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Abstract: The acoustic melt stream velocity field, total force, and trajectory of fluorescent parti-
cles in the plasticizing chamber were analyzed using finite element simulation to investigate the
acoustic streaming and mixing characteristics in ultrasonic plasticization micro-injection molding
(UPMIM). The fluorescence intensity of ultrasonic plasticized samples containing thermoplastic
polymer powders and fluorescent particles was used to determine the correlation between UPMIM
process parameters and melt mixing characteristics. The results confirm that the acoustic streaming
driven mixing occurs in ultrasonic plasticization and could provide similar shear stirring performance
as the screw in traditional extrusion/injection molding. It was found that ultrasonic vibrations can
cause several melt vortices to develop in the plasticizing chamber, with the melt rotating around
the center of the vortex. With increasing ultrasonic amplitude, the melt stream velocity was shown
to increase while retaining the trace, which could be altered by modulating other parameters. The
fluorescent particles are subjected to a two-order-of-magnitude stronger Stokes drag force than the
acoustic radiation force. The average fluorescence intensity was found to be adversely related to the
distance from the sonotrodes’ end surface, and fluorescence particles were more equally distributed
at higher parameter levels.

Keywords: ultrasonic plasticization; micro injection molding; acoustic streaming; melt mixing;
fluorescence intensity

1. Introduction

Micro-injection molding has become a key technology for the manufacture of micro-
and nano-devices due to its high dimensional accuracy and production efficiency [1]. As an
innovative variation of micro-injection molding technology, ultrasonic plasticization micro
injection molding (UPMIM) has emerged as a new research hotspot thanks to its advantages
of high material utilization [2] and low energy consumption [3–5]. A small amount of
plastic pellets [6,7] or powder [8,9] is dosed into the plasticizing chamber in UPMIM and
plasticized by an ultrasonic sonotrode that vibrates under a sufficient pressure. Interfacial
friction [10,11] and volumetric viscous dissipation [12] induced by high-frequency vibration
have been reported to be the principal heating mechanisms to plasticize polymers.

In several recent investigations, ultrasonic plasticizing has been shown to improve
the dispersion of polymer/montmorillonite [13], polymer/carbon nanotubes [14], poly-
mer/PE99 [15], and other composites systems [16]. Since the surface acoustic wave tech-
nique normally uses ultrasonic vibrations to produce a steady laminar flow motion [17,18],
we speculate that there may be some kind of shear flow behavior of the melt inside the
plasticizing chamber during the UPMIM process. Shear rate is a key design parameter for
traditional micro-injection molding equipment that uses a screw plasticizing unit, and is
often linked to the plasticizing rate and mixing efficiency [19]. The shear rate and extrusion
rate can be adjusted by changing the screw size [20,21], balancing the plasticizing rate
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with the energy consumption. As a screwless plasticization technology [22,23], the process
characteristics of UPMIM differ considerably from traditional micro-injection molding
techniques [24], but no relevant research was identified to reveal the shear flow behavior
during the UPMIM process. Understanding the melt flow and mixing characteristics during
the UPMIM process is critical for equipment design and process parameter optimizations.

In this work, finite element simulation and experimental methods were used to inves-
tigate the melt stream flow and mixing characteristics during polymer ultrasonic plasti-
cization and to determine whether ultrasonic vibration induced acoustic streaming could
provide the same performance as the screw in traditional extrusion and injection mold-
ing. The influence of process parameters on the acoustic pressure, melt stream velocity
field, total force, and trajectory of the fluorescent particle were determined by solving the
first-order frequency domain acoustic field and second-order time domain flow field using
second-order perturbation theory. The mixing characteristics of UPMIM were characterized
using the fluorescence intensity of the plasticized samples. The fluorescence intensity
distribution was obtained using an optical microscope, and the relationship between the
process parameters and the mixing characteristics was established using a single-factor
experimental approach.

2. Simulation
2.1. Mathematical Modeling
2.1.1. Thermodynamic Equations

The independent thermodynamic variables in a continuous flow medium are temper-
ature T and pressure p. In the first law of thermodynamics, entropy per unit mass s and
density per unit mass ρ are independent variables. The internal energy per unit mass ε is
calculated using Equation (1).

dε = Tds− pd
(

1
ρ

)
= Tds +

p
ρ2 dρ (1)

The relationship between dε and dT and dp can be established by the standard Legen-
dre transformation, as shown in Equation (2).

ρdε =
(
cpρ−αpρ

)
dT +

(
kTp− αpT

)
dp (2)

where cp is the isobaric heat capacity per unit mass; αp is the isobaric thermal expansion
coefficient; and kT is the isothermal compression coefficient.

2.1.2. Constitutive Equation

The melt flow characteristic is described using the Carreau generalized non-Newtonian
fluid model. The melt viscosity µ is shear rate dependent, exhibiting Newtonian fluid
behavior at low shear rates and power-law fluid behavior at high shear rates. The viscosity
model is shown in Equation (3).

µ
( .
γ
)
=µinf +

(
µ0 − µinf

)
(1 + (λ

.
γ)

2
)

n−1
2 (3)

where µ0, µinf, λ, and n are material coefficients.
.
γ is the shear rate, 1/s; µ0 is the viscosity

at zero shear rate, Pa s; µinf is the viscosity at infinite shear rate, Pa s; λ is the relaxation
time, s; and n is the power law index.

2.1.3. First Order Thermo-Viscosonic Equation

According to the standard first-order perturbation theory, the field g can be expressed
as g = g0 + g1, where g0 is the value of the zero-order state and g1 is the acoustic pertur-
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bation [25,26]. If the acoustic perturbation g1 oscillates at the angular frequency ω of the
acoustic excitation, the field g can be represented as Equations (4) and (5).

g1(r, t) = g1(r)e
−iωt (4)

∂tg1 = −iωg1 (5)

The first-order thermoviscous acoustic equations for mass, momentum, and energy
through frequency domain transformation are shown as Equations (6)–(8).

− iωαpT1 + iωkTp1 = ∇v1 (6)

− iωρ0v1 = ∇(τ1 − p11) (7)

− iωρ0cpT1 + iωαpT0p1 = kth
0 ∇2T1 (8)

where 1 is the unit tensor.

2.1.4. Second Order Thermo-Viscosonic Equation

According to the second-order perturbation theory, the field g can be expressed as
g = g0 + g1 + g2, with g2 containing the oscillation term and the time constant term. Assum-
ing second-order field time averaging, the second-order thermal viscous acoustic equations
for mass, momentum, and energy are represented as Equations (9)–(11).

∇[ρ0v2 + 〈ρ0v1〉]= 0 (9)

∇[τ2 − p21− ρ0〈v1v2〉]= 0 (10)

∇
[
kth

0 ∇T2 +
〈

kth
1 ∇T1

〉
+ 〈p1τ1〉 −

(
1− αpT0

)
〈p1v1〉 − ρ0cp〈T1v1〉= 0 (11)

The transition between laminar and turbulent flow is represented by Reynolds number
Re, which can be calculated using Equation (12).

Re = ρvLd/µ (12)

where vL, ρ, µ are the flow velocity (m/s), density (kg/m3), and viscosity (Pa s) of the melt,
respectively. The characteristic length d (m) of a circular pipe is the diameter. According to
the calculation, Re is substantially lower than the transition value of 2300, indicating that
the melt flow state in UPMIM process is laminar, which fits the model setting conditions.

2.1.5. Total Force of Fluorescent Particles

Due to the high viscosity of the polymer melt and the micron size of the fluorescent
particles, the gravity effect on the fluorescent particles was ignored. The total force of a
single suspended particle can be determined by solving the second-order acoustic fields.
The total force is comprised of the acoustic radiation force Frad generated by the acoustic
wave on the particle and the Stokes drag force Fdrag produced by the acoustic streaming
flow. When migrating at velocity vp in a fluid with flow velocity vm, a spherical particle with
radius a, density ρp, and compression property kp is subjected to the acoustic radiation force
Frad and Stokes drag force Fdrag, which may be estimated using Equations (13) and (14).

Frad = −πa3
[

2k0

3
Re[ f1 ∗ p1 ∗ ∇p1]−ρ0Re[f2 ∗ v ∗ .∇v]] (13)

Fdrag = 6πηa
(
vm − vp

)
(14)

where k0 is the melt compressibility and the pre-factors f1 and f2 are given by

f1

(
k̃
)
= 1− k̃, with k̃ =

kp

k0
(15)
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f2

(
ρ̃, δ̃
)
=

2
[
1− Γ

(
δ̃
)]

(ρ̃− 1)

2ρ̃ + 1− 3Γ
(

δ̃
) , with ρ̃ =

ρp

ρ0
(16)

Γ
(

δ̃
)
= −3

2

[
1 + i

(
1 + δ̃

)]
δ̃ (17)

2.2. Numerical Modeling

The numerical modeling was realized in a commercial finite element simulation
software COMSOL Multiphysics. Assuming that the polymer is completely plasticized,
the computational domain of the numerical model is defined as a rectangular chamber,
with a motion boundary on the upper side and to introduce ultrasonic vibration and a
wall boundary on the other sides, as shown in Figure 1a. The origin is in the upper left
corner of the plasticizing chamber, as illustrated in Figure 1b. The motion boundary is
defined as a sinusoidal velocity of δ = Asin (ωx + ϕ) in the vertical direction, and both
the motion boundary and the wall have no-slip conditions. The melt width is the same
as the diameter of the ultrasonic sonotrode, which is 10 mm. The melt height varies from
2 to 10 mm with a 2 mm step and is related to the material volume and injection time.
The trajectory of the fluorescent particles is realized by the particle tracing for fluid flow
interface. Quadrilateral and triangular elements were used to mesh the computational
domain. Three-layer quadrilateral elements were used to refine the mesh near the motion
boundary and the wall, while the triangular elements were used to mesh the rest zones
with a curvature factor of 0.3 and a maximum mesh growth rate of 1.3.
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Figure 1. Numerical model: (a) boundary conditions; (b) finite element mesh.

2.3. Calculation Scheme

Frequency domain compile equations were used to solve the first-order acoustic field,
the stationary compile equations were used to solve the second-order acoustic streaming,
and the time dependent compile equations was used to solve particle tracing. A single-
factor experimental was used to investigate the acoustic pressure, melt stream velocity
field, and total force and trajectory of fluorescent particles in the plasticizing chamber.
The ultrasonic amplitude was varied from 20 to 120 µm with a 20 µm increment, while
the ultrasonic frequency, the melt height, and the distribution of fluorescent particles
were kept constant at 20 kHz, 6 mm, and uniform, respectively. In addition, ultrasonic
amplitudes refer to the experimental conditions used in the numerical simulation as well
for comparison with the experimental results.

3. Experimentation
3.1. Material Properties

Polypropylene (Sinopec, PP-T30S, Beijing, China) powder was used in the fluorescence
experiment, and its properties are listed in Table 1 [27,28]. Barium magnesium aluminate
particles were used as the fluorescent agent and its properties are listed in Table 2.
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Table 1. Material properties of polypropylene.

Density Acoustic Velocity Melt Point * µ0 ** µinf Power Index Particle Size

0.9 g/cm3 1623 m/s 170 ◦C 2000 pa s [27] 10 pa s [28] 0.38 200 mesh

* µ0 is the viscosity at zero shear rate. ** µinf is the viscosity at infinite shear rate.

Table 2. Material properties of barium magnesium aluminate.

Formula Density Particle Size Excitation Peaks Emission Peak

BaMg2Al16O27:Eu2+ 5.1 g/cm3 200 mesh 395 nm 450 nm

3.2. Methodology

In-house developed UPMIM equipment was used for the ultrasonic plasticization
experiments [29]. As shown in Figure 2a, the fluorescent powder was prepared by mixing
polypropylene (94% vol) with barium magnesium aluminate (6% vol) for 30 min under
oscillating conditions. Next, 1.0 mL of PP powder was placed and compressed in the
plasticizing chamber (NAK80 mold steel, 10 mm diameter, and 0–30 mm adjustable height),
followed by 0.2 mL of fluorescent powder evenly placed and compressed on top. The
ultrasonic vibration energy was subsequently introduced into the plasticizing chamber to
fabricate plasticized fluorescent specimens, with an applied ultrasonic amplitude ranging
from 56 to 72 µm. The plasticizing pressure, ultrasonic vibration time, holding pressure and
holding time were all kept constant at 20 Mpa, 6 s, 20 Mpa, 6 s, respectively. After cutting
and grinding, the fluorescence intensity distribution of the fluorescent specimens were
analyzed using an optical microscope (VHX-5000, KEYENCE, Osaka, Japan) to investigate
the acoustic streaming driven mixing characteristics during ultrasonic plasticization. ImageJ
was used to quantify the fluorescence intensity by the gray value of the picture. In more
detail, the fluorescence image was cut into pieces in every 2 mm from the top to the bottom.
A single channel of the image was extracted and the format was converted to 8-bit grayscale.
The threshold function was used to set the grayscale ranging from 5 to 255 to select all
fluorescent areas, as illustrated in Figure 2b.
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Figure 2. Specimen preparation and characterization. (a) Experimental procedures. (b) Segmentation
and characterization of the fluorescence intensity.
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4. Results and Discussions
4.1. Acoustic Streaming Characteristics

Figure 3 shows the melt stream velocity distribution in the plasticizing chamber under
the control parameters. The ultrasonic vibration induced melt disturbance, resulting in the
formation of four vortices in the plasticizing chamber (i.e., two small flattened vortices near
the end surface of the ultrasonic sonotrode, and two larger and nearly circular vortices near
the side wall, all symmetrical along the center axis. Two dashed reference lines were drawn
in the center of the larger vortex to quantify the effect of position on the melt stream velocity,
as indicated in Figure 3a. The relationship between stream velocity and the position is
shown in Figure 3b,c. The melt stream velocity was symmetrical along the central axis.
Three minimal stream velocity locations arose in the radial direction: the left main vortex
center, the center axis, and the right main vortex center, as shown in Figure 3b. With a
maximum flow velocity of 6.21 mm/s, the melt flows around the vortex’s center, resulting
in a rather high stream velocity around the vortex’s center, as shown in Figure 3c.
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Figure 3. Melt stream velocity distribution in (a) the plasticizing chamber, (b) radial and (c) axial
directions along the dash lines (ultrasonic frequency, 20 kHz; ultrasonic amplitude, 80 µm; melt
height, 6 mm; fluorescent particles distribution, uniform).

The fluorescent particles of barium magnesium aluminate were seeded uniformly in
the model at 0.5 mm intervals to investigate the total force that the acoustic streaming
generated during ultrasonic plasticizing, as illustrated in Figure 4a. The total force of the
fluorescent particles comprises the acoustic radiation force and the Stokes drag force. The
acoustic radiation force can be related to the acoustic pressure difference along the axial
direction, and the Stokes drag force is related to the velocity difference between the melt
stream and the fluorescent particles. The Stokes drag force distribution under control
parameters is comparable to the stream velocity, with a maximum value of 3.05 × 10−4 N
near the vortex, as indicated in Figure 4b. The acoustic radiation force is positively as-
sociated with the distance from the top end, with a maximum value of 1.52 × 10−6 N
near the bottom end, as demonstrated in Figure 4c. The Stokes drag force is two orders of
magnitude of the acoustic radiation force. Hence, the total force is approximately equal to
the Stokes drag force.
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Figure 5 illustrates the trajectory of fluorescent particles during the ultrasonic plasticiz-
ing process. Before the sonotrode vibration, fluorescent particles are evenly distributed in
the plasticizing chamber. The fluorescence particles orbit the vortex center as the sonotrode
begins to vibrate, and the fluorescence particle can reach a maximum speed of more than
5 mm/s between the two vortices, while it slows down near the center axis and bottom end.
The fluorescent particles migrate from the high stream velocity area to the low stream veloc-
ity area as the ultrasonic plasticizing time increases, resulting in a steady decrease in Stokes
drag force. The velocity of the fluorescent particles decreases as the resistance to motion of
the fluorescent particles eventually surpasses the driving force at low stream velocity. The
velocity of fluorescent particles is negatively correlated with the current area’s staying time
because the number of fluorescent particles tends to be adversely associated with the area
velocity. Fluorescent particles accumulated significantly in low stream velocity areas such
as the center axis when the ultrasonic plasticizing lasts for 5 s.
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4.2. Acoustic Streaming Driven Mixing

Fluorescent particles were evenly seeded in an area with a height of 2 mm in the
upper section of the plasticizing chamber to investigate the acoustic streaming driven
mixing effect, as shown in Figure 6a. The fluorescent particle’s trajectory in numerical
simulation at various ultrasonic action time applying the ultrasonic amplitudes of 56, 64,
and 72 µm, respectively, as illustrated in Figure 6b. The maximum velocity of the particles
increased with increasing ultrasonic amplitude, and the initial acceleration of the particle
can be finished in 2 s. The maximum velocity of the particles increased from 4.87 mm/s to
5.95 mm/s when the amplitude increased from 56 µm to 72 µm. The trace of the particle
was identical at each ultrasonic amplitude, and all of them rotated around the vortex center.
The two small flattened vortices near the end surface of the ultrasonic sonotrode and two
larger and nearly circular vortices near the side wall work together to achieve particle
mixing. Because the ultrasonic amplitude and action time are proportional to the trace
length, particle diffusion rates could be improved by increasing the ultrasonic amplitude
and action time.

Figure 7 shows the influence of the ultrasonic amplitude on the gray value of the
ultrasonic plasticized fluorescent specimens in the experimentation. According to our
previous investigation [10–12], the heat generation rate during ultrasonic plasticizing is
significantly influenced by the ultrasonic amplitude. The higher the ultrasonic amplitude,
the faster the heat generation rate. Since the heat generation among the particle interfaces
lasts only several tens of milliseconds due to the interfacial friction heating, the heat
generation with increased ultrasonic amplitude are mainly attributed to the volumetric
viscous heating. The difference in the mean gray value of the specimen was the largest
when the ultrasonic amplitude was 56 µm. This may be related to the lower heat generation
rate during ultrasonic plasticizing, and the melting of the materials is limited, resulting
in a poor fluorescent powder diffusion. The difference in the mean gray values became
smaller when the amplitude was increased to 72 µm. The polymer heat generation rate
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is faster at higher amplitudes, leading to an accelerated ultrasonic plasticizing and more
melt generation. This further leads to a wider spectrum of fluorescent powder motion
along with the melt and a prolonged acoustic streaming driven mixing. Moreover, the
improved acoustic streaming driven mixing at increased ultrasonic amplitudes can also be
validated by the standard deviation of the mean gray value. The standard deviation of the
mean gray value fell from 37.1 to 27.7 when the ultrasonic amplitude was increased from
56 µm to 72 µm. This further verified the numerical simulation results that the fluorescent
particles travel faster and further with increased ultrasonic amplitudes, as demonstrated in
Figure 6b. Therefore, both the finite element simulation and experimental data illustrate the
positive correlation between the diffusion performance of the fluorescent powder and the
ultrasonic amplitude. Furthermore, it implies that there is indeed acoustic driven mixing
during ultrasonic plasticizing, which could be a comparable but more efficient and energy
saving mixing concept than traditional screw-based shear stirring. It should be noted that
specimens plasticized at higher amplitudes than 72 µm were not available with the present
experimental setup because it may cause cracking of the ultrasonic sonotrode and shift of
the resonant frequency.
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4.3. Analysis of the Influence Mechanism

Figures 8–11 illustrate the influence of the ultrasonic amplitude on the acoustic melt
streaming velocity distribution, the total force on fluorescent particles, and the trajectory of
fluorescent particles when the ultrasonic frequency was 20 kHz, respectively. The maxi-
mum acoustic streaming velocity increased from 0.39 to 14.11 mm/s, when the ultrasonic
amplitude was increased from 20 to 120 µm, as indicated in Figure 8. The ultrasonic am-
plitude indicated no significant effect on the melt traces, which are mainly affected by the
wavelength and shape in the plasticizing chamber. Under varying ultrasonic amplitudes,
the melt vortex centers in the plasticizing chamber all appeared at the same locations. With
increasing ultrasonic amplitude, the momentum of the plasticized melt increased, as did the
acoustic streaming velocity. Hence, the acoustic melt streaming velocity can be increased
with increasing ultrasonic amplitude, as illustrated in Figure 9, where a series line graph
was acquired by drawing a reference line via the center of the primary vortex in both radial
and axial directions.
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As discussed in Section 4.1, the total force is approximately equal to the Stokes drag
force, which is linearly related to the velocity difference between the melt and the fluo-
rescent particles, according to Equation (14). The melt stream velocity can be increased
exponentially with increasing ultrasonic amplitude, as demonstrated in Figure 8. Therefore,
it can be drawn that the total force can also be changed exponentially with increasing
ultrasonic amplitude. This is indeed the case, as we found in the numerical simulation. The
maximum value of the total force increased from 1.91 × 10−5 N to 6.86 × 10−5 N while
maintaining the distribution pattern when the ultrasonic amplitude increased from 20 µm
to 120 µm, as illustrated in Figure 10.

Another factor that can be related to the total force distribution of the fluorescent
particles is viscous heating induced by ultrasonic excitation. As the ultrasonic vibration
energy increases with increasing amplitude, the viscosity of the viscoelastic melt blend
decreases due to the energy dissipation and corresponding viscous heating. Normally,
the decrement in viscosity can reduce the Stokes drag force according to Equation (14).
However, both the acoustic driven vortices and the reduced viscosity could facilitate the
melt stream flow. That is, the acoustic driven vortex flow has more significant influence on
the Stokes force of the fluorescent particles than that of the viscous heating induced viscosity
reduction. Therefore, the total force of the fluorescent particles increases exponentially with
increasing amplitudes.

The trajectory of fluorescent particles under various ultrasonic amplitudes is shown
in Figure 11. Under lower ultrasonic amplitudes, the fluorescent particles move at slower
speeds and travel shorter distances along the traces. The influence of ultrasonic amplitude
on the trace is negligible, and it appears to be approximately squared with the fluorescent
particle motion velocity. When compared to Figure 6, it is clear that raising the ultrasonic
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time and amplitude improves the fluorescent particle travel distance while maintaining the
traces, leading to an enhanced mixing performance.

5. Conclusions

Shear flow behavior during the plasticization process has been the research focus of
the design of an injection molding machine. The lack of relevant research has restricted
the development of ultrasonic plasticization microinjection molding (UPMIM). In this
work, numerical simulations were conducted in COMSOL Multiphysics to investigate the
polymer melt stream flow and mixing characteristics in UPMIM. The acoustic pressure
distribution, melt stream velocity field, total force, and trajectory of fluorescent particles in
the plasticizing chamber were analyzed to uncover the acoustic driven mixing mechanism
and possible shear stirring effect in UPMIM. The fluorescence intensity of ultrasonic plasti-
cized samples containing thermoplastic polymer powders and fluorescent particles was
used to determine the correlation between UPMIM process parameters and melt mixing
characteristics. It was determined that the acoustic streaming driven mixing effect does
occur in ultrasonic plasticizing, and could provide similar shear stirring performance as
the screw in traditional extrusion/injection molding. Several melt vortices in the plasti-
cizing chamber can be formed due to the ultrasonic vibration. With increasing ultrasonic
amplitude, the melt stream velocity was shown to increase while retaining the trace, which
could be altered by modulating other parameters. The fluorescent particles are subjected
to a two-order-of-magnitude stronger Stokes drag force than the acoustic radiation force.
The average fluorescence intensity was found to be adversely related to the distance from
the end surface of the ultrasonic sonotrode, and fluorescence particles were more equally
distributed at higher parameter levels.
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