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Background. Difficulty discriminating bacterial versus viral etiologies of infection drives unwarranted antibacterial 
prescriptions and, therefore, antibacterial resistance.

Methods. Utilizing a rapid portable test that measures peripheral blood host gene expression to discriminate bacterial and viral 
etiologies of infection (the HR-B/V assay on Biomeme’s polymerase chain reaction–based Franklin platform), we tested 3 cohorts of 
subjects with suspected infection: the HR-B/V training cohort, the HR-B/V technical correlation cohort, and a coronavirus disease 
2019 cohort.

Results. The Biomeme HR-B/V test showed very good performance at discriminating bacterial and viral infections, with a 
bacterial model accuracy of 84.5% (95% confidence interval [CI], 80.8%–87.5%), positive percent agreement (PPA) of 88.5% 
(95% CI, 81.3%–93.2%), negative percent agreement (NPA) of 83.1% (95% CI, 78.7%–86.7%), positive predictive value of 64.1% 
(95% CI, 56.3%–71.2%), and negative predictive value of 95.5% (95% CI, 92.4%–97.3%). The test showed excellent agreement 
with a previously developed BioFire HR-B/V test, with 100% (95% CI, 85.7%–100.0%) PPA and 94.9% (95% CI, 86.1%–98.3%) 
NPA for bacterial infection, and 100% (95% CI, 93.9%–100.0%) PPA and 100% (95% CI, 85.7%–100.0%) NPA for viral 
infection. Among subjects with acute severe acute respiratory syndrome coronavirus 2 infection of ≤7 days, accuracy was 93.3% 
(95% CI, 78.7%–98.2%) for 30 outpatients and 75.9% (95% CI, 57.9%–87.8%) for 29 inpatients.

Conclusions. The Biomeme HR-B/V test is a rapid, portable test with high performance at identifying patients unlikely to have 
bacterial infection, offering a promising antibiotic stewardship strategy that could be deployed as a portable, laboratory-based test.
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The current standard of care for discriminating bacterial versus 
viral infection often relies on clinical features and limited 
pathogen-based diagnostic testing. However, there is substantial 

overlap in the clinical presentation of bacterial and viral infections 
for syndromes such as acute respiratory infection, and pathogen- 
based diagnostic tests that are both sensitive and specific are lack
ing. The challenges associated with discriminating bacterial and 
viral etiologies of infection result in inappropriate antibacterial 
prescription in 20%–40% of cases [1–6], which leads to unneces
sary drug-related adverse effects, contributes to increased health
care costs, and is one of the primary drivers of antibacterial 
resistance. Tests that reliably discriminate bacterial and viral eti
ologies could decrease diagnostic uncertainty, decrease inappro
priate antibacterial use, and improve patient outcomes.

Given the limitations associated with pathogen-based diagnos
tic tests, an alternative strategy involves measuring the host im
munological response. This strategy is predicated on bacterial 
and viral infections inducing unique immunological responses 
[7]. Host immunological response may be assessed by quantifying 
changes in the peripheral blood of either protein biomarkers or 
gene expression associated with the immune response.
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Procalcitonin (PCT), the most widely used host protein bio
marker for acute respiratory infection, tends to be elevated in 
bacterial infections, and rises less commonly in response to 
viral infections. This biomarker is used to support clinical de
cisions, including initiation (for PCT >0.25 ng/mL) or with
holding (for PCT ≤0.25 ng/mL) of antibacterial therapy in 
patients with acute exacerbations of chronic bronchitis or 
community-acquired pneumonia. PCT levels can also increase 
when there is inflammation in the absence of a bacterial infection 
(eg, autoimmune disease, severe trauma, surgery, cardiac shock) 
[8, 9]. Therefore, PCT is limited by poor accuracy and lack of 
specificity and has exhibited mixed results for bacterial/viral dis
crimination and guiding antibacterial use [10–14]. Other protein 
biomarkers have also been described for bacterial/viral discrim
ination including myxovirus resistance protein A, erythrocyte 
sedimentation rate, C-reactive protein, tumor necrosis factor– 
related apoptosis-inducing ligand, interferon-γ–induced protein 
10, and combinations thereof [15–17].

Another approach involves measuring peripheral blood host 
gene expression, which can now be done using clinically available 
platforms [18, 19]. We previously discovered a host gene expres
sion signature discriminating bacterial and viral illness as well as 
noninfectious causes of illness, containing 71 genes for bacterial 
infection, 33 genes for viral infection, and 26 genes for noninfec
tious causes of illness [20]. This signature was further developed 
into a research use–only host response test for viral infection di
agnosis using 10 genes, and later as a 45-gene test to discriminate 
host response for bacterial versus viral infection (HR-B/V) on the 
BioFire FilmArray System, showing excellent performance 
characteristics [18, 21]. In this study, we describe the perfor
mance of a novel host gene expression test (Biomeme HR-B/V) 
for bacterial/viral discrimination using a reduced set of targets 
compared to previous classifiers utilized on the BioFire 
FilmArray platform [20]. The Biomeme HR-B/V assay was tested 
on a portable, molecular diagnostic testing platform known as 
the Franklin. The Franklin three9 real-time polymerase chain 
reaction (PCR) thermocycler (Biomeme Inc, Philadelphia, 
Pennsylvania) is lightweight, portable, and battery-powered 
and is capable of multiplex detection of up to 27 targets from 
1 sample (Figure 1). Nucleic acid is extracted, isolated, and puri
fied from blood samples using the M1 Sample Prep Cartridge Kit, 
which requires no laboratory equipment, refrigeration, electrici
ty, incubation, alcohol precipitation, or phenol-chloroform ex
traction. A smartphone connects to the Franklin instrument via 
Bluetooth or a USB cable to load the test protocol, input sample 
IDs, and display results of the test. The results are reported in ap
proximately 1 hour, which has the ability to impact unnecessary 
antibacterial prescriptions in a range of care settings.

In this study, we assess the performance of the Biomeme 
HR-B/V test and its concordance with the BioFire HR-B/V 
test using a multisite, diverse, prospectively enrolled cohort in
cluding subjects with coronavirus disease 2019 (COVID-19).

MATERIALS AND METHODS

Study Design

Studies were approved by each site’s institutional review board. 
All subjects or legally authorized representatives provided writ
ten informed consent.

Subjects were analyzed as part of 3 cohorts: the HR-B/V train
ing cohort, the HR-B/V technical correlation cohort, and a 
COVID-19 cohort. We chose to include a COVID-19 cohort sep
arately to show that the Biomeme HR-B/V assay performed sim
ilarly in patients with this novel viral infection when compared to 
other known viral infections. Our team has previously shown that 
COVID-19 results in an alteration of the host immune system 
that is both similar to other viral infections (interferon driven) 
and different (early B-cell activation and antibody production) 
[22]. Samples from subjects in the bacterial/viral training and cor
relation cohorts were collected and banked as part of previously 
published studies (Community Acquired Pneumonia and 
Sepsis Outcome Diagnostics [CAPSOD], Community Acquired 

Figure 1. Biomeme M1/Franklin HR-B/V workflow The system consists of 4 com
ponents: an M1 RNA 2.0 sample prep cartridge, 3 Go-Strips panels (A, B, C), the 
Franklin three9 real-time polymerase chain reaction (PCR) thermocycler, and a smart
phone. The M1 sample prep cartridge allows rapid nucleic acid extraction without the 
need for any equipment. Each Go-Strip consists of 3 connected PCR tubes containing 
lyophilized master mix, multiplexed primers, and probes for 3 targets. Each handheld 
unit is equipped with 9 sample wells, enabling simultaneous quantitative detection of 
up to 27 targets per PCR run across 3 different color channels including green (FAM/ 
SYBR), amber (Jun/TexRedX), and red (ATTO647N/Cy5). The thermocycler is just un
der 3 lb (1.36 kg); battery-operated for maximum portability, enabling a full day’s work 
on a single charge; and provides results in less than an hour. The smartphone uses an 
intuitive app, the Biomeme Go, which pairs wirelessly with the Franklin thermocycler 
to easily run, monitor, analyze, and share the PCR data.
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Pneumonia and Sepsis Study [CAPSS], Austere Environments 
Consortium for Enhanced Sepsis Outcomes [ACESO], Clinico- 
Molecular Predictors of Presymptomatic Infectious Disease, 
Rapid Diagnostics in Categorizing Acute Lung Infections 
[RADICAL], RADICAL-2, and Molecular Epidemiology of 
Sepsis and Suspected Infection [MESSI]) [18, 23–27]. In brief, 
patients were enrolled by convenience sampling from 2008 
through 2019 in the emergency departments of Duke University 
Medical Center (Durham, North Carolina), Henry Ford 
Hospital (Detroit, Michigan), UNC Health Care (Chapel Hill, 
North Carolina), Brigham and Women’s Hospital (Boston, 
Massachusetts), University of Utah Medical Center (Salt Lake 
City, Utah), Newton-Wellesley Hospital (Newton, Massachusetts), 
University of California Hospital at Davis (Sacramento, 
California), the University of Texas Health Science Center at 
Houston (Houston, Texas), Hasbro Children’s Hospital 
(Providence, Rhode Island), and Children’s Hospital of 
Pittsburgh (Pittsburgh, Pennsylvania). Enrollment criteria varied 
across the studies, which were prospective observational studies 
to identify patients with suspected infectious syndromes and to 
bank samples for future research use. These cohorts include partic
ipants with either a suspected infection and 2 or more systemic in
flammatory response syndrome (SIRS) criteria (CAPSOD, CAPSS, 
ACESO, Clinico-Molecular Predictors of Presymptomatic 
Infectious Disease studies), participants with an acute respiratory 
illness (RADICAL, RADICAL-2), or patients with exposure to or 
suspected or confirmed infection (MESSI). Patients were eligible 
for CAPSOD, CAPSS, ACESO, and Clinico-Molecular Predictors 
of Presymptomatic Infectious Disease studies if they had known 
or suspected infection of <28 days’ duration and exhibited 2 or 
more SIRS criteria. CAPSOD and CAPSS enrolled patients aged 
≥6 years while ACESO and Clinico-Molecular Predictors of 
Presymptomatic Infectious Disease enrolled patients aged ≥18 
years. RADICAL and RADICAL-2 enrolled patients aged ≥2 years 
with acute respiratory illness of <28 days’ duration. Acute respi
ratory illness was defined as having at least 2 qualifying symp
toms or 1 qualifying symptom and at least 1 qualifying vital 
sign abnormality. Qualifying symptoms included headache, rhi
norrhea, nasal congestion, sneezing, sore throat, itchy/watery 
eyes, conjunctivitis, cough, shortness of breath, sputum produc
tion, chest pain, and wheezing. Qualifying vital sign abnormal
ities included heart rate ≥90 beats per minute (or ≥110 beats per 
minute for children aged 2–6 years), respiratory rate ≥20 
breaths per minute, and temperature ≥38.0°C or ≤36.0°C. 
Patients were eligible for MESSI if they were ≥2 years of age 
and had suspected infection, confirmed infection, exposure to 
someone with symptoms of suspected infection, or recent/ 
planned vaccination. These overarching studies enrolled the fol
lowing numbers of patients: 1274 in CAPSOD, 1320 in CAPSS, 
944 in ACESO, 99 in Clinico-Molecular Predictors of 
Presymptomatic Infectious Disease studies, 796 in MESSI, 940 
in RADICAL, and 783 in RADICAL-2.

At enrollment, a nasal or nasopharyngeal sample, urine, and 
blood in PAXgene Blood RNA tubes (Qiagen) were collected 
from all subjects and stored at −80°C. Etiologic testing included 
multiplex PCR testing for respiratory pathogens (ResPlex V2.0, 
Qiagen; Respiratory Viral Panel, Luminex Corporation; 
Respiratory Pathogen Panel, Luminex Corporation; or 
Respiratory 2.1 Panel, BioFire Diagnostics) and urine antigen 
testing for Streptococcus pneumoniae (BinaxNOW, Alere Inc).

Subjects were further selected from the pool of previously 
enrolled subjects based on the availability of a PAXgene 
Blood RNA sample and confirmatory microbiology to indicate 
the presence of a bacterial or viral infection. A subset of partic
ipants was selected to train the Biomeme HR-B/V model based 
on a clinically adjudicated bacterial or viral infection (adjudica
tion described below). These individuals were adjudicated and 
later selected for model training without considering results 
from host gene expression testing, including the BioFire 
HR-B/V test. The BioFire HR-B/V test measures 42 host mes
senger RNA (mRNA) transcripts (plus 3 normalizing control 
genes) and differentiates viral, bacterial, and noninfectious 
causes of illness [18, 28]. Since the Biomeme HR-B/V test mea
sures a subset of the BioFire-based panel (22 vs 42 genes), an 
additional cohort of subjects was identified for the purpose of 
correlating the Biomeme HR-B/V test to the BioFire HR-B/V 
test. This additional cohort (correlation cohort) of subjects 
had a clear viral or bacterial result on BioFire HR-B/V testing, 
which was concordant with clinical adjudication. We had pre
viously developed a 1-model (bacterial vs other) and a 2-model 
(bacterial vs other; viral vs other) system for the BioFire HR-B/V. 
A large, multisite cohort showed compelling performance for the 
single-model system; thus, samples for the correlation cohort 
were chosen from this study [28].

The COVID-19 cohort included inpatients and outpa
tients enrolled from March 2020 to May 2021 at Duke 
University and the surrounding central North Carolina com
munities based on clinically suspected or confirmed severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in
fection [22].

Case Definitions and Reference Standard

Clinical adjudication served as the comparator method to de
termine the etiology of illness. Adjudicators were clinicians 
with experience in the diagnosis of infectious diseases (eg, pe
diatric or adult infectious diseases, internal medicine, or pul
monary/critical care medicine physicians), and used a 
combination of clinical history such as exposures, symptoms, 
physical examination findings, treatments received, and clinical 
outcomes; results from laboratory testing performed during 
routine clinical care, such as white blood cell count and 
C-reactive protein level; results from etiological testing for re
search purposes (with the exception of results from the 
HR-B/V assays); and radiographic test results during routine 
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clinical care to conduct adjudications. Two adjudicators were 
randomly assigned to independently determine the likelihood 
of bacterial and/or viral infection, noninfectious syndrome, 
or indeterminate diagnosis. Adjudicator discordance was re
solved by a consensus panel of at least 3 experts, with a simple 
majority determining final diagnosis [18, 28].

Biomeme HR-B/V Testing

The Biomeme HR-B/V tested performed on the Franklin molecu
lar diagnostic platform can detect up to 27 targets per sample 
through real-time reverse-transcription quantitative PCR 
(RT-qPCR) including 22 discriminating targets (BATF, CFAP45, 
CTBP1, DEFA3, DSC2, EXOG, FOLR3, GCAT, HLA-DRB1, 
IFI27, LAMP1, LAPTM4B, MCTP1, OAS3, PLAC8, RPS21, 
SIGLEC1, SIRPB1, SLC29A1, STAP1, TNFAIP2, USP18) along 
with 2 normalization controls (DECR1 and PPIB) and an RNA 
process control (RNA extraction and RT-PCR control utilizing 
MS2 bacteriophage).

Whole blood was collected in PAXgene Blood RNA tubes at 
the time of enrollment and stored at −80°C. Preservatives incom
patible with the chemistry used in the Biomeme sample prepara
tion system were removed by centrifugation, and pellets were 
washed with RNase-free water. The resuspended sample was cen
trifuged again and the final pellet was resuspended in 6M 
Biomeme Lysis Buffer (Biomeme, Philadelphia, Pennsylvania) 
followed by the addition of an equivalent volume of 100% etha
nol. Then RNA was extracted and purified using Biomeme’s 
M1 RNA 2.0 Sample Prep Cartridge (Biomeme). The processed 
product of 300 µL PAXgene Blood RNA sample along with 
20 µL of MS2 bacteriophage external process control was added 
to the first well of the reagent cartridge containing lysis buffer 
(Biomeme). Sample was pumped through the Biomeme M1 sam
ple prep column, which contains silica membranes, a barbed tip, 
and Luer lock for attachment to a 1-mL syringe. The column’s 
barbed tip pierces the foil sealed cartridge chambers, which con
tain lysis buffer, protein, salt wash, and drying buffers. For the fi
nal air-drying step, we transferred the column to a clean 20-mL 
syringe and dried it onto a clean low-lint wipe with 5–10 pumps, 
and eluted the RNA with 800 µL 0.1 M ethylenediaminetetraace
tic acid TE buffer. Purified RNA samples were added to lyophi
lized HR-B/V assay reagents, then run on the Franklin three9 
thermocycler (Biomeme) (Figure 1). Primers/probes were multi
plexed for triplex reactions. Each sample required approximately 
7 minutes of hands-on time, 20 minutes in a centrifuge, and 
55 minutes in the Franklin three9 thermocycler. One laboratory 
technician was able to keep 4 Franklin three9 thermocyclers in 
continuous operation throughout a workday without difficulty.

Statistical Analysis

Days post–symptom onset (DPSO) was calculated from the first 
day a participant reported 1 or more symptoms. Symptom se
verity in the COVID-19 cohort was calculated as a cumulative 
score from a patient-reported survey tracking over 39 symptoms, 

each scaled from 0 to 4 (0 = none, 1 = mild, 2 = moderate, 3 = 
severe, 4 = very severe). The maximum score a participant could 
report was therefore 156.

Raw RT-PCR values were exported from the Biomeme 
Franklin mobile RT-qPCR thermocyclers via XML worksheets. 
As a quality control measure, samples with reference targets 
(DECR1 and PPIB) with cycle threshold (Ct) >31 were re
moved from downstream analysis. Missing or nondetected val
ues were imputed to the maximum observed value per target 
plus 1 Ct, that is, max (observed Ct) + 1. RT-PCR values were 
normalized with the delta Ct method [29], which is the target 
Ct value minus the mean of the reference targets (DECR1 
and PPIB). Principal component analysis (PCA) plots were 
generated for dimensionality reduction of the training, correla
tion, and COVID-19 cohorts.

Separate models for bacterial versus nonbacterial and viral 
versus nonviral infections were built using linear sparse logistic 
regression. Specifically, elastic net regularization favoring ridge 
regression (α = .01) was implemented in the glmnet R package 
[30]. The optimal regularization parameter (λ) was obtained via 
leave-one-out cross-validation (LOOCV) and used to build the 
final model on the entire discovery set for predictions on the 
correlation set. We considered the area under the receiver op
erating characteristic curve (AUC), summaries of the confusion 
matrix (accuracy, positive percent agreement [PPA], negative 
percent agreement [NPA], positive predictive value [PPV], 
and negative predictive value [NPV]), scatter and box plots 
of predicted probabilities for bacterial and viral infection, and 
calibration plots (for predictions grouped by deciles) as perfor
mance metrics. The threshold for both bacterial and viral clas
sifiers was estimated via average weighted accuracy with 
parameters relative importance r = 0.25 and prevalence band 
(a, b) = (0.10, 0.30) for bacterial and r = 2 and (a, b) = (0.50, 
0.80) for viral [31]. Confidence intervals (CIs) were generated 
from confusion matrices using epiR, Wilson method [32]. 
Calibration plots were generated by selecting a random subset 
(70%) from the training and correlation cohorts and sampling 
with replacement over 1000 iterations. Linear values are aver
aged over all iterations. All statistical analyses were completed 
using R Statistical Software version 4.2.0 [33].

RESULTS

Subject Characteristics

Among 444 subjects in the training cohort, the median age was 
44.0 years (interquartile range [IQR], 27.0–57.0 years); 239 
(54%) were female and 203 (46%) were male (Table 1). 
Subjects were racially and ethnically diverse (self-reported), 
as displayed in Table 1. Among subjects, 320 (72%) subjects 
had a respiratory site of infection and 304 (69%) subjects 
were sampled during the acute phase of illness (≤7 DPSO). 
Based on clinical adjudications, 267 (60%) subjects had viral 
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infection, 113 (26%) subjects had bacterial infection, and 64 
(14%) subjects had noninfectious SIRS.

Among 82 subjects in the technical correlation cohort, the 
median age was 19.5 years (IQR 13.1–31.7 years); 46 (56%) 
were female and 36 were male (44%) (Table 1). The majority 
of subjects had a respiratory infection (n = 74 [90%]) and all 
were sampled at ≤7 DPSO (n = 82 [100%]). A total of 59 
(72%) subjects had viral infection and 23 (28%) subjects had 
bacterial infection.

Of a total of 111 subjects who were part of the COVID-19 
cohort, 60 (54%) were inpatients and 51 (46%) were outpa
tients (Table 1). The median age was 55.8 years (IQR, 48.0– 
67.9 years) for the inpatients and 44.5 years (IQR, 30.9–54.5 
years) for the outpatients. Subjects were again racially and eth
nically diverse. Twenty-nine inpatients (48%) had ≤7 DPSO 
and 25 (42%) had >7 DPSO. Thirty outpatients (59%) had 
≤7 DPSO and 9 (18%) had >7 DPSO. Median symptom count 
(assessed within 7 days of enrollment, with 94% assessed on 
the day of enrollment) was higher in the inpatient population 

(6.00 [IQR, 3.00–9.50]) than in the outpatient population (4.00 
[IQR, 0.00–7.00]). As expected, median symptom severity score 
was higher (12.00 [IQR, 0.50–20.00]) in the inpatient population 
than in the outpatient population (4.00 [IQR, 0.00–14.00]).

Training Cohort
Biomeme HR-B/V Test Performance Compared to Clinical 
Adjudication. The Biomeme HR-B/V test was trained on a co
hort of 444 subjects. The Biomeme HR-B/V test was used to 
measure transcript abundance, which was used to build a logis
tic regression model trained on subjects with an adjudicated 
clinical diagnosis of bacterial or viral infection and then validat
ed using LOOCV.
For the diagnosis of bacterial infection, the AUC was 0.91 (95% 
CI, .88–.94) (Supplementary Figure 1A), with accuracy of 
84.5% (95% CI, 80.8%–87.5%), PPA of 88.5% (95% CI, 
81.3%–93.2%), NPA of 83.1% (95% CI, 78.7%–86.7%), PPV 
of 64.1% (95% CI, 56.3%–71.2%), and NPV of 95.5% (95% 
CI, 92.4%–97.3%) given a bacterial infection prevalence of 

Table 1. Subject Demographics and Clinical Characteristics by Cohort

Characteristic Training (n = 444) Correlation (n = 82) COVID-19 Inpatient (n = 60) COVID-19 Outpatient (n = 51)

Demographic characteristics

Age, y, median (IQR) 44.0 (27.0–57.0) 19.5 (13.1–31.7) 55.8 (48.0–67.9) 44.5 (30.9–54.5)

Sex

Female 239 (54) 46 (56) 35 (58) 25 (49)

Male 203 (46) 36 (44) 25 (42) 26 (51)

Missing 2 (1) 0 0 0

Race

American Indian/Alaska Native 3 (1) 1 (1) 0 3 (6)

Asian 7 (2) 1 (1) 0 4 (8)

Black/African American 205 (46) 40 (49) 28 (47) 14 (28)

Native Hawaiian/Pacific Islander 2 (1) 0 0 0

Other 9 (2) 12 (15) 0 0

>1 race 0 0 5 (8) 3 (6)

Unknown 5 (1) 0 3 (5) 0

White 211 (48) 28 (34) 24 (40) 27 (53)

Missing 2 (1) 0 0 0

Ethnicity

Hispanic/Latino 32 (7) 21 (26) 11 (18) 7 (14)

Not Hispanic/Latino 391 (88) 59 (72) 48 (80) 43 (84)

Unknown 19 (4) 2 (2) 1 (2) 1 (2)

Missing 2 (1) 0 0 0

Clinically adjudicated type of illness

Bacterial infection 113 (26) 23 (28) 0 0

COVID-19 0 0 60 (100) 51 (100)

SIRS 64 (14) 0 0 0

Viral infection 267 (60) 59 (72) 0 0

Characteristics of illness

Infection at respiratory site 320 (72) 74 (90) 60 (100) 51 (100)

Days post–symptom onset

≤7 304 (69) 82 (100) 29 (48) 30 (59)

>7 82 (18) 0 25 (42) 9 (18)

No DPSO data 58 (13) 0 6 (10) 12 (24)

Data are presented as No. (%) unless otherwise indicated.

Abbreviations: COVID-19, coronavirus disease 2019; DPSO, days post–symptom onset; IQR, interquartile range; SIRS, systemic inflammatory response syndrome.
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26% (Table 2). For the diagnosis of viral infection, the AUC was 
0.92 (95% CI, .89–.94) (Supplementary Figure 1B) with accura
cy of 86.7% (95% CI, 83.2%–89.6%), PPA of 91.0% (95% CI, 
87.0%–93.9%), NPA of 80.2% (95% CI, 73.7%–85.4%), PPV 
of 87.4% (95% CI, 83.0%–90.8%), and NPV of 85.5% (95% 
CI, 79.4%–90.1%) given a prevalence of 60% of viral infection. 
No meaningful differences were observed for the probabilities 
in either bacterial or viral samples in the ≤7 or >7 DPSO 
groups. The scatter plot of viral and bacterial probabilities is 
shown in Figure 2A.

The aggregate expression of genes assigned to each pathogen 
type is summarized in a PCA plot (Supplementary Figure 2). 
The viral samples appear more distinct, whereas there is overlap 
between bacterial and SIRS samples. The outcome versus predict
ed probability for bacterial and viral models in the training cohort 
is displayed in the calibration plots (Supplementary Figure 3).

Biomeme HR-B/V Test Performance Compared to Procalcitonin.
Next, we aimed to compare Biomeme HR-B/V and PCT perfor
mance in the training cohort. PCT levels >0.25 ng/mL were 
used to identify bacterial infection, as per standard cutoffs 
[34]. Procalcitonin data were available for 430 of the 444 sub
jects in the training cohort (Table 2).
For PCT, the AUC for identifying bacterial infection was 0.75 
(95% CI, .69–.80), with an accuracy of 77.2% (95% CI, 
73.0%–80.9%), PPA of 55.4% (95% CI, 46.1%–64.2%), NPA 
of 84.9% (95% CI, 80.6%–88.4%), PPV of 56.4% (95% CI, 
47.0%–65.3%), and NPV of 84.4% (95% CI, 80.0%–87.9%). 
Across these metrics, the Biomeme HR-B/V test consistently 
displayed better performance. Using a test of 2 proportions, 
HR-BV performed significantly better (P < .05) than PCT in ac
curacy, PPA, and NPV metrics. Additionally, using the DeLong 
test to compare AUC values for the 430 subjects for whom both 
tests were run, the HR-B/V test performed significantly better 
than PCT (P = 2.636 × 10−6).

Technical Correlation Cohort
Biomeme HR-B/V Test Performance Compared to BioFire HR-B/V 
Test Performance. The purpose of the correlation cohort was 
to determine how closely the Biomeme HR-B/V test would per
form using 22 host response genes when compared to the 
BioFire HR-B/V test using 42 genes. The correlation cohort 

consisted of 82 subjects: 59 (72%) with viral infection and 23 
(28%) with bacterial infection. The Biomeme HR-B/V test iden
tified all 23 cases of bacterial infection correctly (PPA, 100% 
[95% CI, 85.7%–100%]) (Tables 3 and 4 and Figure 2B). 
Three viral cases were predicted to have a bacterial–viral coinfec
tion. For 59 subjects clinically predicted to be viral by the BioFire 
test, the Biomeme HR-B/V test identified 59 as viral (PPA, 100% 
[95% CI, 93.9%–100%]) and correctly excluded all 23 nonviral 
cases as nonviral (NPA, 100% [95% CI, 85.7%–100%]). 
Two-dimensional data representation using PCA showed viral 
samples as appearing more distinct and having only partial over
lay with bacterial and SIRS samples, while SIRS samples over
lapped with bacterial samples in the training cohort 
(Supplementary Figure 2). Outcome versus predicted probability 
for bacterial and viral models in the correlation cohort is dis
played in the calibration plots (Supplementary Figure 3).

COVID-19 Cohort

We next assessed how the Biomeme HR B/V test performed at 
identifying patients with SARS-CoV-2 infection, since 
SARS-CoV-2 infections were not included in the signature’s 
discovery, model training, or correlation cohorts (which were 
all enrolled prior to 2020). PCA data visualization showed 
good overlap between COVID-19 samples and viral samples 
in the training cohort (Figure 3A). When stratifying by dura
tion of symptoms, outpatients mostly presented for care during 
the acute phase, while inpatients were also seen at later stages of 
infection (Figure 3B).

The Biomeme HR-B/V test correctly identified 86 of 111 sub
jects with COVID-19 (77.5%) as having viral infection (Table 5). 
Performance was better among outpatients and for subjects with 
shorter durations of symptoms. For outpatients, viral accuracy 
was 93.3% (95% CI, 78.7%– 98.2%) for 30 subjects with ≤7 
DPSO and 88.9% (95% CI, 56.5%–98.0%) for 9 subjects with 
>7 DPSO. For inpatients, viral accuracy was 75.9% (95% CI, 
57.9%–87.8%) for 29 subjects with ≤7 DPSO and 56.0% (95% 
CI, 37.1%–73.3%) for 25 subjects with >7 DPSO.

DISCUSSION

The overlap in the clinical presentation of bacterial and viral 
infections, together with the limitations associated with 

Table 2. Performance Metrics of the Biomeme HR-B/V Bacterial and Viral Models and of Procalcitonin in the Training Cohort

Model Testing Modality Overall Accuracy, % AUC PPV, % NPV, % PPA, % NPA, %

Biomeme HR-B/V  
(n = 444)

Bacterial model 84.5 (80.8–87.5) 0.91 (.88–.94) 64.1 (56.3–71.2) 95.5 (92.4–97.3) 88.5 (81.3–93.2) 83.1 (78.7–86.7)

Viral model 86.7 (83.2–89.6) 0.92 (.89–.94) 87.4 (83.0–90.8) 85.5 (79.4–90.1) 91.0 (87.0–93.9) 80.2 (73.7–85.4)

PCT (n = 430a) PCT 77.2b (73.0–80.9) 0.75b (.69–.80) 56.4 (47.0–65.3) 84.4b (80.0–87.9) 55.4b (46.1–64.2) 84.9 (80.6–88.4)

95% confidence intervals are displayed in parentheses.

Abbreviations: AUC, area under the curve; HR-B/V, host response bacterial versus viral; NPA, negative percent agreement; NPV, negative predictive value; PCT, procalcitonin; PPA, positive 
percent agreement; PPV, positive predictive value.
aFourteen missing PCT values in the training cohort.
bSignificant differences (P < .05) observed between Biomeme HR-BV bacterial model and PCT.

6 • OFID • Iglesias-Ussel et al

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofae729#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofae729#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofae729#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofae729#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofae729#supplementary-data


pathogen-based diagnostic tests, drives inappropriate anti
bacterial use and exacerbates the problem of antimicrobial 
resistance. The newly developed Biomeme HR-B/V test 
showed excellent performance characteristics at differentiat
ing bacterial versus viral infection, similar to the prior 
BioFire HR-B/V test, and may be useful at mitigating inap
propriate antibacterial use.

Measuring the host immune response to different categories 
of pathogens provides an attractive and rapid diagnostic solu
tion. The Biomeme HR-B/V test performed well compared to 
the previously developed classifier on the BioFire technology, 
despite using considerably fewer targets (22 vs 42) [20]. The 
Biomeme HR-B/V test also showed superior performance 
when compared to PCT, both with respect to the identification 

Figure 2. Predicted probabilities for the training cohort (A) and correlation cohort (B) for the bacterial model (x-axis) and viral model (y-axis). In the correlation cohort, all 
bacterial samples were correctly predicted to have a bacterial infection. All viral samples were also correctly predicted to have a viral infection, although 4 viral samples were 
predicted to have a coinfection, falling above both viral and bacterial thresholds. Abbreviation: SIRS, systemic inflammatory response syndrome.

Table 3. Performance Metrics Versus BioFire HR-B/V Results for Subjects in the Biomeme HR-B/V Correlation Cohort (Bacterial and Viral Models)

Assay Testing Modality Overall Accuracy, % AUC PPA, % NPA, %

Biomeme HR-B/V (n = 82) Bacterial model 96.3 (89.8–98.7) 1 (1–1) 100.0 (85.7–100.0) 94.9 (86.1–98.3)

Viral model 100.0 (95.5–100.0) 1 (1–1) 100.0 (93.9–100.0) 100.0 (85.7–100.0)

BioFire HR-B/V (n = 82) Bacterial model 100 (95.5–100.0) 1 (1–1) 100.0 (85.7–100.0) 100.0 (93.9–100.0)

95% confidence intervals are displayed in parentheses.

Abbreviations: AUC, area under the curve; HR-B/V, host response bacterial versus viral; NPA, negative percent agreement; PPA, positive percent agreement.

Table 4. Confusion Matrices for Correlation Cohort Subjects Tested Using Both the Biomeme and BioFire HR-B/V Assays

Assay
Truth →

Bacterial Viral SumTest ↓

HR-BV bacterial model B 23 (100%a) 3 26

Non-B 0 56 (95%b) 56

Sum 23 59 82

BioFire B 23 (100%a) 0 24

V (non-B) 0 59 (100%b) 58

Sum 23 59 82

Only the bacterial model for the Biomeme HR-B/V test is displayed since the BioFire test did not generate a viral infection probability. Positive percent agreement (PPA) and negative percent 
agreement (NPA) percentages are displayed on the diagonals of the table.

Abbreviations: B, bacterial; HR-B/V, host response bacterial versus viral; V, viral.
aTest PPA.
bTest NPA.
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of bacterial infection and the ability to discriminate viral infec
tion from SIRS. This improved performance is likely due to the 
Biomeme HR-B/V test offering a more complex analysis of the 
patient’s underlying host immune state by reporting indepen
dent probabilities of bacterial and viral infection. This is also fa
vorable compared to some other host response approaches. For 

example, there are 2 commercially available tests measuring 
host response proteins for bacterial versus viral infection: the 
MeMed BV test and the Lumos FebriDx test. Both tests only re
port the likelihood of a bacterial infection, without providing 
independent information about viral infections, coinfections, 
or noninfectious illness (ie, bacterial vs nonbacterial models). 

Figure 3. A, Principal component analysis of the viral training and coronavirus disease 2019 (COVID-19) samples. Principal component (PC) 1 and PC2, on the x- and y-axis, 
respectively, explain 60.5% of the variance. COVID-19 samples overlay closely with the viral samples in the training cohort. B, Viral probability (p(Viral)) vs days post–symp
tom onset (DPSO) in the COVID-19 cohort. A viral threshold is established using average weighted accuracy (AWA) metrics. Eighteen DPSO values were not available in the 
COVID-19 cohort and are not displayed here.

Table 5. Performance Characteristics of the Biomeme HR-B/V Test in the Stratified Coronavirus Disease 2019 Cohort

Model DPSOa Inpatient (n = 60) 95% CI Outpatient (n = 51) 95% CI

Bacterial model DPSO ≤7 (n = 59) 93.1% (n = 29) 78.0–98.1 96.7% (n = 30) 83.3–99.4

DPSO >7 (n = 34) 68.0% (n = 25) 48.4–82.8 100.0% (n = 9) 70.1–100.0

Viral model DPSO ≤7 (n = 59) 75.9% (n = 29) 57.9–87.8 93.3% (n = 30) 78.7–98.2

DPSO >7 (n = 34) 56.0% (n = 25) 37.1–73.3 88.9% (n = 9) 56.5–98.0

Abbreviations: CI, confidence interval; DPSO, days post–symptom onset; HR-B/V, host response bacterial versus viral.
aNo DPSO data, n = 18.
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The use of 2 models (ie, bacterial vs nonbacterial and viral vs 
nonviral) provides the ability to diagnose bacterial–viral coin
fection (both positive) and to identify patients with noninfec
tious etiologies (both negative) [20]. This approach has also 
been utilized by Inflammatix, a company that is likewise devel
oping an mRNA-based test to measure the host response to in
fection [35].

The Biomeme HR-B/V assay performed well in the 
COVID-19 cohort, with better performance among outpatients 
than among inpatients. Inpatients likely had a more severe im
mune response that may share host response features similar to 
those patients with bacterial infection or SIRS [36]. This pattern 
has also been shown in patients with other severe viral infec
tions, such as influenza [37, 38]. In addition, inpatients with 
COVID-19 may have been more likely to receive treatment 
with immunomodulatory agents and were also more likely to 
be enrolled later in illness, both of which may affect assay 
performance.

A focus on the host rather than the pathogen is also useful to 
distinguish infection from colonization, as some organisms 
(human rhinovirus/enterovirus, Streptococcus pneumoniae, 
Streptococcus pyogenes) are carried in a high proportion by 
the general population. Moreover, host response tests are suited 
for emerging diseases, when pathogen-specific diagnostics are 
not yet available. Indeed, the HR-B/V test showed excellent 
performance at identifying patients with SARS-CoV-2 infec
tion as being viral in etiology, especially early in the disease 
course when symptoms are largely in response to active viral 
replication. Although host-based immunodiagnostics are not 
able to identify the pathogen, and therefore direct specific treat
ment, they could complement current pathogen-based diag
nostics. Simply identifying viral infection could reduce 
inappropriate antibacterial use, which is driving the global cri
sis of antibacterial resistance, itself associated with almost 5 
million deaths annually [39]. Moreover, host response signa
tures derived from nasal or nasopharyngeal tissues could sup
port development of a combined host and pathogen test that 
simultaneously measures the host and pathogen aspects of 
the infection.

Strengths of this study include the use of a racially and eth
nically diverse cohort and validation of our results relative to 
another host gene expression test using a different platform. 
In addition, we used expert clinical adjudication as the compar
ator method for our training cohort given the absence of a sin
gle test or composite of tests to identify etiology. Given the 
limitations in clinical adjudication, it is possible the comparator 
method was incorrect, which would tend to lower estimates of a 
test’s performance. Additionally, we did not include patients 
with immunocompromised status or who had coinfections; 
thus, performance in these cohorts cannot be extrapolated. 
Further, we excluded patients who had an “indeterminate” pri
mary diagnosis based on clinical adjudication, as we were 

comparing performance of the Biomeme HR-B/V test to per
formance on the BioFire HR-B/V, and thus including indeter
minate cases would not have provided useful information. The 
performance of the Biomeme HR-B/V assay needs to be deter
mined in future unselected clinical cohorts. Finally, approxi
mately 30% of patients in the training cohort had samples 
collected >7 DPSO, which may have affected model perfor
mance as the host response changes over time. However, mod
els trained only on the most obvious cases may struggle to 
identify patients who may be at the fringes in terms of illness 
duration, while a model that can see the full spectrum of data 
may generate a more robust algorithm that is better suited to 
classify patients in less controlled settings.

In conclusion, the Biomeme HR-B/V test is a rapid, portable, 
laboratory-based test with excellent performance at identifying 
patients with bacterial or viral infection, offering a promising 
antibiotic stewardship strategy to combat the public health 
threat of antimicrobial resistance. Our findings need to be con
firmed in future large, independent cohorts and in prospective 
studies.
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