to prevent tumorigenesis, including genes involved in
cell-cycle arrest [30], DNA repair [31], apoptosis [32], autop-
hagy [19], and cellular metabolism [20]. Beyond these com-
monalities, however, different biological functions are
associated with each of the p53 family members, as high-
lighted by the phenotypes of the respective knockout mouse
models. Indeed, p63 emerged as crucial for the proper forma-
tion and differentiation of pluri-stratified epithelia [33,34],
while p73 is essential for the development of the central
nervous system [35]. Further diversification in their biological
roles is provided by the complex structure of the p53 family
genes, all of which encode numerous isoforms due both to the
usage of alternative promoters and to the splicing events
involving the respective 3ʹ UTRs [36–38]. The various iso-
forms are grouped in two sets based either on the presence of
a transcriptional activation domain resembling that present in
p53 (TA isoforms) or on the absence thereof (ΔN isoforms).
The TA isoforms have tumour suppressive properties and can
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be bound and inhibited by the ΔN isoforms, which can con-
versely exert oncogenic activities [39–41]. In line with this,
human cancers generally show an imbalance among these
isoforms in favour of the ΔN isoforms [42]. The distinct
roles of the various isoforms are corroborated by the unique
phenotypes of the isoform-specific knockout mouse models.
Indeed, even though both the TAp63−/− and the TAp73−/−

mice are tumour prone [43,44], the former is characterized
by premature ageing[45], stem cell defects [46] and tendency
to diabetes and obesity [47], while the latter cannot properly
differentiate multiciliated cells, thereby having impaired func-
tionality of several organs, such as ear, ependyma, fallopian
tube, and trachea [48,49]. In the case of the ΔN isoforms,
instead, loss of ΔNp63 prevents the terminal differentiation of
the epidermis and causes craniofacial abnormalities and limb
defects [50–52], while lack of ΔNp73 is associated with severe
neurodegeneration [53,54].

The specific roles of the different isoforms of the p53
family members are ultimately achieved via the regulation of
unique transcriptional programmes, which comprise both
protein-coding and non-coding target genes. Here, we focus
on the numerous connections between the p53 family mem-
bers and the different classes of non-coding RNAs in physio-
logical conditions as well as in cancers, and we discuss the
possible therapeutic approaches targeting such connections.

Ribosomal biogenesis, nucleolar stress, and the p53
family

Ribosomal RNAs (rRNAs) represent ~85% of the RNA mass in
eukaryotic cells [6] and their biogenesis is finely regulated to
guarantee a constant balance between their expression and that
of the 80 ribosomal proteins (RPs) that ultimately constitute

the ribosomes [55]. To facilitate such regulation, ribosomal
biogenesis is temporally and spatially confined in the nucleolus,
where one the two rRNA precursors, 47S, is transcribed by the
RNA polymerase I and processed into the mature 18S of the
40S ribosomal subunit, and the 28S and 5.8S rRNAs of the 60S
subunit [56]. The fourth rRNA, 5S, is instead transcribed by the
RNA polymerase III in the nucleus, but it is then actively
transported in the nucleolus, where it undergoes through the
coordinated assembly with the remaining rRNAs and RPs [56].
This multistep process, which concludes with the export of the
40S and 60S into the cytoplasm, requires numerous accessory
factors comprising both non-ribosomal proteins and small
nucleolar RNAs (snoRNAs) [57] and is coordinated with cell
growth and division so that ribosomal biogenesis may occur
only during the interphase [58].

Dysregulated ribosomal biosynthesis is a trait of both solid
[59,60] and liquid [61] tumours and entails the disruption of
the nucleolar organization, an event known as ‘nucleolar
stress’[62]. An ever-growing body of evidence unequivocally
demonstrates the link between nucleolar stress and p53 acti-
vation (Fig. 1). The presence of free RPs, which is indicative of
a disequilibrium in the ratio between rRNAs and RPs, can be
detected by MDM2, an E3 ubiquitin ligase acting as negative
regulator of p53 [63]. RPL5 and RPL11 were the first two RPs
shown to interact with MDM2 and to block its function, thus
leading to p53 accumulation in the disrupted nucleoli [64–
66]. There, p53 interacts with the promyelocytic leukaemia
(PML) tumour suppressor, which enhances p53 acetylation by
p300 thus further preventing the MDM2-dependent ubiquiti-
nation of p53 [67]. An additional stabilization of p53 is
provided by another RP, RPL26, which interacts with both
the 5ʹ and 3ʹ UTRs of the p53 mRNA and promotes its
translation [68]. In unstressed conditions, this is prevented

Figure 1. The p53 family modulates the nucleolar stress response. Nucleolar structure and function are impaired by multiple stressors, including inhibitors of
ribosomal DNA transcription such as CX-5461 and hernandonine. These compounds induce p53 stabilization, which relies on its interaction with PML and subsequent
p300-mediated acetylation. Once activated, p53 counteracts the ΔNp63-induced transcription of ribosomal genes and prompts cell death in concert with the other
pro-apoptotic members of the family, TAp63 and TAp73.
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by MDM2, which blocks the interaction between RPL26 and
the p53 mRNA, thereby realizing an additional feedback loop
linking the ribosomal biogenesis with the p53 pathway [69].
The ultimate goal of this activation of p53 following nucleolar
stress is to halt ribosomal biosynthesis. This is achieved by
p53 at multiple levels including: i) the regulation of the
transcriptional activity of RNA polymerase I and III, either
directly [70] or by counteracting the cMyc-dependent induc-
tion of the rRNA genes [71]; ii) preventing the nuclear import
of the RPs that are translated in the cytoplasm [72]; and iii)
blocking the nuclear export of the 40S and 60S ribosomal
subunits [72]. All these events contribute to suppress riboso-
mal biogenesis until the unbalance between rRNAs and RPs
that led to the nucleolar stress is resolved [73].

The pivotal role of p53 in controlling the homoeostasis of the
ribosomal biogenesis is corroborated by the investigation of sev-
eral RP-deficient mice. Although these mice display different
phenotypes, such as embryonic (Rps6−/−) [74] or perinatal
(Rpl24−/−) [75] lethality, impaired T cell development (Rpl22−/−)
[76], and low body weight and anaemia (Rpl27a−/−) [77], all these
defects are due to the hyperactivation of p53 and can be rescued by
the concomitant deletion of the Trp53 gene [74–77].

During the past decade, a few reports have shed light on
the connections between the ribosomal biogenesis and other
members of the p53 family. For example, two papers have
recently unveiled a role for TAp73 in controlling the transla-
tion of mRNAs encoding nucleolar proteins, thus in turn
affecting rRNA processing and global protein synthesis
[78,79] (Fig. 2). Acute downregulation or chemical inhibition
of TAp73 impairs the translation of nucleolar protein, which
reduces the rRNA processing and the polysomal/subpolyso-
mal ratio, ultimately leading to an impaired global protein
synthesis [78]. In TAp73−/− mice, a compensatory mechanism
occurs that allows the maintenance of global protein synthesis
by bypassing the checkpoint set up by the translational elon-
gation factor eEF2K [79].

The other p53 family member reported to affect ribosomal
biogenesis is ΔNp63, which directly induces the levels of

Basonuclin1 (BCN1) [80], a transcription factor controlling the
expression of a subset of rRNAgenes viaRNApolymerase I and III
[81,82] (see Fig. 1). The ΔNp63-BCN1-rRNAs axis is particularly
relevant in basal cell carcinomas and in head and neck squamous
cell carcinomas, where the levels of both ΔNp63 [42] and BCN1
[80,83] are upregulated in comparisonwith normalmatched tissue
and could increase the ribosomal biogenesis to sustain the higher
demand for protein production by proliferating cells.

Given that upregulated ribosomal biogenesis is a feature of
numerous human cancers, extensive efforts have been made to
design inhibitors of this process and some of these smallmolecules
are in advanced pre-clinical investigations or in early clinical trial
phases [84]. A promising compound, called CX-5461, is a non-
genotoxic drug inhibiting the recruitment of the ribosomal DNA
transcription factor Selectivity factor 1 (SL1) on the promoters of
the rRNA genes [85]. Notably, when tested in a Eµ-MYC mouse
model of Burkitt lymphoma, CX-5461 triggered the p53-
dependent cell death ofmalignant B cells without affecting normal
cells and extended the survival of these mice [86]. P53-dependent
apoptosis is also induced by another inhibitor of rDNA transcrip-
tion, hernandonine, which binds to RPA194, the large catalytic
protein of theRNApolymerase I, and promotes its degradation via
the proteasome [87]. It will be interesting to evaluate in the future
whether CX-5461 and hernandonine can stimulate the activities of
the other pro-apoptotic members of the p53 family, namely
TAp63 and TAp73, thus providing an alternative therapeutic
strategy to treat tumours characterized by the functional loss
of p53.

The p53 family and tRNA deregulation in cancer

In 1958, ‘soluble ribonucleic acid intermediates in protein
synthesis’ were discovered [88] making these molecules, later
named transfer RNAs (tRNAs), the first class of non-coding
RNAs to be identified. Given their essential role in translation
together with rRNAs, upregulation of tRNAs in tumours has
for too long been considered just a consequence of the high
metabolic rate and increased demand in protein synthesis

Figure 2. TAp73 controls global protein synthesis via the translation of ribosomal proteins. In physiological conditions, TAp73 promotes the translation of mRNAs
encoding ribosomal proteins (RPs), which in turn are required to sustain global protein synthesis. When nucleolar stress occurs, instead, TAp73 forestalls the
production of RPs thus ultimately halting global protein synthesis.
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typical of cancer cells [89]. However, the regulation of tRNA
levels is more complex than previously envisioned. Indeed,
not all of the 506 human tRNA genes are simultaneously
overexpressed in a given tumour [90]. Instead, the expression
of tRNA isoacceptors (i.e. different tRNA isoforms loaded
with the same amino acid) is tissue-specific and finely tuned
to the expression of the mRNAs needed for the tissue’s opti-
mal functions [91]. Accordingly, unbalance in the coordinated
transcription of tRNAs and mRNAs may lead to tissue degen-
eration and even death [92].

The major element determining tRNA expression is the
activity of the RNA polymerase III, which is synchronized to
the cell cycle and kept under control by the tumour suppressor
RB and p53 [70]. On the contrary, numerous oncogenes have
been proven to promote RNA polymerase III transcriptional
activity, including cMyc [71], Ras/ERK [93], PI3K/AKT/mTOR
[94], and TERT [95]. Notably, these oncogenes induce the
expression of selective tRNAs in a tissue-specific manner,
thus underlining the fact that the conditions in which specific
tRNAs are upregulated are crucial for them to exert their pro-
oncogenic effects. The best example of this crosstalk between
oncogenes and tRNAs is that of TERT upregulating tRNALeu

and tRNATyr in highly aggressive triple-negative breast cancers
but inducing different tRNAs in other organs [95].

Additional complexity in the regulation of tRNA levels has
recently been provided by a report demonstrating that the p53
induced miR-34a post-transcriptionally regulates the initiator
tRNAMet [96] (Fig. 3). Although this is the only case of miRNA-
tRNA interaction known so far, these two RNAs create a feedback
loop that is highly relevant for human tumours. Indeed, if on one
hand miR-34a decreases the levels of tRNAMet, on the other hand
the overexpression of this tRNA bypasses the S/G2 cell cycle
transition controlled by p53 andmiR-34a thus promoting tumour
initiation [96]. Furthermore, tRNAMet can sustain tumour pro-
gression by increasing the migratory and invasive potential of
melanoma cells [97], a property shared with tRNAGlu and
tRNAArg in metastatic breast cancer cells [89].

Not only are tRNAs now established as key elements in
tumour and metastasis formation, but they are also emerging
as potential cancer biomarkers. In renal clear cell carcinomas,
the overexpression of tRNAArg and the downregulation of
tRNAPro and tRNAThr correlate with poor overall survival
[98], and in lung adenocarcinoma the overexpression of
tRNAGlu and tRNATyr and the downregulation of tRNAAsn

and tRNAThr are associated with increased recurrence risk
[99]. It is very likely that the constantly-growing availability
of next generation sequencing data will aid in unveiling prog-
nostic markers for tRNAs in other tumour types as well. It has
been hypothesised that tRNAs might also be predictive of
responsiveness to cancer treatment. This is based on the fact
that the elevated protein synthesis rate present in fast prolif-
erating tumours causes a reduction in translational accuracy
[100]. This augmented protein synthesis error (PSE) is due to
tRNA misreading (i.e. the incorporation of a wrong amino
acid in a protein), which leads to an in vivo tumour growth
similar to what is achieved by a potent oncogene, such as
K-rasG12V [101], and can endow cancer cells with drug resis-
tance and adaptation to tumour suppressive signals,
a phenomenon referred to as adaptive mistranslation [102].

The biological consequence of PSE is the induction of the
unfolded protein response (UPR) also known as the ER stress
response [103]. Although UPR helps cancer cells to cope with
translational inaccuracy by upregulating molecular chaper-
ones and increasing the proteasome-dependent degradation
of misfolded proteins [103], it can also be an Achilles’ heel for
the tumour. Indeed, if PSE is not cleared, USP triggers the
pro-apoptotic members of the p53 family thus leading to
tumour cell death [104–106]. This could be pharmacologically
exploited, since tumours relying on tRNA misreading may be
more responsive to UPR and/or proteasome inhibitors [107].

The bidirectional crosstalk between the p53 family
and miRNAs in cancer

MicroRNAs (miRNAs) are a large group of small RNAs that
function by regulating mRNA stability and translation in
a sequence-specific manner [108]. Although they are ~22
nucleotides long, they are produced as longer precursors
either via splicing of host gene pre-mRNA transcripts (so
called mirtrons) [109] or via RNA polymerase II transcription
of dedicated genes (primary miRNAs or pri-miRNAs) [110].
In the latter case, the precursors undergo 5ʹ capping and 3ʹ
polyadenylation similar to mRNAs [111] but are characterized
by a unique feature, the presence of a ~ 70 nucleotides long
RNA stem-loop. This structure is recognized by the micro-
processor, a multiprotein complex including DGCR8, which
mediates the association with the stem-loop [112], and
Drosha, which processes pri-miRNAs into precursor
miRNAs or pre-miRNAs [113]. The resulting pre-miRNAs
and the mirtrons, whose synthesis instead does not require
the microprocessor, are then exported from the nucleus in an
exporting-5 dependent manner [114]. Once in the cytoplasm,
they are further processed by the RNAse III enzyme Dicer
into mature miRNAs [115], which subsequently interact with
the RNA-induced silencing complex (RISC), where the
miRNA-mRNA interaction and the Argonaute-dependent
cleavage of the mRNA occur [116].

The miRNA biogenesis pathway is regulated by the p53
family members at various levels (Fig. 4). The first of such
regulatory events to be unveiled was the interaction between
p53 and the microprocessor component DDX5 to promote
the maturation of tumour suppressive miRNAs in response to
DNA damage [117]. In similar conditions, p53 also affects the
RISC complex through its binding to Ago2, hence globally
perturbing the miRNA-mRNA interactions [118]. Mutant p53
proteins were demonstrated to retain the capability to associ-
ate with both DDX5 and Ago2 and to highjack them as part of
the so-called mutant p53 gain of function [117,118].

In addition to p53, other members of the family are involved
inmiRNA processing. For example, TAp63 was shown to induce
Dicer expression [43]. This is particularly relevant for tumori-
genesis, since the tumour and metastatic suppressive functions
of TAp63 rely on this mechanism [43] and deletion of either
TAp63 [43] or Dicer [119] predisposes mice to the onset of
metastatic tumours. This crucial link between TAp63 and
Dicer is further supported by the finding that the loss of both
factors is a common feature of different types of aggressive
human tumours, including breast cancers, head and neck
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squamous cell carcinomas, and lung adenocarcinomas [43].
Importantly, in addition to having a global effect on miRNA
biogenesis through Dicer, TAp63 achieves its tumour suppres-
sive functions by directly inducing the expression of specific
miRNAs, including miR-130b that abolishes the migratory and
invasive potential of cancer cells [43].

The other isoform of p63, ΔNp63, transcriptionally activates
DGCR8 [50], affecting in this way the cleavage of pri-miRNAs
into pre-miRNAs. Notably, the ΔNp63/DGCR8 axis is necessary

for thematuration of a group ofmiRNAs required for the proper
terminal differentiation of the epidermis, thereby explaining the
skin defects observed in the ΔNp63−/− mice [50]. Because of the
pleiotropic roles of ΔNp63 in the initiation and progression of
multiple human cancer types [120], the ΔNp63/DGCR8 axis is
crucial in human tumours as well. Indeed, tumours overexpres-
sing ΔNp63 are generally addicted to this oncogene and can be
treated by targeting ΔNp63 either genetically [40] or pharmaco-
logically via histone deacetylase inhibitors (HDACi) based

Figure 3. miR-34a inhibits the tRNA initiator tRNAMet. Following either endogenous (e.g. oncogene activation) or exogenous (e.g. DNA damaging agents) stimuli, p53
is activated and promotes the expression of miR-34a, which is the only miRNA known to target tRNAs. Specifically, miR-34a binds to tRNAMet and prevents it from
promoting biological processes supporting tumour formation and progression.
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therapies [41]. Resistance to HDACi treatment due to low levels
of ΔNp63’s E3 ubiquitin ligase, Fbxw7, can be bypassed by
directly targeting DGCR8 or oncogenic miRNAs processed in
a ΔNp63/DGCR8-dependent manner, such as let-7d and miR-
128 [41].

In addition to control miRNA biogenesis, the p53 family can
directly affect the expression of specific miRNAs (Table 1). One
of the best characterized examples is the induction of miR-34 by
p53 in response to DNA damaging agents, such as ionizing
radiations [121] and chemotherapeutic drugs [117]. This induc-
tion is essential for the p53-dependent cell cycle arrest and
senescence [121], during which p53 also represses the expression
of several miRNAs, including miR-17-5p, miR-106b, and miR-
155 [122]. P53-induced senescence is counteracted by ΔNp63
both through: i) the repression of senescence-specific miRNAs,
such as miR-181 and miR-130b [123], the latter being instead
induced by TAp63 [43]; and ii) the induction of pro-proliferative
miRNAs, like miR-630 [124]. Furthermore, ΔNp63 regulates the
expression of the miR-200 family and miR-205, through which
ΔNp63 promotes the epithelial-mesenchymal transition (EMT)
[125]. This is crucial for the development of epithelial tissues
such as the mammary gland [126] and for the pro-metastatic
activity of ΔNp63 in bladder [127] and prostate [128] cancers.

One intriguing miRNA induced by TAp73 is miR-193b,
which in turn binds to the 3ʹUTR of TP73, thus inducing
a negative feedback loop that keeps TAp73 activity under
check [129]. This is not the only miRNA directly regulating
the stability of the p53 family mRNAs. Additional examples
are the oncogenic miR-125b, that inhibits p53 activation by
interacting with its 3ʹ UTR [130], and the tumour suppressive
miR-203, which inhibits the ΔNp63-dependent proliferation
of cancer cells by binding to its 3ʹ UTR [131]. These findings

demonstrate that the intricate crosstalk between the p53
family and miRNAs acts in both directions and has crucial
repercussions for human cancers.

LncRNAs and the activity of the p53 family members
in human tumours

The vast majority of the ‘dark matter’ comprises long non-
coding RNAs (lncRNAs), RNA species arbitrarily defined as
RNA polymerase II transcripts that are longer than 200
nucleotides and devoid of open reading frames [132]. Due
to the ever-growing identification of the lncRNAs thanks to
the advances in RNA sequencing techniques, lncRNAs have

Figure 4. The p53 family regulates multiple layers of the miRNA biogenesis pathway. In addition to directly regulating the expression of miRNAs (see Table 1), p53
and its family members, TAp63 and ΔNp63, affect miRNA processing as well as the activity of miRNAs on their mRNA targets.

Table 1. Connections between miRNAs and the p53 family.

miRNA Connection with the p53 family Reference

let-7d oncogenic miRNA processed via the ΔNp63/DGCR8
axis

[41]

miR-17-
5p

oncogenic miRNA repressed by p53 [122]

miR-34a p53 induced miRNA mediating cell cycle arrest and
senescence

[117,121]

miR-106b oncogenic miRNA repressed by p53 [122]
miR-128 oncogenic miRNA processed via the ΔNp63/DGCR8

axis
[41]

miR-130b tumour suppressive miRNA repressed by ΔNp63 and
induced by TAp63

[43,123]

miR-155 oncogenic miRNA repressed by p53 [122]
miR-181 tumour suppressive miRNA suppressed by ΔNp63 [123]
miR-193b miRNA induced by TAp73 and binding to the 3ʹ UTR

of p73
[129]

miR-200 induced by ΔNp63 to regulate EMT [125]
miR-203 tumour suppressive miRNA binding the 3ʹ UTR of p63 [131]
miR-205 induced by ΔNp63 to regulate EMT and mammary

gland development
[125,126]

miR-630 pro-proliferative miRNA induced by ΔNp63 [124]
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been believed to represent transcriptional noise [133].
However, a small but steadily growing list of lncRNAs has
been confirmed to have biological roles, including modulation
of gene expression (both in cis [134] and in trans [135]),
mRNA stability control [136], sequestration of miRNAs
[137], regulation of protein localization [138], and organiza-
tion of scaffolds both for RNA binding proteins [139] and for
subnuclear domains [140].

Several lncRNAs have recently been identified as key com-
ponents of the p53 pathway (Table 2), including known onco-
genic lncRNAs that act as upstream modulators of p53, such
as ANRIL, MALAT1, PURPL, and PVT1. The former is also
known as CDKN2B-AS1, because it is transcribed from the
same promoter but on the opposite strand compared to
CDKN2B (also known as ARF) [141]. During the last stage
of the DNA damage response, i.e. when the DNA repair is
completed and p53 levels return to normal, ANRIL directly
binds to the nascent ARF transcript and recruits polycomb
repressor complex (PRC) 1 and 2 to silence ARF expression
[142]. As a consequence of the reduced ARF levels, MDM2 is
free to interact with p53 and to drive its degradation [143]. In
several human tumours, including breast [142], lung [144],
and ovarian [145] cancers, ANRIL is overexpressed thereby
leading to the hypoactivation of p53. A similar result is
obtained in tumours where cMYC is coamplified with the
lncRNA PVT1 [146]. This RNA promotes the loading of
EZH2 on the promoter of the large tumour suppressor kinase
2 (LATS2) [147], the kinase at the core of the Hippo pathway
responsible for the phosphorylation and subsequent inactiva-
tion of YAP/TAZ [148]. Similar to ARF, LATS2 also counter-
acts MDM2 binding to p53 [149]. Therefore, PVT1
overexpression results in reduced LATS2 levels and increased
MDM2-dependent degradation of p53 [147]. In addition to
regulating p53 ubiquitination levels via MDM2, there are
lncRNAs affecting other p53 posttranslational modifications
(PTMs). This is the case for MALAT1, an oncogenic lncRNA
enhancing the deacetylation activity of SIRT1 on p53, thus
reducing the ability of p53 to be recruited to promoters of its
target genes [150]. Besides these effects on p53 PTMs, another
lncRNA, named WRAP53, can instead stabilize p53 post-
transcriptionally. Indeed, this lncRNA is an antisense tran-
script of TP53, which binds to the 5ʹ UTR of the p53 mRNA
via a perfectly complementary sequence and promotes p53

mRNA translation and the subsequent accumulation of the
p53 protein in response to DNA damage [151]. Finally,
a special case of upstream modulator of p53 is that of
PURPL. Indeed, not only does this lncRNA prevent the inter-
action between p53 and MYBBP1A thus counteracting p53
stabilization, but PURPL itself is a direct target of p53 [152].
This creates a negative feedback loop between PURPL and
p53, which is an important mechanism to avoid the hyper-
activation of p53 in unstressed conditions [152]. p53 has also
been shown to induce the expression of other lncRNAs that
act as downstream tuners of different p53’s biological
responses, such as apoptosis (PINCR) [153], cell cycle arrest
(DINO) [154], DNA repair (GUARDIN) [155], and senes-
cence (PANDA) [156].

In contrast to the large body of evidence linking p53 and
lncRNAs, only a handful of reports have clearly demonstrated
an interplay between these RNA species and the other mem-
bers of the p53 family. Notable examples are SNHG1 [157],
which inhibits TAp63 via an uncharacterized mechanism
leading to metastatic lung squamous cell carcinomas, and
BLNCR [158] and XIAP-AS1 [159], two direct targets of
ΔNp63 mediating its proliferative and invasive effects, respec-
tively. Given the ever-growing interest in the lncRNA field, it
is very likely that additional and surprising connections
between lncRNAs and the p53 family will be unveiled in the
near future.

Circular RNAs and their effects on the p53 pathway

In 1976, curious ‘single-stranded and covalently closed circu-
lar RNA molecules’ were described in pathogenic viroids
[160]. Since then, circular RNAs (circRNAs) have been dis-
covered in most organisms, including Archaea, plants, and
metazoans [10]. Although initially disregarded as artefacts of
splicing errors [161], RNA-sequencing methods including the
depletion of polyadenylated RNAs and the degradation of
linear RNA molecules via RNAse R, revealed that ~10% of
all the expressed human genes produce circRNA splice var-
iants [162]. Notably, in several instances, the levels of the
circRNA isoforms exceed those of the respective linear tran-
scripts [163], hence confuting the linear RNA-centric view
that circRNAs are just ‘scrambled exons’[161]. The first func-
tional circRNA to be reported was CDR1as [164], also known
as ciRS-7 [165], which is the archetype for miRNA-sponging
circRNAs. It indeed contains more than 70 binding sites for
miR-7 and suppresses the activity of this miRNA. In addition
to the inactivation of miRNAs, circRNAs can exert a variety of
mechanisms of function, such as affecting protein localization
[166], regulating the transcription of their parental gene [167],
and acting as scaffolds for the formation of protein com-
plexes [168].

Intriguingly, a few circRNAs were demonstrated to encode
small peptides, thus indicting that not every circRNA is an
actual non-coding RNA. One of the peptide-encoding
circRNAs is the circular form of the p53-induced transcript
PINT, whose peptide acts as a tumour suppressor in glioblas-
tomas by binding to PAF1c, an RNA polymerase II associated
factor, and inhibiting the transcriptional elongation of multi-
ple oncogenic transcripts [169]. Another interesting circRNA

Table 2. Connections between lncRNAs and the p53 family.

lncRNA Connection with the p53 family Reference

ANRIL oncogenic lncRNA destabilizing p53 by repressing ARF [141]
BLNCR direct ΔNp63 target promoting cancer cell proliferation [158]
DINO interacts with p53 and promotes p53-mediated cell

cycle arrest
[154]

GUARDIN direct p53 target involved in DNA repair [155]
MALAT1 promotes p53 deacetylation via SIRT1 [150]
PANDA direct p53 target promoting senescence [156]
PINCR p53-induced lncRNA counteracting p53-dependent

apoptosis
[153]

PURPL direct p53 target inhibiting p53 stabilization [152]
PVT1 oncogenic lncRNA destabilizing p53 by repressing

LATS2
[147]

SNHG1 oncogenic lncRNA inhibiting TAp63’s anti-metastatic
activity

[157]

WRAP53 promotes the translation of the p53 mRNA [151]
XIAP-AS1 direct ΔNp63 target promoting cancer cell invasion [159]
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is the circular form of the lncRNA ANRIL. While, as
described above, linear ANRIL affects p53 stability via ARF
[141], circANRIL expression impairs rRNA processing and
maturation, ultimately leading to nucleolar stress and p53
activation [170]. The activation of p53 is also affected by
other circRNAs, including: i) circ_0000263, which sponges
miR-150-5p, in turn causing the up-regulation of the p53
inhibitor MDM4 [171]; ii) circ_0055538, whose loss in oral
squamous cell carcinoma attenuates p53’s pro-apoptotic
response [172]; and iii) circAMOTL1L, whose downregulation
promotes prostate cancer progression by impairing the p53-
dependent regulation of EMT [173].

Despite the numerous reports demonstrating the functional
interactions between circRNAs and the p53 pathway (Table 3),
further efforts are still needed to show whether circRNAs can
also affect the stability or the activity of the remaining members
of the p53 family and what consequences this interplay may
have in human cancers and other biological processes.

Conclusions and future perspectives

The world of ncRNAs is ever changing and leading to new
venues of research and holds the promise of novel therapies for
multiple diseases including cancer. Though initially shadowed by
the interest captured by the protein-coding RNAs, the ‘dark
matter’ has undeniably proven to comprise molecules with bio-
logical functions crucial for both cell physiology and several
human diseases. These findings have provided fuel for the inves-
tigation in the ncRNA field to the point that it is now clear how
intertwined the ncRNAs are with the components of one of the
most important pathways in human cancers, the p53 pathway.
Indeed, not only are ncRNAs at the centre of the phenotypes
shown by the mouse models lacking specific isoforms of the p53
family members, as in the case of the skin defects of the ΔNp63−/−

mice [50] or the tumour predisposition of the TAp63−/− mice
[43], but small molecules targeting ncRNA biogenesis (as CX-
5461 [85] and hernandonine [87]) and UPR and/or proteasome
inhibitors [107] exert their anti-tumour effects via the activation
of the pro-apoptotic members of the p53 family.

In addition to these pharmacological approaches affecting
global ncRNA biogenesis, several strategies have been designed
to target specific ncRNAs via complementary base-pairing recog-
nition, as provided by antisense oligonucleotides (ASOs) [174],
miRNA inhibitors [175], and siRNAs [176]. To guarantee their
stability and delivery, these molecules are chemically modified
(e.g. cholesterol [177] and N-acetylgalactosamine [178]) and/or
loaded on either liposomal, polymeric, or inorganic nanoparticles
[179]. Many of these ncRNA-based therapeutics showed signifi-
cant anti-cancer effects in in vivo models and are currently being

tested in early clinical trial phases for the treatment of both solid
tumours and haematological malignancies [180].

Despite the constant progress made in the ncRNA field,
there are still some uncharted territory and unanswered ques-
tions worthy of further investigation. For example, are there any
lncRNAs or circRNAs whose levels or functions are affected by
either TAp73 or ΔNp73? How successful will therapeutic stra-
tegies aiming to stabilize p53 by blocking lncRNAs, like ANRIL
[142], MALAT1 [150], and PVT1 [147] be? Furthermore, given
that the inactivation of p53 and its downstream pathway as well
as the overexpression of the oncogenic p53 family members,
ΔNp63 and ΔNp73, are among the most common alterations in
human cancers [21,42], are these ncRNA inhibitors as well as
those currently under investigation effective in treating these
tumours? We are certain that the paths leading to the answers of
these questions are filled with novel and exciting ncRNA func-
tions and will cast an everlasting light shining upon the world of
the ‘dark matter’.
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