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Abstract Using several longitudinal datasets describing putative factors affecting influenza

incidence and clinical data on the disease and health status of over 150 million human subjects

observed over a decade, we investigated the source and the mechanistic triggers of influenza

epidemics. We conclude that the initiation of a pan-continental influenza wave emerges from the

simultaneous realization of a complex set of conditions. The strongest predictor groups are as

follows, ranked by importance: (1) the host population’s socio- and ethno-demographic properties;

(2) weather variables pertaining to specific humidity, temperature, and solar radiation; (3) the virus’

antigenic drift over time; (4) the host population’eÔs land-based travel habits, and; (5) recent

spatio-temporal dynamics, as reflected in the influenza wave auto-correlation. The models we infer

are demonstrably predictive (area under the Receiver Operating Characteristic curve 80%) when

tested with out-of-sample data, opening the door to the potential formulation of new population-

level intervention and mitigation policies.

DOI: https://doi.org/10.7554/eLife.30756.001

Introduction
Seasonal influenza is a serious threat to public health, claiming tens of thousands of lives every year.

A large number of past studies have focused on identifying the likely factors responsible for initiating

each seasonal disease wave. Typically, each such study focused on one or a few hypothetical factors.

Our study aimed at an integrative, joint analysis of numerous suggested disease triggers, comparing

their relative importance and possible cooperation in triggering pan-US waves of seasonal influenza

infection. The goal of this study was to identify the most informative combinations of statistical pre-

dictors associated with the initiation of pan-US influenza infection waves.

Recent computational studies of influenza:
Computational study of the dynamics and factors influencing infectious disease spread began with

compartmental models, such as the Susceptible-Infected-Resistant (SIR) model, which traces its ori-

gins to the beginning of the last century (Kermack and McKendrick, 1927). Initially a purely theoret-

ical tool, these SIR-style models were subsequently enhanced with population and geographic data,

allowing their application to specific cities and the distances between them (Keeling and Rohani,

2002). For instance, one approach, termed ‘gravity wave’ modeling, used geographic, short- and
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long-range, work-related human movement and demographic data to formulate gravity potentials

between US counties in order to infer the dynamics of infection spread (Viboud et al., 2006).

Some studies have focused on one specific factor affecting infection, such as air travel, to simulate

the spread of influenza (Colizza et al., 2006); other studies used SIR models, generalized for a col-

lection of interconnected geographic areas, spatial-network or patch models, to model a number of

common infections, including influenza, measles, and foot-and-mouth disease (Riley, 2007).

More ambitious network model approaches have simulated the global transmission of infectious

disease using high-resolution, worldwide population data and the locations of International Air

Transport Association (IATA)-indexed airports (Balcan et al., 2009). Similar to (Viboud et al., 2006),

the authors of the study computed the global infection-pre-disposing ‘gravity field’ over the network

of international airports. This network-based approach was subsequently developed further

(Balcan and Vespignani, 2011) through the modeling of ‘phase transition’–that is the chain-reaction

switch of geographic infection status–in complex networks, utilizing approaches introduced in theo-

retical physics.

Another layer of sophistication was achieved by incorporating rich historical records. For example,

Eggo et al. (Eggo et al., 2011) modeled the Spanish influenza epidemic of 1918–1919, using mortal-

ity documents from both the UK and the US, explicitly accounting for the size and distances between

cities. In the same spirit, Brockmann and Helbing (Brockmann and Helbing, 2013) represented

infection as diffusion on a complex network, estimating arrival times for infection across the globe.

Following the formulation of the hypothesis that absolute humidity modulates influenza survival

and transmission (Shaman and Kohn, 2009), researchers began incorporating climate variables into

SIR-like models (Chowell et al., 2012). More recent dynamic models have incorporated a probabilis-

tic description of influenza infection’s spatial transitions in space and time, accounting for selected

demographic confounders (Gog et al., 2014) and (Charu et al., 2017).

eLife digest Influenza – or ‘the flu’ – is a contagious disease which sweeps across the globe like

clockwork, claiming tens of thousands of lives. This is known as ‘seasonal flu’.

Many scientists have tried to identify the factors that spark these yearly outbreaks. Some past

studies have found that seasonal flu occurs when air that is normally humid turns dry, suggesting

weather patterns play an important part. Other research has shown that air travel contributes to the

flu spreading across the world. However, these studies typically focus on just one or two factors on

their own. It is still not clear how exactly these factors combine to drive outbreaks, and then sustain

the wave of infection.

To address this, Chattopadhyay et al. analyze the medical histories of 150 million American

people over a decade, combining this information with large datasets about the different factors

that trigger flu outbreaks. This includes detailed data about air travel and weather patterns, as well

as census data that describe features of the population. Patterns of movement are also examined,

for example by processing billions of Twitter messages “tagged” with a location. Chattopadhyay

et al. used all of these datasets to model outbreaks of the flu in the United States, and see which

factors play the biggest role.

It turns out that yearly outbreaks of seasonal flu are a result of a combination of elements. Some

factors interact to help trigger the start of the wave, like humid weather in a highly populated area

with nearby airports. Other factors, such how people move, encourage the spread of the infection.

Finally, certain features of the population, for example how closely knitted a community is, make

specific areas of the country more susceptible to the arrival of the disease. Overall, some of the

most important elements of the model relate to the characteristics of the populations, the weather,

the type of virus, and the number of short-distance journeys (rather than air travel).

Understanding how and why outbreaks occur can help policy-makers design strategies that

reduce the spread and impact of seasonal flu, which could potentially save thousands of lives.

Ultimately, the model developed by Chattopadhyay et al. could be used to test whether these

policies would work before they are implemented in the real world.

DOI: https://doi.org/10.7554/eLife.30756.002
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In this study, rather than following the SIR-style modeling tradition, we used statistical epidemiol-

ogy- and econometric-like approaches, in addition to a causality-network method presented here for

the first time. There are some prior studies that are close to ours in spirit (but not in details). For

example, (Barreca and Shimshack, 2012) used historical US influenza mortality data (1973–2002) in

conjunction with collinear humidity and temperature records to establish county-level statistical asso-

ciations between variables in the datasets. They concluded that absolute humidity was ‘an especially

critical determinant of observed human influenza mortality, even after controlling for temperature.’

Another study, focusing on historical influenza records in the Netherlands, (te Beest et al., 2013)

used the number of weekly influenza-like patient visits (transformed into an estimated rate of infec-

tion) as a response variable in a regression analysis of climate data. They concluded that the bulk of

explained variation (57%) was attributed to the depletion of susceptible hosts during the disease

season and non-weather-related ‘between-season effects,’ with only 3% explained by absolute

humidity, represented as a continuous predictor variable. Additionally, this study observed that

school holidays did not have a statistically significant effect on influenza transmission.

As all causality detection methods come with dissimilar limitations and are imperfect in unique

ways, we designed our study intentionally to attack the same target problem using three different

statistical approaches: Approach 1: A non-parametric Granger analysis (Granger, 1980) focusing on

infection flows’ directionalities across the US and whether influenza propagates via long- vs. short-

distance travel (we run analysis across all pairs of air- and land-travel county neighbors, respectively).

Approach 2: A mixed-effect Poisson regression (Hedeker and Gibbons, 2006) explicitly accounting

for the auto-correlation of infection waves in time and space, along with the full set of socioeco-

nomic, climate, and geographic predictors. Approach 3: A county-matching, non-parametric analysis

to identify the minimum predictive set of factors that distinguish those counties associated with the

onset of the influenza season (Morgan and Winship, 2015).

Our study became possible through access to several, very large longitudinal datasets: (1) a nine-

year collection of insurance records capturing the dynamics of influenza-like illnesses (ILIs) in the

United States (Truven MarketScan database, see Materials and methods); (2) temporally collinear,

high-resolution weather measurements over every US county; (3) detailed air travel (The United

States Bureau of Transportation Statistics, 2010) and geographic proximity data (The United

States Census, 2016) showing connectivity between US counties; (4) billions of geo-located Twitter

messages reflecting long- and short-distance human movement patterns, and; (5) US census data

accounting for US county and county-equivalent population distribution, demographic, and socio-

economic properties (HRSA, 2016). An explicit comparison of the ILI data in the insurance claims to

the influenza records provided by the Center for Disease Control and Prevention (CDC, 2016)

showed that the two sources agree well (� ¼ 0:91; p ¼ 3:5� 10
�201), with insurance claims providing

higher data resolution, see Figure 1—figure supplement 1. Curiously, the relationship between the

two sources of ILI observations is not linear: We attribute this to the lower resolution of the CDC

data. These three types of analysis produce congruent–albeit not identical–results.

Results
The logical flow of our analysis is as follows: (1) We first show that our definition of ILIs corresponds

well with CDC data, and that our causality coefficients, defined in Approach 1, have similar meanings

to coefficients in the regression analysis; (2) We then explain the outcomes of the analysis according

to Approach 1; (3) We then analyze the importance of putative casual factors, Figure 1, as applied

to an initiation of influenza season, Figure 2; (4) In Approach 2, we pay special attention to the rela-

tive importance of short- and long-distance travel in influenza propagation, Figure 4; (5) We further

test the best regression model in terms of predictive accuracy, Figure 5, using disjointed data parts

for training and testing, and; (6) We culminate our analysis with a county-matching analysis, Figure 6.

Approach 1: Causality streamlines from non-parametric granger
analysis
Our analysis of health insurance claims covers nine years of influenza cycles (2003 to 2011, inclusively),

see Figure 2. We visualized weekly, county-level prevalence as a movie (see Supplement);

Figure 2A–H show a few relevant weekly snapshots from different years. The plates in Figure 2A–H,

and especially the movie, clearly show that seasonal influenza cycles initiate in the South/
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Figure 1. Putative determinants of seasonal influenza onset in the continental US and Poisson mixed-effect regression analysis (Approach 2). Plate A

shows the significant variables along with their computed influence coefficients from the mixed-effect Poisson regression analysis (the best model

chosen from 126 different regression equations with different variable combinations). The statistically significant estimates of fixed effects are grouped

into several classes: climate variables, economic and demographic variables, auto-regression variables, variables related to travel, and those related to

antigenic diversity (see the last entry in Table 5 for the detailed regression equation used. The complete list of all models considered is given in Table

S-D7). The fixed-effect regression coefficients plotted in Plate A are shown on a logarithmic scale, meaning that the absolute magnitude of predictor-

specific effect is obtained by exponentiating the parameter value. A negative coefficient for a predictor variable suggests that the influenza rate falls as

this factor increases, while a positive coefficient predicts a growing rate of infection as the parameter value grows. The integrated influence of

Figure 1 continued on next page
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Southeastern US and sweep the country from south to north. This pattern is repeated, with some

variation, each season.

Figure 3G shows the country-wide propagation dynamics as represented by our computed cau-

sality streamlines. The alignment of causality flow vectors into long, continuous streamlines suggests

a stable propagation mechanism across the country; the probability of a long sequence of summary

movement vectors accidentally matching in the direction by mere chance is vanishingly small

(p<10�16 for longer streamlines).

Do epidemics originate from the same counties season after season? To answer this question, we

follow ‘causality streamlines’ back to their source county. Informally, influenza onset in these source

counties has little or no causal dependency on their neighbors. That is, their epidemic states are

seemingly caused by factors outside of disease prevalence in other counties. Figure 2K presents the

county-specific likelihood of streamline initiation across our nine years of data. To verify the near-

shores position of these source counties is not a mere manifestation of a boundary effect of shore

counties (no neighbors at the side of large water body), we carried out identical causality analyses

with two different infections, specifically choosing diseases less likely to share etiologies with influ-

enza: HIV and Escherichia coli. The results for both HIV and Escherichia coli infections are shown in

Figure 3J and K, which exhibit flow patterns very different from those obtained for influenza. These

streamlines almost never originate from the coasts, thus reducing the likelihood that the pattern

observed for influenza is a geo-spatial boundary effect. Combined with the exceedingly low proba-

bility ( ~ 10�185) of chance inference for the streamlines, this strongly supports our conclusion that the

epidemics are of coastal origin.

We directly validated our conclusion that influenza waves tend to start in the South by identifying

counties which seem to trigger the epidemic. We computed a ‘trigger period’ of five to six weeks

Figure 1 continued

individual predictors, under this model, is additive with respect to the county-specific rate of infection. For example, a coefficient of �0:6 for parameter

AVG_PRESS_mean tells us that the average atmospheric pressure has a negative association with the influenza rate. As the mean atmospheric pressure

for the county grows, the probability that the county would participate in an infection initiation wave falls. As expð�0:6Þ ¼ 0:54, the rate of infection

drops by 46% when atmospheric pressure increases by one unit of zero-centered and standard-deviation-normalized atmospheric pressure. Similarly, an

increase in the share of a white Hispanic population predicts an increase in influenza rate: A coefficient of 1.3 translates into a expð1:3Þ � 100%�

100% ¼ 267% rate increase, possibly, because of the higher social network connectivity associated with this segment of population. Plates B - I

enumerate the average spatial distribution of a few key significant factors considered in Poisson regression: (B) average temperature; (C) average

maximum specific humidity; (D) average wind velocity in miles per hour; (E) average solar flux; (F) logarithm of population density (people per square

mile); (G) total precipitation; (H) income, and; (I) percent of poor as deviations about the country average. Plates J-M show the strong dependence

between our estimated antigenic diversity (normalized, see Definition in text) corresponding to the HA, NA, M1, and M2 viral proteins, and the

cumulative fraction of the inoculated population (normalized between 0 and 1), where both sets of variables are geo-spatially and temporally stratified.

Pearson’s correlation tests shown in Plates J-M were performed under null hypothesis that there the two quantities (plotted along axes X and Y) are

statistically independent (H0 : � ¼ 0).

DOI: https://doi.org/10.7554/eLife.30756.003

The following figure supplements are available for figure 1:

Figure supplement 1. Logical flow and cross-corroboration of conclusions.

DOI: https://doi.org/10.7554/eLife.30756.004

Figure supplement 2. Significant influencing variables obtained with mixed effect regression with different models as tabulated in Table 1 of main text

(three more models with DIC larger than that of the best model shown in Figure 1 plate A).

DOI: https://doi.org/10.7554/eLife.30756.005

Figure supplement 3. Additional Cases: Significant influencing variables obtained with mixed effect regression with different models as tabulated in

Table 1 of main text (three more models with DIC larger than that of the best model shown in Figure 1 plate A).

DOI: https://doi.org/10.7554/eLife.30756.006

Figure supplement 4. Violin plots for the coefficients inferred for variables that turn out to be significant in the best model, computed considering the

complete set of models we investigated.

DOI: https://doi.org/10.7554/eLife.30756.007

Figure supplement 5. Spatial variation in the probability of patient visits corresponding to any ICD9-CM code (plate on left), and for diagnoses

corresponding to influenza-like diseases (plate on right).

DOI: https://doi.org/10.7554/eLife.30756.008

Figure supplement 6. Informativeness of model vs model complexity as related to the number of terms in the regression equation.

DOI: https://doi.org/10.7554/eLife.30756.009
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for each season, defined as the period immediately preceding an exponential increase in influenza

dispersion. To calculate this weekly dispersion, we treated each county as a node in an undirected

graph, each with an edge connecting two geographically adjacent counties–only if they had both

reported at least one influenza case in the specified week. We defined dispersion as the size of the

largest, connected component in this undirected graph. Thus, a trigger period describes the period

in which the size of the giant component of the infection graph rises above 250 counties from being

under 100 as shown in Figure 2I, and then proceeds to the seasonal peak. Figure 2J presents the

likelihood of a county being part of this largest, connected component during the trigger period. In

the second approach, we followed causality streamlines back to their source county. Figure 2K

presents the county-specific likelihood of streamline initiation across nine years.

These approaches produced qualitatively similar results (Figure 2J and K). While epidemics seem

to start in many places around the country (see the origins of streamlines in Figure 3J and I), they

successfully gain traction near large bodies of water (as evidenced by the most likely places of epi-

demic onset, see Figure 2J and K)). Otherwise, they fizzle out before triggering an actual epidemic

cycle (see Figure 2J). Seasonal initiation is neither spatially uniform nor simply a reflection of county-

specific population density.

Our analysis of the Twitter movement matrix indicates that people most frequently travel

between neighboring counties, preferentially towards higher-population-density areas, which shows

that the maximum-probability movement patterns follow the local gradient of increasing population

density (see Figure 4—figure supplement 1). In contrast, the geo-spatially-averaged movement

vectors for each county reveal global flows in the movement patterns (see Figure 3H, along with

Methods for the calculation of spatial averages).

Figure 3H–I suggest that average movement patterns largely agree with the influenza stream-

lines: Both patterns, especially in the South/Southeast of the country, are associated with flow point-

ing away from large bodies of water.

In addition to looking at the direction of short-range travel, we used our non-parametric Granger

analysis to investigate the comparative strength of short- vs. long-range influenza propagation. In

the first case, we considered the neighborhood map shown in Figure 4A (for a detailed definition of

”neighbors,’ see Materials and methods), and the in the second case, we considered associations

between major, airport-bearing counties (see Figure 4B). We then plotted the distribution of the

maximum pairwise coefficient of causality, where the maximization is carried out by fixing the source

and the target and varying the delay in weeks, after which we attempt to predict the target stream.

Conclusions associated with Approach 1: The inferred causality streamlines computed from the

infection time series in all counties (Figure 3) show that epidemics are mostly triggered near large

water bodies and flow inland and away. They also illustrate that the US continental Southern states

act as ‘sinks’ to a large proportion of these streamlines. (‘Sinks,’ in our definition here, are geo-

graphic areas that multiple streamlines converge towards; sinks are especially obvious when we look

Table 1. Social connectivity: The US Southern region appears to have an unusually high level of social connectivity.

(In GSS survey results, the number of close friends, close friends who are neighbors, and number of friends who all or mostly know

each other is higher in the South, especially in the East/South/Central census region, than in the country at large.)

WSC (TX,
OK, AR,
LA)

ESC (MS,
AL, TN,
KY)

SA (FL, GA, SC,
NC, VA, WV, MD,
DC)

Country-
at-large

WNC (ND, SD, NE, KS, MO, IA, MN) (not in South/Southeast) this
is the second most social region following ESC (MS, AL, TN, KY)

Close friends 7.22 12.76 8.20 7.57 10.56

Close friends who are
neighbors

1.02 3.40 1.32 1.45 3.15

% of friends who all or
mostly know each other

All:20%
Mostly:
43%

All:18%
Mostly:
58%

All: 11% Mostly:
52%

All: 12
Mostly:
50%

All: 16% Mostly: 58%

How often visit closest
friends*

107 151 126 122 129

*Survey options are: lives in household, daily, several times a week, once a week, once a month, several times a year, and less often. These are converted

to approximate number of visits per year (see Supplement for more information about the GSS analysis).

DOI: https://doi.org/10.7554/eLife.30756.011
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at the vector representation of causality direction. The opposite of a ‘sink’ is a ‘source,’ defined as

an area at which at least one streamline starts.) This might explain the increased prevalence in the

designated region. Additionally, the analysis shows that human travel is a very important driver of

emergent epidemiological patterns, and that short-range, land-based travel is more important than

air-travel. This result is cross-corroborated by our Poisson regression analysis (described next in

Approach 2).

Approaches 2 and 3 are motivated by the ‘why’ questions: (1) Why do epidemics initiate where

and when they do? and; (2) Why do some disease initiations become epidemics while others do not?

Approach 2: Importance of factors from poisson regression
We focused on a subset of weeks associated with the initial rise of influenza waves (indicated by the

gray bars in Figure 2I, and calculated as discussed earlier). The results from our best-fit model are

illustrated in Figure 1A. We selected this particular model out of a total of 126 compared in the

Bayesian analysis, a few of which we list in Table 5, ranked by their decreasing goodness-of-fit, mea-

sured with the Deviance Information Criterion, DIC (see Supplement). From the values of the inferred

coefficients corresponding to the different factors, and taking into account their significance levels

and credible intervals, we concluded that the roles played by weather variables, particularly humid-

ity, appear to be substantially more complicated compared to what has been suggested in the

literature.

The surprisingly unimportant factors
School schedule was not predictive of influenza onset in our analysis: We ended up with a p-value of

0:84 and an odds ratio of 0:8403, strongly suggesting that school opening dates are not a significant

factor in triggering the seasonal epidemic.

We are not claiming here that closing down schools during the seasonal peak, or during an initial

phase of a seasonal epidemic, would not have a beneficial effect on maximum incidence. Rather, the

observed epidemiological patterns over the time period we analyzed (2003–2011) do not seem to

name ‘school opening times’ as a significant predictive factor–at least in the continental US.

We factored in the effect of vaccination coverage by estimating the cumulative fraction of the

population that received the current influenza vaccine stratified by geo-spatial location and time of

inoculation within each influenza season. Our analysis indicated that vaccination coverage is not a

significant predictor of influenza onset/triggering period. It could be a reflection of overall vaccine

ineffectiveness, or the choice of outcome predicted (i.e. vaccination might effect overall infection

numbers over the entire outbreak, but not the timing of the trigger). It could also reflect the fact

that different influenza type/subtypes have different virulence–so a vaccine against H3N2 during an

H3N2 year, may be more effective, but due to that fact that H3N2 is more virulent, more people still

wind up seeking medical care.

Table 2. Fisher’s exact test results on matched treatment combinations

YR dh$

0
dh$

1
dt$

0
h$ t$ u$ M1$ M2$ V$

0
V$

1
a$ p-value Odds ratio Lower 99% cnf. bnds. Upper 99% cnf. bnds.

2003 X X Y Y Y Y X X X X X 1:9� 10
�8 2.83 1.73 4.66

2004 X X Y Y Y Y X X Y X X 6:5� 10
�3 6.22 1.08 132.03

2005 X X Y Y Y Y X Y X X X 3:4� 10
�6 8.31 2.16 54.93

2006 X X Y Y Y Y X Y X X X 5:3� 10
�7 4.56 1.96 12.0

2007 Y Y X Y Y Y X Y X X X 2:1� 10
�2 3.85 0.82 28.16

2008 Y Y Y Y Y X X X X X X 1:9� 10
�3 5.26 1.23 50.2

2009 Y Y X Y Y Y X X X X X 3:1� 10
�10 4.78 2.38 10.34

2010 X X Y Y Y Y X X X Y X 1:4� 10
�2 3.64 0.93 24.27

2011 X X Y Y Y Y X X Y X X 4:9� 10
�11 4.91 2.51 10.05

All Years Y Y Y Y Y Y Y Y Y Y X 7:2� 10
�9 3.88 2.10 7.89

All Years Y Y Y Y Y Y Y Y Y Y Y 1:0 1.0 0.48 2.15

DOI: https://doi.org/10.7554/eLife.30756.012
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Table 3. Fisher’s exact test results on matched treatment combinations

(a)

YR p -value 99% Conf. Bnd.

max hus avg

2003 0.003603 1.0, 4.21

2004 0.6919 0.16, 17.63

2005 0. 1948 0.61, 7.89

2006 0. 6525 0.28, 3.06

2007 0. 3574 0.49, 18.85

2008 0. 103 0.55, 1.23

2009 0 .1067 0.68, 8.77

2010 0.5318 0.27, 41.03

2011 0.09054 0.74, 5.17

ALL YRS 1[1]10-4 1.12, 1.88

t avg mean

2003 0.06439 0.81, 3.65

2004 1 0.27, 10.62

2005 0.003339 1.17, 123.0

2006 0.8172 0.29, 4.0

2007 0.537 0.47, 7.42

2008 0.05985 0.59, Inf

2009 0.0006337 1.37, 51.68

2010 0.2853 0.50, 9.28

2011 0.05729 0.85, 3.49

ALL YRS 5.87 [1]10-9 1.36, 2.23

d hus 0

2003 0.5374 0.55, 3.41

2004 1 0.27, 11.01

2005 0.04401 0.81, 7.13

2006 0.001708 1.31, Inf

2007 0.009199 1.0, 37.34

2008 0.3051 0.60, 5.92

2009 0.02726 0.82, 90.16

2010 1 0.41, 2.78

2011 0.577 0.57, 2.77

ALL YRS 1.48[1]10-5 1.12, 1.64

d t avg mean 0

2003 0.004956 1.0, 24.12

2004 0.445 0.14, 6.0

2005 0.001164 1.23, 12.03

2006 0.01198 0.97, 11.08

2007 0.01147 0.96, 11.05

2008 0.08552 0.74, 11.18

2009 0.06847 0.73, 17.69

2010 0.08251 0.15, 1.63

2011 0.6031 0.47, 3.55

ALL YRS 4.98[1]10-11 1.35, 2.06
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(b)

YR p- value 99% Conf. Bnd.

hus 1

2003 0.1652 0.10, 2.43

2004 1 0.22, 24.42

2005 0.002004 0.09, 0.87

2006 1 0.32, 7.65

2007 0.389 0.33, 1.90

2008 0.02142 0.9, 8.48

2009 0.1822 0.67, 6.06

2010 0.6005 0.23, 4.22

2011 0.9166 0.6, 1.88

ALL YRS 0.07 0.72, 1.06

d hus 2

2003 0.0083 1.01, 5.77

2004 0.79 0.36, 13.33

2005 0.275 0.71, 2.54

2006 0.24 0.66, 4.36

2007 0.19 0.62, 9.33

2008 0.18 0.65, 7.52

2009 0.53 0.44, 6.25

2010 0.08 0.21, 1.51

2011 0.59 0.69, 1.87

ALL YRS 0.13 0.78, 1.07

urbanity

2003 0.0083 1.01, 5.77

2004 0.79 0.36, 13.33

2005 0.275 0.71, 2.54

2006 0.24 0.66, 4.36

2007 0.19 0.62, 9.33

2008 0.18 0.65, 7.52

2009 0.53 0.44, 6.25

2010 0.08 0.21, 1.51

2011 0.59 0.69, 1.87

ALL YRS 2.2_10-16 3.67, 5.06

airport proximity

2003 0.004956 1.0, 24.12

2004 0.445 0.14, 6.0

2005 0.001164 1.23, 12.03

2006 0.01198 0.97, 11.08

2007 0.01147 0.96, 11.05

2008 0.08552 0.74, 11.18

2009 0.06847 0.73, 17.69

2010 0.08251 0.15, 1.63

2011 0.6031 0.47, 3.55

ALL YRS 1_10-16 1.73, 2.93

DOI: https://doi.org/10.7554/eLife.30756.013
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Vaccination coverage failed to reach predictive significance. The variables corresponding to spa-

tio-temporal indicators of the cumulative fraction of the inoculated population are included in our

best model (see the last entry in Table 5), but their effect fails to be significant. However, if we drop

those variables from the model, the DIC increases. We suggest that the strong dependence

Figure 2. Characteristics of seasonal influenza in the continental US An analysis of county-specific, weekly reports on the number of influenza cases for

a period of 471 weeks spanning January 2003 to December 2013 (Plates A-H) for recurrent patterns of disease propagation. In particular, the weeks

leading up to that in which an epidemic season peaks (determined by significant infection reports from the maximum number of counties for that

season) demonstrate an apparent flow of disease from south to north, which cannot be explained by population density alone (also see movie in

Supplement). Plate I illustrates the near-perfect time table for a seasonal epidemic. Plates J and K compare the county-specific initiation probabilities of

an influenza season, and the causality streamlines.

DOI: https://doi.org/10.7554/eLife.30756.010

The following video is available for figure 2:

Figure 2—video 1. Movement of seasonal influenza waves across USA.

DOI: https://doi.org/10.7554/eLife.30756.014
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Figure 3. Computation of causality field, Approach 1 Plates A and B: Incidence data from neighboring counties in Alabama, US. Plates C and D:

Transformation to difference-series, i:e:, change in the number of reported cases between weeks. We imposed a binary quantization, with positive

changes mapping to ‘1,’ and negative changes mapping to ‘0.’ From a pair of such symbol streams, we computed the direction-specific coefficients of

Granger causality (see Supplement). For each county, we obtained a coefficient for each of its neighbors, which captured the degree of influence

flowing outward to its respective neighbors (Plate L). We computed the expected outgoing influence by considering these coefficients as

representative of the vector lengths from the centroid of the originating county to centroids of its neighbors. Viewed across the continental US, we then

observed the emergence of clearly discernible paths outlining the ‘causality field’ (Plate G). The long streamlines shown are highly significant, with the

probability of chance occurrence due to accidental alignment of component stitched vectors less than 10
�185; while each individual relationship has a

chance occurrence probability of ~ 6% (Plates E and F). Plate H: Spatially-averaged travel patterns (see text in Materials and methods) and the sink

distribution between expected travel patterns. These patterns (Plate H), along with the inferred causality field (Plate I), match up closely, with sinks

Figure 3 continued on next page
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Figure 3 continued

showing up largely in the Southern US, explaining the central role played there. In Plate H, the size of the blue circles indicate the percentage of

movement streamlines (computed by interpreting the locally averaged movement directions as a vector field) that sink to those locations. In Plate I, the

size of the red circles indicate the percentage of causality streamlines that sink to the indicated locations. We note that ~ 75% of the movement

streamlines sink in counties belonging to the Southern states, which matches up well with the sinks of the causality streamlines. In Plates J and K show

spatial analysis results for two different infections (HIV and E. coli, respectively) and which exhibit very different causality fields, negating the possibility

of boundary effects.

DOI: https://doi.org/10.7554/eLife.30756.015

Figure 4. Comparing influence of short- and long-distance travel on infection propagation Plate A shows land connectivity visualized as a graph with

edges between neighboring counties. Plate B shows air connectivity as links between airports, with edge thickness proportional to traffic volume. Plate

C shows the delay in weeks for the propagation of Granger-causal influence between counties in which major airports are located, and Plate E shows

the distribution of the inferred causality coefficient between those same counties. Plates D and F show the delay and the causality coefficient

distribution respectively, which we computed by considering spatially neighboring counties. The results show that local connectivity is more important.

We reached a similar conclusion using mixed-effect Poisson regression, as shown in Plate G: The inferred coefficients for land connectivity are

significantly larger than those for air connectivity, tweet-based connectivity, or exponential diffusion from the top 30 largest airports. The coefficients

shown in Plate G are exponentiated, allowing us to visualize probability magnitudes (see ‘Model Definition’).

DOI: https://doi.org/10.7554/eLife.30756.016

The following figure supplement is available for figure 4:

Figure supplement 1. Our analysis of the Twitter movement matrix indicates that people most frequently travel between neighboring counties,

preferentially towards higher-population-density areas, which shows that the maximum-probability movement patterns follow the local gradient of

increasing population density.

DOI: https://doi.org/10.7554/eLife.30756.017
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Figure 5. Prediction performance with training data from the first six seasons and validation on the last three. Plate A shows the correlation between

the observed incidence and the model-predicted response. We show significant positive correlation, particularly within the trigger periods, between the

model predictions and the actual held-out data. This gives us confidence to construct ROC curves for each week. Plates B-D show the ROC curves for

the last three weeks of each of the three seasons in the out-of-sample period (potentially, these computations can be repeated for all possible

partitions of study weeks into training and test samples). Plates E-G illustrate that the normalized decision variable, which is the normalized response

from the model, identifies the South and Southeastern counties as the trigger zones.

DOI: https://doi.org/10.7554/eLife.30756.018
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between antigenic diversity and vaccination coverage (see Figure 1J–M) is responsible for this

effect: Vaccination coverage is important, but its influence is captured by the antigenic variation.

Figure 6. Results for our analysis involving county-matching (Approach 3). Plate A illustrates the factor combinations that turn out to be significant over

the nine seasons. Notably, for each season, we have multiple, distinct factor sets that turn out to be significant (p<0:05) and yield a greater-than-unity

odd ratio. Plotting the probability with which different factors are selected when we look at season-specific county matchings (the top panel in Plate A),

we see a corroboration of the conclusions drawn in Approach 2. We find that specific humidity and average temperature, along with their variations, are

almost always included. We do see some new factors that fail to be significant in the regression analysis, e:g:, degree of urbanity and vaccination

coverage. While vaccination coverage is indeed included as a factor in our best performing model, in Approach two it failed to achieve significance,

perhaps due to its strong dependence on antigenic variation (see Figure 1J–M). Degree of urbanity is indeed significant for some of the regression

models we considered (see Supplementary Information), but was not significant for the model with the smallest DIC. Note that ‘Treatment’ here is

defined as a logical combination of weather factors. A treatment is typically a conjunction of several weather variables. For example, the treatment

shown in top left panel of Plate B involves a conjunction of: (1) a drop in average temperature during the week of infection; (2) a drop in temperature

during the week of infection; (3) a higher-than-average specific humidity; (4) a higher-than-average temperature, and; (5) a high degree of urbanity. With

respect to the ‘treatment,’ we can divide counties into three groups: (1) ‘treated counties,’ shown in green; (2) at least one matching county for each of

the treated counties (matching counties are very close to the treated counties in all aspects but in treatment, which we called ‘control’ counties), shown

in black, and; (3) other counties, shown in grey. The counties in the ‘treatment’ and ‘control’ groups are further subdivided into those counties that

initiated an influenza wave and those that have not, resulting in four counts arranged into a two-by-two contingency table. We then used the Fisher

exact test to test for association between treatment and influenza onset. Panels in Plate B show both the treated and control sets for the 9 seasons for a

subset of chosen factors. The results are significant, as shown in Tables 2 and 3. The variable definitions are given in Table 4. Notably, some of the

variables found significant in the regression analysis are not included above, and some which are not found to be significant in the best regression

model show up here. This is not to imply that they are not predictive or lack causal influence. The matched treatment approach, as described above, is

not very effective if we use more than ~ 10� 15 factors simultaneously to define the treated set (for the amount of data we have); this results in a

contingency table populated with zero entries.

DOI: https://doi.org/10.7554/eLife.30756.019
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The most important factors
The strongest predictor groups (ranked by importance) are the population’s socio-demographic

properties, weather, antigenic drift of the virus, land-based travel, and auto-correlation of influenza

waves.

Weather As far as weather effects are concerned, epidemics tend to originate in places with high

mean, maximum specific humidity, high average temperature, and low average air pressure, namely,

in counties at the Southern, and, to a lesser extent, Eastern and Western US coastlines. Additionally,

the spread of an epidemic is significantly influenced by a drop in specific humidity up to four weeks

Table 4. Variables in mixed-effect Poisson regression analysis (Approach 2)

Variable name physical effect

N Total number of patient visits given week and county (the offset)

max_HUS_mean Mean county-specific maximum specific humidity over nine years

d_max_HUS_i Normalized and zero-centered deviations of maximum humidity, i = 0–4 weeks before

t_avg_mean Mean county-specific temperature over nine years

d_t_avg_i Normalized and zero-centered deviations of mean temperature, i = 0–4 weeks before

RSDS_mean Mean county-specific solar insolation over nine years

d_RSDS_i Normalized and zero-centered deviations of mean solar insolation, i = 0–4 weeks before

AVG_PRESS mean Mean county-specific solar insolation over nine years

d_AVG_PRESS_i Normalized and zero-centered deviations of mean surface pressure, i = 0–4 weeks before

tot_prec_mean Mean county-specific total precipitation over nine years

d_tot_prec_i Normalized and zero-centered deviations of mean total precipitation, i = 0–4 weeks before

Wind_avg_mean Mean county-specific average wind speed over nine years

d_Wind_avg_i Normalized and zero-centered deviations of average wind speed, i = 0–4 weeks before

Income County-specific mean income

airport_diffusion Influence from proximity to airports, modeled as human traffic-weighted exponential diffusion from the 30 largest US airports

Am_Ind % of American Indians in the county

Asian % of Asians

White_Hisp % of Caucasian/Hispanics

W_non_Hisp % of Caucasian/Non-Hispanics

Black_Hisp % of Black/Hispanics

B_non_Hisp % of Black/Non-Hispanics

Pacific % of Pacific Islanders

Insured % of county population insured

Poor % of county population under poverty line

Urban % of county population classified as urban

land_i influenza velocity change in the land neighbors of the county i weeks before the current week

tweet_i influenza velocity change in the Twitter neighbors of the county i weeks before the current week

air_i influenza velocity change in airport neighbors of the county i weeks before the current week

v_i change in rate of infection in the county itself i weeks from the current

M1 Diversity in M1 protein primary structure

M2 Diversity in M2 protein primary structure

NA Diversity in NA protein primary structure

HA Diversity in HA protein primary structure

Cum_vac_per_N_i vaccination coverage in the county cumulated over past 20 weeks i weeks from the current

(a) Definition of variables

DOI: https://doi.org/10.7554/eLife.30756.020
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Table 5. Different Models Considered and DIC Ranking

Equation used in Poisson regression DIC

flu ~ LOGN + 1 + max_HUS_mean + d_max_HUS_0 + d_
max_HUS_min_1 + d_max_HUS_min_2 + d_max_HUS_min
_3 + t_avg_mean + d_t_avg_0 + d_t_avg_min_1 + d_t_avg_
min_2 + d_t_avg_min_3 + max_HUS_mean * t_avg_mean +
d_max_HUS_0 * d_t_avg_0 + d_max_HUS_min_1 * d_t_avg_
min_1 + d_max_HUS_min_2 * d_t_avg_min_2 + d_max_HUS
_min_3 * d_t_avg_min_3 + RSDS_mean + d_RSDS_0 + d_RSDS
_min_1 + d_RSDS_min_2 + d_RSDS_min_3 + AVG_PRESS_mean
+ d_AVG_PRESS_0 + d_AVG_PRESS_min_1 + d_AVG_PRESS_
min_2 + d_AVG_PRESS_min_3 + Income + airport_diffusion + Am
_Ind + Asian + White_Hisp + W_non_Hisp + Black_Hisp + B_non_
Hisp + Pacific + Insured+Poor + Urban+v1+v2+land1+land2+
land3+land4+tweet1+tweet2+tweet3+tweet4+air1+air2+air3
+air4+HA + M1+M2+NA.

185942

flu ~ LOGN + 1 + max_HUS_mean + d_max_HUS_0 + d_max_HUS_min
_1 + d_max_HUS_min_2 + d_max_HUS_min_3 + d_max_HUS_min
_4 + t_avg_mean + d_t_avg_0 + d_t_avg_min_1 + d_t_avg_
min_2 + d_t_avg_min_3 + d_t_avg_min_4 + RSDS_mean + d_RSDS_0 + d_
RSDS_min_1 + d_RSDS_min_2 + d_RSDS_min_3 + d_RSDS_min_4 + AVG_
PRESS_mean + d_AVG_PRESS_0 + d_AVG_PRESS_min_1 + d_AVG_PRESS
_min_2 + d_AVG_PRESS_min_3 + d_AVG_PRESS_min_4 + tot_prec_mean
+ d_tot_prec_0 + d_tot_prec_min_1 + d_tot_prec_min_2 + d_tot_prec_
min_3 + d_tot_prec_min_4 + Wind_avg_mean + d_Wind_avg_0 + d_Wind_
avg_min_1 + d_Wind_avg_min_2 + d_Wind_avg_min_3 + d_Wind_avg_min_
4 + Income + airport_diffusion + Am_Ind + Asian + White_Hisp + W_non_
Hisp + Black_Hisp + B_non_Hisp + Pacific + Insured+Poor + Urban+v1+
v2+land1+land2+land3+land4+tweet1+tweet2+tweet3+tweet4+air1
+air2+air3+air4+HA + M1+M2+NA.+HA * NA.

185940.6

flu ~ LOGN + 1 + max_HUS_mean + d_max_HUS_0 + d_max_
HUS_min_1 + d_max_HUS_min_2 + d_max_HUS_min_3 + t_avg_mean +
d_t_avg_0 + d_t_avg_min_1 + d_t_avg_min_2 + d_t_avg_min_3 + max_
HUS_mean * t_avg_mean + d_max_HUS_0 * d_t_avg_0 + d_max_HUS_
min_1 * d_t_avg_min_1 + d_max_HUS_min_2 * d_t_avg_min_2 + d_max
_HUS_min_3 * d_t_avg_min_3 + RSDS_mean + d_RSDS_0 + d_RSDS_
min_1 + d_RSDS_min_2 + d_RSDS_min_3 + AVG_PRESS_mean + d_AVG
_PRESS_0 + d_AVG_PRESS_min_1 + d_AVG_PRESS_min_2 + d_AVG_PRESS
_min_3 + Income + airport_diffusion + Am_Ind + Asian + White_Hisp + W_
non_Hisp + Black_Hisp + B_non_Hisp + Pacific + Insured+Poor + Urban+
v1+v2+land1+land2+land3+land4+tweet1+tweet2+tweet3+tweet4
air1+air2+air3+air4+HA + M1+M2+NA.+Cum_vac_per_N_0

185938.1

flu ~ LOGN + 1 + max_HUS_mean + d_max_HUS_0 + d_max_HUS_min_1 + d_
max_HUS_min_2 + d_max_HUS_min_3 + d_max_HUS_min_4 + t_avg_
mean + d_t_avg_0 + d_t_avg_min_1 + d_t_avg_min_2 + d_t_avg_
min_3 + d_t_avg_min_4 + RSDS_mean + d_RSDS_0 + d_RSDS_min
_1 + d_RSDS_min_2 + d_RSDS_min_3 + d_RSDS_min_4 + AVG_PRESS_mean + d_
AVG_PRESS_0 + d_AVG_PRESS_min_1 + d_AVG_PRESS_min_2 + d_AVG_PRESS_min
_3 + d_AVG_PRESS_min_4 + tot_prec_mean + d_tot_prec_0 + d_tot_prec_min_1 +
d_tot_prec_min_2 + d_tot_prec_min_3 + d_tot_prec_min_4 + Wind_avg_mean + d
_Wind_avg_0 + d_Wind_avg_min_1 + d_Wind_avg_min_2 + d_Wind_avg_min_3 +
d_Wind_avg_min_4 + Income + airport_diffusion + Am_Ind + Asian + White_Hisp
+ W_non_Hisp + Black_Hisp + B_non_Hisp + Pacific + Insured+Poor + Urban+
v1+v2+land1+land2+land3+land4+tweet1+tweet2+tweet3+tweet4+air1+
air2+air3+air4+HA + M1+M2+NA.+Cum_vac_per_N_diff_1 + Cum_vac_per_N_
diff_2 + Cum_vac_per_N_diff_3 + Cum_vac_per_N_diff_4

185935.9

flu ~ LOGN + 1 + max_HUS_mean + d_max_HUS_0 + d_max_HUS_min_1 + d_max_HUS_
min_2 + d_max_HUS_min_3 + d_max_HUS_min_4 + t_avg_mean + d_t_avg_0 +
d_t_avg_min_1 + d_t_avg_min_2 + d_t_avg_min_3 + d_t_avg_min_4 + RSDS_mean +
d_RSDS_0 + d_RSDS_min_1 + d_RSDS_min_2 + d_RSDS_min_3 + d_RSDS_min_4 + AVG
_PRESS_mean + d_AVG_PRESS_0 + d_AVG_PRESS_min_1 + d_AVG_PRESS_min_2 +
d_AVG_PRESS_min_3 + d_AVG_PRESS_min_4 + tot_prec_mean + d_tot_prec_0 + d_
tot_prec_min_1 + d_tot_prec_min_2 + d_tot_prec_min_3 + d_tot_prec_min_4 + Wind_
avg_mean + d_Wind_avg_0 + d_Wind_avg_min_1 + d_Wind_avg_min_2 + d_Wind_avg
_min_3 + d_Wind_avg_min_4 + Income + airport_diffusion + Am_Ind + Asian + White_
Hisp + W_non_Hisp + Black_Hisp + B_non_Hisp + Pacific + Insured+Poor + Urban+
v1+v2+land1+land2+land3+land4+tweet1+tweet2+tweet3+tweet4+air1+air2+
air3+air4+HA + M1+M2+NA.

185933.7

Table 5 continued on next page
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before its onset. However, this effect is weaker than the mean maximum specific humidity effect.

Drop in average temperature that dips one to three weeks prior to the epidemic onset is also signifi-

cantly important (this is consistent with earlier experiments [Lowen et al., 2008]), especially when

the temperature drop is accompanied by a decrease in specific humidity, average wind speed, and

solar flux. However, high levels of solar flux in the week of onset are also important. This compli-

cated set of weather conditions, a signature of the cold air front (Shaman et al., 2010), is validated

by our out-of sample predictions to increase the risk of triggering the seasonal epidemic. Total pre-

cipitation also plays a positive role.

The weather/humidity paradox
How can colder weather and lower humidity be a predictor of influenza, if influenza epidemic waves

tend to start in the South with warmer climates and higher humidity? Our resolution of this seeming

controversy is as follows: The stress is on the drop in both humidity and temperature in those areas

with high average annual values of these measurements. A blast of colder, lower-humidity weather

in these warm-climate areas has two effects: (1) The influenza virus can stay viable in water droplets

longer than in hot, sunny weather, and; (2) Humans tend to interact indoors, in more crowded condi-

tions. Both of these factors are favorable for transmission of the virus to the population at large.

Antigenic variation Antigenic diversity for HA, NA, M1, and M2 are important predictors. While

HA, NA, and M1 inhibit the trigger, M2 diversity enhances it. This peculiar difference in the direction

of influence might be a manifestation of the roles played by the individual viral proteins in its life-

cycle.

The first three proteins are directly involved in the viral binding to host cell surface receptors,

while M2 activity is needed only during HA biosynthesis. Additionally, proteolysis experiments indi-

cated that M2 proton channel activity helped to protect (H1N1)pdm09 HA from premature confor-

mational changes as it traversed low-pH compartments during transport to the cell surface

(Alvarado-Facundo et al., 2015).

We found that antigenic diversity is a significant predictor in all four of the viral proteins we con-

sidered. Interestingly, while the increasing diversity found in HA, NA, and M1 inhibits the epidemic

trigger, the higher diversity in M2 enhances it (see Discussion).

Table 5 continued

Equation used in Poisson regression DIC

flu ~ LOGN + 1 + max_HUS_mean + d_max_HUS_0 + d_max_HUS_min_1 + d_max_HUS_
min_2 + d_max_HUS_min_3 + d_max_HUS_min_4 + t_avg_mean + d_t_avg_0 + d_t_avg_min_1 +
d_t_avg_min_2 + d_t_avg_min_3 + d_t_avg_min_4 + RSDS_mean +
d_RSDS_0 + d_RSDS_min_1 + d_RSDS_min_2 + d_RSDS_min_3 + d_RSDS_min_4 + AVG
_PRESS_mean + d_AVG_PRESS_0 + d_AVG_PRESS_min_1 + d_AVG_PRESS_min_2 + d_
AVG_PRESS_min_3 + d_AVG_PRESS_min_4 + tot_prec_mean + d_tot_prec_0 + d_tot_
prec_min_1 + d_tot_prec_min_2 + d_tot_prec_min_3 + d_tot_prec_min_4 + Wind_avg
_mean + d_Wind_avg_0 + d_Wind_avg_min_1 + d_Wind_avg_min_2 + d_Wind_avg_min
_3 + d_Wind_avg_min_4 + Income + airport_diffusion + Am_Ind + Asian + White_Hisp + W
_non_Hisp + Black_Hisp + B_non_Hisp + Pacific + Insured+Poor + Urban+v1+v2+land1
+land2+land3+land4+tweet1+tweet2+tweet3+tweet4+air1+air2+air3+air4+HA
+ M1+M2+NA.+Cum_vac_per_N_0

185932.3

flu ~ LOGN + 1 + max_HUS_mean + d_max_HUS_0 + d_max_HUS_min_1 + d_max_HUS_min_
2 + d_max_HUS_min_3 + d_max_HUS_min_4 + t_avg_mean + d_t_avg_0 + d_t_avg_min
_1 + d_t_avg_min_2 + d_t_avg_min_3 + d_t_avg_min_4 + RSDS_mean + d_RSDS_0 +
d_RSDS_min_1 + d_RSDS_min_2 + d_RSDS_min_3 + d_RSDS_min_4 + AVG_PRESS_mean
+ d_AVG_PRESS_0 + d_AVG_PRESS_min_1 + d_AVG_PRESS_min_2 + d_AVG_PRESS_
min_3 + d_AVG_PRESS_min_4 + tot_prec_mean + d_tot_prec_0 + d_tot_prec_min_1 +
d_tot_prec_min_2 + d_tot_prec_min_3 + d_tot_prec_min_4 + Wind_avg_mean + d_Wind
_avg_0 + d_Wind_avg_min_1 + d_Wind_avg_min_2 + d_Wind_avg_min_3 + d_Wind_avg_
min_4 + Income + airport_diffusion + Am_Ind + Asian + White_Hisp + W_non
_Hisp + Black_Hisp + B_non_Hisp + Pacific + Insured+Poor + Urban+v1+v2+land1+land2+land3+land4
+tweet1+tweet2+tweet3+tweet4+air1+air2+
air3+air4+HA + M1+M2+NA.+Cum_vac_per_N_0 + Cum_vac_per_N_1 + Cum_vac_
per_N_2 + Cum_vac_per_N_3

185926.6

DOI: https://doi.org/10.7554/eLife.30756.021
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Travel Land travel intensity one to three weeks before epidemic onset is a strong predictor. Air

travel is also predictive, but its strength is an order of magnitude weaker than that of land travel.

Autocorrelation The increase in an influenza outbreak’s infection weekly rate one and two weeks

before an epidemic onset (in the epidemic source county itself) is predictive of epidemic wave

origin.

We have used substantially richer datasets than those used by earlier studies (Shaman et al.,

2010; Tamerius et al., 2013), which lends strong statistical support to our conclusions. It also

allowed us to disentangle and make precise the contributions from different factors, e:g:, mean

county humidity vs. drops in humidity before an infection. While we found the former effect to be

clearly stronger (in accordance to previously reported results [Shaman et al., 2010]), the other

diverse set of factors were also found to be significant.

Validation of predictive capability
The robustness of our results is established in a number of ways:

1. In mixed-effect regression (Approach 2), we compared over 120 chosen model variations (see
Table 5 for an abridged list, and Supplementary file 3for the complete enumeration of con-
sidered models); the results appear to be qualitatively stable, though the quantitative perfor-
mance of the models vary somewhat as measured by DIC for different configurations of
regression equations.

2. We carried out a direct validation of predictive performance by estimating model parameters
using the first six seasons and predicting the epidemic trigger locations using the last three
(see Figure 5 and Materials and methods). The out-of-sample predictions of influenza inci-
dence are always positively correlated with observed incidence (Plate A). Perhaps more impor-
tantly, we obtained good predictability as measured by the area under the curve (AUC » 80%)
for the receiver operating characteristics (ROC, See Plates B-D). Plates E-G show that our out-
of-sample predictions correctly identified epidemic initiation in the Southern and Southeastern
counties of the continental US.

3. As we discuss in the next section, in Approach 3, we conducted a corroborating matched
effect analysis on the counties, using combinations of county-specific factors as a ‘treatment,’
not unlike clinical trials in which patients on a drug regimen are matched to patients receiving
a placebo (Morgan and Winship, 2015).

Approach 3: Matching counties and factor combinations
In Approach 3, we investigated combinations of factors presented as ‘treatment’ via a non-paramet-

ric, exact-matching analysis of US counties during the weeks of epidemic onset on a season-by-sea-

son basis.

First, we collected the list of all counties with a drop in maximum specific humidity during the

weeks leading up to an influenza season in a particular year. This is the ‘treated set’: the set of coun-

ties that may be thought of as subjected to the positive ‘treatment’ of a drop in specific humidity.

We split this set into two, considering counties that also experience increased influenza prevalence

during the epidemic onset, and ones that do not (counties with two different values of the outcome

variable). The number of counties in these two sets define the first row of a 2� 2 contingency table.

In the second row (the ‘control set’), we focused on counties that do not experience a drop in the

maximum specific humidity. However, we only considered counties that have a matching counterpart

in the treated set in the following sense: For each county in the control set, we found at least one in

the treated set such that the rest of the significant variables (other than specific humidity) had similar

variation patterns in both counties. Once we defined the control set, we split it in the manner

described for the treated set: We counted the number of control counties that experienced an

increased influenza prevalence during epidemic onset, and those which did not. This defined the

second row of the contingency table. Finally, we used Fisher’s exact test to compute an odds ratio

(the odds of realizing these numbers by chance), along with the test-derived significance of the asso-

ciation between the ‘treatment’ and epidemic wave initiation (p-value). Furthermore, we defined our

treatment to consist of multiple factors simultaneously, e:g: specific humidity and its change in the

preceding week, along with average temperature and degree of urbanity, see Figure 6.

Note that geographic clustering of ‘treated’ and ‘untreated’ counties arose automatically as a

result of similar weather patterns being imposed via the constraint of multiple climate variables.
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Unlike the mixed-effect regression approach (Approach 2), this matching analysis is non-paramet-

ric, and intended to reveal whether multiple factors are, indeed, simultaneously necessary.

The results of Approach 3’s analysis are presented in Figure 6 and Tables 2 and 3. We found

that no single variable was able to consistently yield a statistically significant odds ratio greater than

one; multiple factors interacted to shape an epidemic trigger (see Table 3 for a few examples). With

a total of 47 significant variables in our best mixed-effect model, an exhaustive search for all combi-

nations was not feasible. Instead, we performed a standard evolutionary search, looking for combi-

nations that yielded a significant odds ratio for individual seasons. Additionally, we considered all

seasons together (by simply adding the contingency tables, element-wise) in order to increase the

test’s statistical power.

We isolated ten variables (as shown in Figure 6, Plate B) in this manner which included maximum

specific humidity and average temperature along with their variations, the degree of urbanity, anti-

genic variation, and vaccination coverage.

The factors that appeared most often in our analysis are illustrated in Plate A: It appears that

maximum specific humidity and average temperature, along with their variations, and the degree of

urbanity have the most frequent contribution, followed by antigenic variation and vaccination

coverage.

We did see some new factors here that failed to be of significance in the regression analysis

(Approach 2), e:g:, degree of urbanity and vaccination coverage. While vaccination coverage was

included as a factor in our best performing model in Approach 2, it failed to achieve significance,

perhaps due to its strong dependence on antigenic variation (see Figure 1J–M). Degree of urbanity

was indeed significant for some of the regression models we considered (see Supplementary Infor-

mation), but failed to be so for the model with the least DIC.

Thus, Approach three corroborates and strengthens key claims of Approach 2.

The exact set of factors varied somewhat over the seasons; nevertheless, together, they yield sig-

nificant results when all seasons are considered together. The matching analysis corroborates our

results from both the mixed-effect regression and the geographic streamline analyses: The sets of

counties initiating the wave are near coasts on the Southern region of the continental US (see Plates

A - I in Figure 6).

Local travel vs. long-distance travel and influenza
Our conclusion that local travel is predominantly responsible for disease wave propagation is sup-

ported by several lines of analysis.

First, continuous land-movement infection waves are visible in the weekly influenza rate movie;

we computed this movie from insurance claim data and made it available with results of this study.

Second, because our all-weeks-included dataset was too large for the R MCMCglmm package to

handle, we performed mixed-effect Poisson regression calculations using a 50 percent random sam-

ple of all the weeks for which data were available. In this computation, the airport-proximity, fixed-

effect coefficient turned out to be statistically significantly negative (see Supplement A, as well as

the editable output file ‘flu-50-percent-weeks.txt’).

Third, the results from our Granger-causality inference showed that:

1. Local county-to-county movements were much more predictive of influenza wave change than
airport movements. In comparing Plates E and F in Figure 4, we see that the local movement
causality coefficient (g) is, on average, twice as large as that for long-range movement
(Figure 4E). Figure 4E shows that the mean long-range causality coefficient is approximately
0.05, whereas it is just over 0.1 in the local propagation. As the causality coefficient quantifies
the amount of predictability (measured as information in bits) communicated about the target
data stream per observed bit in the source data stream, it follows that, on average, every ten
bits of sequential incidence data from an influencing location tells us one bit about the unfold-
ing incidence dynamics in the target location. Therefore, in case of the long-range movement,
informativeness is twice as low, so we need on average 20 bits to infer one bit about the state
of infection. These calculations strongly suggest that local movement is predictively stronger
with regards to influenza infection propagation.

2. While the most frequent value of the computed time delay in influence propagation between
counties with large airports is zero weeks, this distribution is significantly flatter compared to
that for local, county-to-county influence propagation.
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Discussion
A summary of the complex relationship between the driving factors that contribute to the trigger

and subsequent development of a seasonal epidemic can be clarified with a forest fire metaphor.

The maturation of a forest fire requires the collusion of multiple factors—namely the presence of

flammable media, an initiating spark, and a wind current to help spread the fire. Our conceived map-

ping of this analogy to influenza infection is as follows:

1. Flammable Media: The Southern US appears to have an unusually high level of social connec-
tivity; it is at least one order of magnitude higher than that in the north of the country (see
GSS survey results (Smith et al., 1972) and Table 1). The number of close friends, close friends
who are neighbors, and communities of people who all, or mostly, know each other is much
higher in the South than in the country at large. Our conjecture is that a manifestation of this
high-connectivity is the highest apparent percentage of people infected with influenza (20% as
opposed to 4% in other parts of the country).

2. Initiation Spark: An initial spark for the infection wave is generated by a combination of
weather and demographic factors. Specifically, warm, humid places are conducive to influenza
wave initiation - particularly in weeks where specific humidity drops. Airport proximity is impor-
tant, as well as demographic and economic makeup and also the degree of urbanization. Note
that the first static condition (warm humid places) is highly correlated with areas in the South
with greater social connectivity. It is possible that static meteorological variables (warm mean
temperature and high mean humidity) serve as proxies for high social connectivity or other cor-
related socioeconomic factors.

3. Wind: The ‘wind’ in this analogy is the collective movement of a large number of people, inte-
grated over time, revealing persistent ‘currents.’ These currents reproducibly point from coast-
lines and move inwards towards the center of the continent, making them perfect vehicles to
transmit the infection inland from the shores.

Each of our three types of computational approaches has their strengths and weaknesses: (1) The

Poisson mixed-effect regression allows for the direct comparison of the predictive strength of

numerous predictor variables and accounts for spatial and temporal autocorrelation, but relies on

strong modeling assumptions; (2) The non-parametric Granger analysis is not limited by restrictive

modeling assumptions in our implementation, though it focuses only on trends of infection propaga-

tion between counties, and; (3) The county-matching analysis is also model-free, but this freedom

comes at the expense of lesser statistical power.

What is new in this study?
The following aspects make our study of influenza triggers new in the influenza literature: (1) Instead

of simulating the plausibility of one particular epidemic trigger model with a dynamic disease trans-

mission model, we used formal model selection tools to compare the goodness of fit of hundreds of

plausible models; (2) We explicitly attempted to systematically cross-compare the importance of

numerous individual factors typically hypothesized to contribute to epidemic onset; (3) To accom-

plish this, we collected an unprecedented volume of temporal and spatial data on disease dynamics

and the dynamics of putative predisposing factors; (4) We used several orthogonal, computational

causality-inference techniques (one of which was developed specifically for this study) to probe asso-

ciations between disease onset and putative epidemic triggers; (5) We tested our best models for

their predictive potential and demonstrated that they are, indeed, suitable for forecasting disease

waves, and; (6) We combined, for the first time, numerous candidate factors in a single, integrative

study.

Convergent conclusions, culled from these radically different techniques, strengthen our claims

and make it statistically unlikely that we are observing analysis artifacts. First, the Granger causality

analysis results (Approach 1) provide insights into the details of influenza’s epidemiological dynam-

ics. Figure 3G traces out the paths most likely followed by the infection, on average, across the con-

tinental US. We note that ~ 75% of the streamlines sink in counties belonging to the Southern states,

which matches up well with the streamline-encoded dynamics of weekly disease incidence over nine

years (see Figure 3I). What drives this particular causality field’s geometry? While we cannot

Chattopadhyay et al. eLife 2018;7:e30756. DOI: https://doi.org/10.7554/eLife.30756 20 of 44

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.30756


definitively answer this question, a comparison of the global patterns emerges from the local mobil-

ity data culled from the aforementioned Twitter database and offers a tentative explanation (see

Figure 3H). Second, contrary to reported human travel pattern influence on seasonal epidemics

(Viboud et al., 2006) (but consistent with [Gog et al., 2014]), we find that short-distance travel con-

tributes more significantly to disease spread (see Figure 4). In particular, we find that long-range air

travel is important as an epidemic trigger, but once infection waves are triggered, air travel patterns

(or proximity to major airports) become less important. Short-range mobility, on the other hand, is

apparently important for sustaining infection transmission over each season. Thus, we find short-

range travel to be more important for defining the emergent spatio-temporal geometry of infection

waves, while proximity to airports is more important for actually triggering an influenza season; the

latter loses positive influence once an infection is under way. This conclusion is justified as follows:

(1) When we performed regression calculations using all weeks for which data were available (as

opposed to wave initiation weeks only) the airport proximity predictor coefficient turned out to be

statistically significantly negative (see Supplement). (2) Results from our Granger-causal inference

indicate that, on average, the local, putatively causal connections are far stronger compared to the

putatively causal connections between counties within which the major airports are located (see

Figure 4C and F). Additionally, from our best mixed-effect regression model (Figure 1A), we find

that land connectivity effects are significantly stronger than air connectivity effects. The predictive

value of Twitter connectivity, which intuitively captures both local and long-distance travel, lies in-

between land and air connectivity coefficients. Note that Twitter connectivity is represented as a

directed graph, where for each pair of counties, i and j, the ði; jÞ edge weight represents the condi-

tional probability of ending at county j, given that a traveler/Twitter user started her journey in

county i. Transition probabilities from i to j sum to one over all j. Therefore, intuitively, the Twitter

connectivity graph should have the features of both a land-connectivity and an air travel graph;

which indeed appears to be close to reality. 3) While airport diffusion is a significant factor in our

best Poisson model (using data from the initiation period), the causal streamlines (constructed with

the complete, all-year incidence data) do not seem to originate from airport-bearing counties.

The role of short-distance travel is particularly crucial in explaining influenza’s time-averaged,

geo-spatial prevalence. While the mixed-effect regression analysis explains seasonal initiation in the

vicinity of the continental US Southern shores, it might not, by itself, adequately explain its average

prevalence patterns across the country.

Also not explained solely by our regression models is the occurrence of relatively high infection

prevalence in the central parts of the country. These differences cannot be attributed to long-dis-

tance air travel, as discussed before. However, the routes taken by the causality streamlines (as com-

puted by the non-parametric Granger analysis), interpreted as paths followed by an infection on

average, suggest an explanation: The close match between the Granger-causal flow and the short-

range mobility patterns (derived from Twitter analysis) strongly suggest that average disease preva-

lence is modulated by short-range mobility.

Rationale for observational analysis
The traditional empirical approach of testing a causal link between a factor and an outcome of an

experiment was to vary one factor at a time, while keeping the other factors (experimental condi-

tions) constant. This ‘all the rest of the conditions are equal’ assumption is often referred to by its

Latin form as ceteris paribus. R.A. Fisher ([Fisher, 1935], p. 18) noted that, in real-life experiments,

perfect ceteris paribus is not achievable ‘because uncontrollable causes which may influence the

results are always . . . innumerable.’ Fisher’s proposed solution to this problem is to design experi-

ments to involve random assignment of treatment (the putative causal factorâeÔs states) to individ-

ual trials and then use regression analysis to estimate the value and significance of the putative

causal effect.

Likewise, hypothesis-driven science, wherein investigators formulate a single, testable hypothesis

and design specific experiments to test it, is a core element of the scientific method, and works well

in most scientific fields. However, a new challenge emerges in data-rich scientific fields, such as

genomics, epidemiology, economics, climate modeling, and astronomy: How do we choose the

most promising hypotheses among millions of eligible candidates that potentially fit data? One solu-

tion to this challenge is the many-hypotheses approach, a method of automated hypothesis genera-

tion in which many hypotheses are systematically produced and simultaneously tested against all
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available data. This approach is currently used, for example, in whole-genome association or genetic

linkage studies, and often enables truly unexpected discoveries. In contrast to the single-hypothesis

approach, the many-hypotheses approach explicitly accounts for the large universe of possible

hypotheses through calibrated statistical tests, effectively reducing the likelihood of accidentally

accepting a mediocre hypothesis as a proxy for the truth (Nuzzo, 2014).

The many-hypotheses approach provides a complement to carefully controlled and highly

focused wet laboratory experiments. Running controlled experiments to test a single hypothesis nec-

essarily ignores many of the complexities of a real-world phenomenon; these complexities are neces-

sarily present in large, longitudinal datasets. Of course, the data-driven ‘many-hypotheses’ approach

is only one aspect of the broader scientific process progressing toward the development of verifiable

general theories.

Agreement and disagreement between methods
Intuitively, we expected that all three approaches would produce similar, if not identical results. In

practice, while the three approaches agreed in most cases, this agreement was not perfect. For

example, the highlighted areas (greater incidence) in the first influenza season snapshot for

Figure 2A–H each should match relatively well to the maps in Figure 6B (or at least some unspeci-

fied subset of ‘high incidence treatment counties’). While the county-matching results point to initia-

tion at coasts, in Figure 2, 2006-2007 initiation seems to spread from the West Coast and, in , 2010

has a scattered pattern across the middle of the US.

The intuitive explanation of perceived discrepancy is that the matching method agrees with other

analysis types predominantly, but not in all cases. Each analysis has limitations. In the case of the

matching analysis, we have less statistical power than in, for example, Poisson regression; matching

by numerous parameters reduces the initial set of thousands of counties to a handful of matching

‘treated’ counties (which meet a particular combination of weather and sociodemographic condi-

tions) and ‘untreated’ counties (very similar to ‘treated’ ones in all respects but treatment). The diffi-

cult-to-match, ‘weeded out’ counties may happen to be in the coastal areas indicated as the most

likely places of influenza wave origin by other analyses.

In the case of the 2007 and 2010 results, the matching analyses pick patterns that are different

from those produced by the causality streamline analysis and mixed-effect Poisson regression

models.

Figure 6’s Plate B shows the distribution of the treatment counties and matched-non-treatment

counties. Note that here, we are not directly predicting initiation, so while the patterns in Figure 2

and Figure 6 should indeed show some similarity, they are not required to match up perfectly. The

most similar treated counties do indeed show up in the Southern shores.

Generalizability
Our analysis uses no prior knowledge specific to influenza epidemiology. As such, these methods

are not limited by either the pathogen under consideration (influenza), or the geospatial context

(United States). The tools developed here are expected to be equally applicable to analyzing gen-

eral epidemiological dynamics for pathogens other than influenza, unfolding in arbitrary geographi-

cal regions. The specific conclusions we draw about the initiation and propagation of the seasonal

influenza in US might not hold true for influenza epidemiology in a different geographical context.

However, the analysis tools are still applicable. More broadly, our tools delineate a general approach

to modeling complex spatio-temporal dynamics, with applications beyond solely disease

epidemiology.

We conclude by highlighting the structure of overlapping conclusions delivered by our three

approaches. Approach 1: Granger-causality analysis suggests that an epidemic tends to begin in the

South, near water bodies and that short-range, land-based travel is more influential compared to air-

travel for infection propagation, providing a map of mean infection flow across the continental US.

Approach 2: Poisson regression identifies significant predictive factors, ranks these factors by impor-

tance, suggests that Southern shores are where the epidemic begins, and corroborates Approach

1’s result on short-range vs. long-range travel. Approach 3 (county-matching): This approach drills

down further to the epidemic onset source to the Southeastern shores of continental US, and identi-

fies a smaller validated subset of predictive factors.
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Materials and methods
The methods and putative predictors identified in our study should be directly applicable to data

outside the US. While the balance (relative importance) of putative triggers of influenza waves may

vary, the factors themselves should be universal globally, because the virus and host biology are

universal.

Candidate factors in influenza initiation
To investigate county-specific variability, we grouped candidate factors into several categories:

demographic, relation to human movement, infection state of county neighbors, and county’s own

recent state, and climatic.

Major hypotheses regarding putative causal factors affecting infection dynamics can be traced to

a handful of earlier publications:

. Short- and long-range, work-related human movement (Viboud et al., 2006), including air
travel (Colizza et al., 2006; Balcan et al., 2009; Viboud et al., 2006)

. Demographic confounders (Gog et al., 2014; Charu et al., 2017)

. Social contact among children in schools, or the ‘Return-to-school effect’ (Gog et al., 2014)

. Absolute humidity (Shaman and Kohn, 2009)

. Other climate variables (Chowell et al., 2012; te Beest et al., 2013)

. Host immunity, as affected by vaccination coverage, previous infections, and antigenic varia-
tion (Centers for Disease Control and Prevention et al., 2009).

Human movement

We considered two measurements of human movement: (1) The first measurement reflects the prox-

imity of counties to major airports. We computed an exponentially-diffusing influence from counties

with major US airports, weighted by passenger enplanements at their respective locations. This

accounted for people moving to and from both major airports and neighboring counties, and; (2)

The second measurement is a large-scale movement matrix representing people’s week-to-week

travels between counties. These data were culled from a complete collection of geo-located Twitter

messages, captured over 3:5 years, and constituted a large-scale, longitudinal sample of individual

movements. We used only automatically geo-tagged tweets.

Demographic
Influenza is transmitted through direct contact with infected individuals, via contaminated objects,

and virus-laden aerosols. Thus, human population density (how many people happen to be around)

and social connectivity (how many people interact with each other and how frequently

[Bedford et al., 2015]) are factors expected to affect local virus incubation and spread. In addition

to population density, we considered socioeconomic factors such as county-mean household

income, levels of poverty and urbanity, as well as the prevalence of ethnic and age groups. All these

socio-demographic and socio-economic data were derived from reports provided by the US Census

([Web Page]; 2017. Available from: https://www.census.gov/geo/reference/ua/uafacts.html).

Return-to-school effect
Social contact among children in schools has been extensively investigated as a determinant of the

peak incidence rate. This is one of the few factors that might lend itself to intervention relatively eas-

ily, and hence the interest is well-justified. While any reduction in social contact should, in theory,

directly impact transmission, quantifying the effect of this specific mode of contact on the incidence

rate has been difficult to calculate. Predictions of the reduction in the peak incidence associated

with reduced social contact were typically 20–60% (Ferguson et al., 2006; Haber et al., 2007), with

some studies predicting much larger reductions of 90% (Mniszewski et al., 2008; Ghosh and Hef-

fernan, 2010). Reductions in the cumulative attack rate (AR, ratio of the number of new cases to the

size of the population at risk) were usually smaller than those in the peak incidence. Several studies

predicted small ( ~ 10%) or no reduction in the cumulative AR (Ferguson et al., 2006; Haber et al.,

2007; Yasuda et al., 2005; Ciofi degli Atti et al., 2008; Yasuda et al., 2008; Kelso et al., 2009;

Davey et al., 2008; Rizzo et al., 2008; Vynnycky and Edmunds, 2008; Glass and Barnes, 2007;
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Lee et al., 2010; Yang et al., 2011; Zhang et al., 2012), whilst a few predicted substantial reduc-

tions (e.g. 90%) (Glass et al., 2006; Davey et al., 2008; Elveback et al., 1976; Davey and Glass,

2008). Only two studies (Glass et al., 2006; Lee et al., 2010) predicted that peak incidence might

increase markedly under certain circumstances following school closures, for example by 27% if

school closures caused a doubling in the number of contacts in the household and community, or by

13% if school systems were closed for two weeks at a prevalence of 1% in the general population.

Studies have also investigated the effect of such interventions on children vs. adults; one study pre-

dicted an overall reduction in the cumulative AR, but an increase of up to 48% in the cumulative AR

for adults in some situations (Araz et al., 2012).

While this diverse set of predictions in the literature often pertains to the effect of school closures

as an intervention tool, we are more interested in the influence that the current school schedule has,

if any, on triggering an epidemic. To answer this specific question, we formulated a simple statistical

test to determine whether the timing of return-to-school after summer and winter holidays signifi-

cantly predicts influenza season initiation. We found insufficient evidence in support of this effect

(see Methods and materials).

Climate variables
Specific humidity and a drop in temperature have been suggested as the key drivers in triggering

seasonal influenza epidemics (Lowen et al., 2008; Shaman et al., 2010). These initial conclusions

were drawn from experiments conducted using an animal model (guinea pig), under controlled labo-

ratory conditions (Lowen et al., 2008), followed by indirect support from epidemiological modeling

(Shaman et al., 2010).

Vaccination coverage
Vaccination is widely regarded as our most promising tool to combat influenza, though antigenic

variation between seasons makes it difficult to craft an effective vaccination strategy (Boni, 2008).

Understanding how the virus will evolve in the short-term is key to finding the correct antigenic

match for an upcoming influenza season. Additionally, short-term molecular evolution might rapidly

give rise to immune-escape variants that, if detected, might dictate intra-season updates in vaccine

composition. More importantly, vaccination itself might exert significant selection pressure to influ-

ence antigenic drift. The effect of vaccination on viral evolution has been documented in an avian

H5N2 lineage in vaccinated chickens (Lee et al., 2004), suggesting that similar processes might be

occurring in human counterparts. The diversity of the surface proteins at any point in time between

seasons suggests that our current vaccination strategies are limited to confer partial immunity, which

can result in a highly immune or vaccinated population selectively pressurizing the viral population

to evolve more quickly than usual. Given that influenza moves quickly across geographies and that

there are multiple, co-circulating strains that may confer partial cross-protection, changing viral ser-

vice proteins represent a ‘moving target’ for the human immune system. There are additional com-

plexities due to early-life immune imprinting in humans.

Accounting for non-vaccination host immunity
Resistance to influenza infection in human hosts arises via two related mechanisms: immunological

memory from a previous infection by an identical or sufficiently similar strain, or vaccination against

the current strain (or a sufficiently similar strain). In our analysis, we explicitly account for the degree

of vaccination coverage. Accounting for host immunity is more difficult, because resistance to infec-

tion is not directly observable; however, our analysis also uses the antigenic variation of influenza

virus as a proxy to host resistance: If the relative antigenic variation is large, then the susceptibility of

non-vaccinated hosts increases, while low antigenic variation increases the probability of encounter-

ing a resistant host. In addition, we use the absolute antigenic deviation of the later-season virus

from the first-season virus in our data set (winter of 2003–2004) as a predictor, in order to capture

longer-term effects of immunological memory. Thus, if the magnitude of the relative drift between

two succeeding years is small, we have a likely decrease in susceptibility. Likewise, if the absolute

deviation from a few years back starts decreasing, we would also register a decrease in susceptibil-

ity. Incorporating these factors in the diverse set of models that we investigate, guarantees that we

are indeed considering host susceptibility contributions from a wide range of possible mechanisms.
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Antigenic Variation
The influenza virus counteracts host immunity via subtle genomic changes over time. The more grad-

ual process, known as antigenic drift, is a manifestation of a gradual accumulation of mutations

within viral surface proteins recognized by human antibodies, such as hemagglutinin (HA) and neur-

aminidase (NA). These mutations are typically introduced during cycles of viral replication

(Boni et al., 2004). Most of these mutations are neutral, i:e: they do not affect the functional confor-

mation of the viral proteins. However, some of these alterations do, in fact, sufficiently change sec-

ondary and tertiary protein structures to have a negative impact on the binding of host antibodies

raised in response to previously circulating strains (Webby and Webster, 2001). (Many such muta-

tions also reduce the virus’s viability.) Thus, while a single infection episode is potentially enough to

provide long-term host immunity to the invading strain, antigenic variation due to intense selection

pressure gives rise to novel viral strains, making re-infections possible within the span of a few years

(Andreasen, 2003). This kind of perpetual Red-Queen arms race injects influenza dynamics with

auto-correlative dependencies over multiple seasons. It has been suggested that substantial anti-

genic drift might be associated with more severe, early-onset influenza epidemics, resulting in

increased mortality (Treanor, 2004). In contrast to antigenic drift, antigenic shift is an abrupt, major

change in virus structure due to gene segment re-assortment that occurs during simultaneous infec-

tion of a single host by multiple influenza subtypes (De Clercq, 2006). Antigenic shift results in new

versions of viral surface proteins. Antigenic shift due to re-assortment gives rise to novel influenza

subtypes that, if capable of sustained human-to-human transmission, can have devastating conse-

quences for human populations, e:g: the 2009 H1N1 pandemic (Neumann et al., 2009).

In our analysis, we factor in the potential effect of antigenic variation by estimating the surface

protein’s population diversity – hemagglutinin (HA), neuraminidase (NA), matrix protein 1 (M1), and

matrix protien M2 – as a function of time and geographical sample collection location. Our rationale

for our focus on these proteins is that HA, NA, and to some degree M1, are all present on the viral

surface (Lamb et al., 1985), contribute to viral assembly, and mediate the release of membrane-

enveloped particles (Chlanda et al., 2015). M2 has been shown to have enhanced the pandemic

2009 influenza A virus [(H1N1)pdm09] (Friedman et al., 2017) HA-pseudovirus infectivity (Alvarado-

Facundo et al., 2015).

Data sources
Social connectivity
Data was obtained from the General Social Surveys, NORC, See Table 1, [].

Clinical data source
The source of the clinical incidence data used in this study is the Truven Health Analytics Market-

ScanÒ Commercial Claims and Encounters Database for the years 2003 to 2012 (Hansen, 2017). The

database consists of approved commercial health insurance claims for between 17.5 and 45.2 million

people annually, with linkage across years, for a total of approximately 150 million individuals. This

US national database contains data contributed by over 150 insurance carriers and large, self-insur-

ing companies. We scanned 4.6 billion inpatient and outpatient service claims and identified almost

six billion diagnosis codes. After un-duplication, we identified approximately 12:8 unique diagnostic

codes per individual. We processed the Truven database to obtain the reported weekly number of

influenza cases over a period of 471 weeks spanning from January 2003 to December 2013, at the

spatial resolution of US counties. To define influenza in insurance claims, we used the following set

of ICD9 codes: 487.8, 488.12, 488.1, 488.0, 488.01, 488.02, 487.0, 487.1, 488.19, 488.09, 488, 487,

and 488.11. We also considered including non-specific codes representing unspecified viral infection

(079.99), as suggested in (Viboud et al., 2014), and decided against it. (We provide explicit annota-

tion for each code, as well as rationale for choosing narrower ICD-code definition of ILIs, in the Sup-

plement Section S-D).

A peak percentage of ILI-affected people of 20% may seem high–especially given that it is a

much greater percentage than the change in seropositivity over most influenza seasons. Note that

our apparent estimates of influenza infection rate are unavoidably inflated, because what we are

measuring is the week- and county-specific prevalence of influenza-like illnesses among insured

patients who contacted their physician for any reason during the week in question. In other words,
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the denominator that we used for computing prevalence was almost certain to be much smaller than

the overall population of the corresponding county.

Data on antigenic drift for influenza A
Sequence data for this computation was obtained from the National Institute of Allergy and Infec-

tious Diseases (NIAID) Influenza Research Database (IRD) (Zhang et al., 2017) through their web site

at http://www.fludb.org.

Data on vaccination coverage
Data on vaccinations was extracted from our EHR database corresponding to the procedural codes

90661 and Q2037, which corresponds to the dominant influenza vaccines. (http://flu.seqirus.com/

files/billing_and_coding_guide.pdf)

Data on human air travel
We used a complete, directed graph of passenger air travel for 2010, accounting for the number of

passengers transported in each direction (The United States Bureau of Transportation Statistics,

2010). For each county, we computed an air neighborhood network: For counties i and j, the incom-

ing edge to county i represents the proportion of passengers, and pji represents the ratio of all pas-

sengers who traveled from county i to county j by plane,mto the total number of travelers who left

county i by plane during the year, so that
P

j 6¼i pji ¼ 1.

Data on general human travel patterns in the US
Using the complete Twitter dataset, we aggregated a movement matrix to capture people’s week-

to-week travels between counties from geo-located Twitter messages (captured during the period

of January 1, 2011 through June 30, 2014). This dataset includes approximately 1:7� 10
9 messages

and represents 3� 10
8 user-days of location information. A small, but significant, percentage of Twit-

ter messages are automatically tagged with the author’s current latitude/longitude information, as

determined by their mobile device. Each latitude/longitude-annotated tweet was mapped to a FIPS

county code based on Tiger/Line shape files from the 2013 Census dataset (http://www.census.gov/

geo/maps-data/data/tiger-line.html). In addition, we calculated a variant of our movement matrix to

capture seasonality and other temporal dynamics: A set of 52 movement matrices captured weekly,

county-to-county movements, observed in each week of the year, aggregating each week based on

the corresponding observations, from each year from 2011 through 2014.

This dataset constitutes a large-scale, longitudinal sample of individual movements. We found

that the movement patterns are consistent with intuitive patterns and prior studies of large-scale

movements; the majority of people in a county remain in the same county week-over-week. Most

travel between counties occurs between neighboring counties, and between counties and large met-

ropolitan areas, conditioned on distance and size of the metropolitan area. We represent our move-

ment data as an n� n matrix M that captures the likelihood that a person observed in county i

during the course of a week will be observed in county j in the following week. We calculate the

entries mi;j of matrix M as follows:

mi;j ¼
X

t<T

1

Popi;t

X

u<m

xu;i;txu;j;tþ1 (1)

For each time interval, we computed the mean movement vector from a given county by sum-

ming all county-to-county movement vectors, weighted by the proportion of people moving in each

direction.

To investigate the role of proximity to major airports, we modeled influence diffusion as follows:

Let xi be the ith county, and vi be the total contribution obtained by diffusing influences from the

major airport bearing counties. Let x$k be the kth airport-bearing county, and let N be the total num-

ber of major airport locations considered, in our case, N ¼ 27. Let gk be the volume of traffic for the

kth major airport location. We then compute vi as follows:
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vi ¼
XN

k¼1

gke
�C0Qðx

$

k
;xiÞ (2)

where Qð�; �Þ is the distance in miles between two locations, we computed using the Haversine

approximation. The value of the constant C0 was chosen to be 0:1. Small variations in the constant

do not significantly alter our conclusions. As noted above, proximity to airports had a significant pos-

itive influence in sparking seasonal epidemics; the influence is significantly weaker once an outbreak

is well under way.

Estimating antigenic diversity
In this study, we measured antigenic diversity as follows: Let Si;x;t be the set of amino acid sequences

for the ith protein (one of HA, NA, M1, or M2), collected in year t (t ranging between 2003 and

2011), in state x of the continental US. The temporal resolution of the sequence data is thus set to

years instead of weeks, and the spatial resolution to states instead of counties. These resolutions are

coarse compared to our EHR data on infection incidences, and is set in this manner to maintain suffi-

cient statistical power. For each such set of amino acid sequences Si;x;t, we compute the set DðSi;x;tÞ

of pairwise edit distances:

DðSi;x;tÞ ¼ fy : y¼Lðs1; s2Þ; s1; s2 2 Si;x;t; s1 6¼ s2g (3)

where Lðs1; s2Þ is the standard edit distance (also known as the Levenshtein distance) between the

sequences s1; s2. Mathematically, the Levenshtein distance between two strings a;b (of length jaj; jbj

respectively) is given by:

Lða;bÞ ¼ leva;bðjaj; jbjÞ;where (4)

leva;bði; jÞ ¼

maxði; jÞ if min(i,j)=0,

min

leva;bði� 1; jÞþ 1

leva;bði; j� 1Þþ 1

leva;bði� 1; j� 1Þþ 1ðai 6¼bjÞ

8
><
>:

otherwise.

8
>>><
>>>:

(5)

where 1ðai 6¼bjÞ is the indicator function equal to 0 when ai ¼ bj and equal to one otherwise, and

leva;bði; jÞ is the distance between the first i characters of a and the first j characters of b.

The antigenic diversity of the ith protein at time t in state x was then defined as the median of the

distribution of the values in the set DðSi;x;tÞ. Clearly, as the sequences became more diverse at a

point in time and space due to molecular variations brought about by either drifts or shifts, the mea-

sure deviated more from zero. Use of the median provided robustness to outliers.

Importantly, here we did not compare temporal changes in viral antigenic makeup directly, but

estimated the time-specific diversity in the viral protein primary structure. We expected our diversity

measure to be representative of the cumulative changes that occurred within each of the nine influ-

enza seasons.

Estimating vaccination coverage
We incorporated the effect of vaccination coverage by estimating the cumulative fraction of the

population that received the current influenza vaccine within the previous 20 week period. This

approach to estimating vaccination coverage does not correct for season-specific antigenic match,

or the lack thereof. Nevertheless, because we explicitly included measures of antigenic diversity in

addition to vaccination coverage, we expected that effects arising from the degree of antigenic

match would indeed be factored in; if there is a significant mismatch, we expected the antigenic

diversity in that year to be less and vice verse. This assumes implicitly that vaccination does indeed

play a major role in exerting significant selection pressure, the assumption that was reinforced by

our observation of a strong dependency between vaccination coverage and normalized antigenic

diversity.

We found that antigenic diversity is quite strongly affected by vaccination coverage. This reflects

the theoretical predictions in Boni et al. (Boni et al., 2006), where it is shown that the amount of
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observed antigenic drift increases as immunity in the host population increases and pressures the

virus population to evolve.

Estimating the effect of return-to-school days
The absence of consensus, and the diversity of modeling assumptions pertaining to this effect

(described above) makes it difficult to validate conclusions in large scale epidemiological data. We

carried out a simple test to determine whether there is statistical evidence that after-holiday, return-

to-school periods in August-September and in January predict or trigger the seasonal epidemic.

For this test, we assumed a broad window to cover all such school openings across the continen-

tal US including the last week in August, the entire month of September, two weeks in October, and

two weeks in January. We next carried out a Fisher’s exact test to determine whether the overlap

between these weeks and the identified ‘trigger period’ (See Table LABEL:SI-tabschool) for the sea-

sonal epidemic are sufficiently non-random.

Weather data
The dataset starts with the week beginning December 31 st, 2002 and includes 522 weeks (which

ends exactly on the week ending December 31 st, 2012). Temperature and precipitation data come

from the 2.5 arcminute (approximately 4 km) PRISM (Oregon State University, 2014) dataset and

other variables (wind speed, specific humidity, surface pressure, downward incident, and shortwave

solar radiation) come from the 7.5 arcminute (approximately 12 km) Phase 2 North American Land

Data Assimilation System (NLDAS-2) dataset (Mitchell, 2004; Cosgrove et al., 2003). These data-

sets were selected in large part due to the fact that both are updated in near real-time, making it

possible to use these datasets for future monitoring applications. PRISM is released daily, with an

approximately 13 hr delay (data for the previous day is released at 1pm EST each day) while NLDAS

is released daily, with an approximately 2.5 day delay).

Variables were aggregated to county boundaries based on shapefiles from the GADM database

of Global Administrative Areas (Areas, 2014). Where appropriate, we considered both the average

daily climate variable (for example, the daily maximum temperature averaged over the week) as well

as the the maximum and/or minimum of the variable experienced over the week. For precipitation,

we considered only the cumulative total precipitation experienced during the week.

Three approaches
Approach 1: Non-parametric Ganger analysis of county-specific incidence
Analysis of quantized clinical data
For the causality analysis, we started with an integer-valued time series for each US county, and to

carry out the causality analysis, we first quantized the series in two steps:

1. 1. Computing the difference series, i:e:, the weekly change in the number of reported cases.
2. 2. Mapping positive changes to symbol ‘1’ and negative changes to symbol ‘0’.

This mapped each data series to a symbol stream over a binary alphabet. The binary quantization

is not a restriction imposed by the inference algorithm; while we do require quantized magnitudes,

longer data streams can be encoded with finer alphabets to accommodate an arbitrary precision.

For this specific dataset, the relatively short length of the county-specific time-series necessitated a

coarse quantization in order for the results to have a meaningful statistical significance.

Given a pair of such quantized streams sa; sb, the algorithm described in the Supplement com-

putes two coefficients of causality, one for each direction. Intuitively, the coefficient ga
b from sa to sb

is a non-dimensional number between 0 and 1 that quantifies the amount of information that one

may acquire about the second stream sb from observing the first stream (sa). More specifically, ga
b is

the average reduction in the uncertainty of the next predicted symbol in stream sb in bits, per bit,

acquired from observed symbols in stream sa. It can be shown that the coefficient of causality ga
b is 0

if and only if there is no causal influence from sa to sb in the sense of Granger, and assumes the maxi-

mum value 1 if and only if sb is deterministically predictable from sa. Moreover, ga
b ¼ gb

a ¼ 0 if and

only if sa and sb are statistically independent processes (Chattopadhyay, 2014). It is trivial to pro-

duce examples where we would have ga
b ¼ 0; gb

a>0 illustrating the ability of the algorithm to capture

the asymmetric flow of causal influence in one preferred direction and not the other.
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Additionally, whenever we computed the causality coefficient, it was always associated with a

time delay: We calculated the coefficient for predicting the target stream some specified number of

steps in the future, and the computed coefficient was thus parameterized by this delay. In our analy-

sis, we computed coefficients up to a maximum delay of 10 weeks, and, for each pair of counties,

selected the optimum delay which gave rise to the largest coefficient. For more details on the algo-

rithm, see the Supplement.

Computation of causality fields and causality streamlines
To analyze the propagation dynamics of disease, we defined the notion of a Granger causal flow

between two counties. Treating county-specific changes in disease prevalence as a time-stamped

data stream, we quantified the directional strength of the causal flow between two counties as the

degree of predictability of one stream’s future, given the history of the other (see Figure 3A–D).

Our new algorithm was able to compute a coefficient of causality: an information-theoretic measure

of the information in bits that one stream communicates about another in a direction-specific man-

ner. A strong coefficient of this type suggests that either the disease itself, or an underlying cause,

may be propagating from the former county to the latter.

To explore the country-wide propagation dynamics, we stitched together the properly-aligned,

adjacent between-county causal flow vectors across the whole US map into causality streamlines,

representing the average of multiple spatial infection propagation waves over time. To compute

causality streamlines, we needed a precise notion of county neighbors. We considered two counties

to be neighbors if either they shared a common border, or if one county was reachable within a line-

of-sight distance of 50 miles from any point within another. The latter condition removed ambigui-

ties as to whether counties touching at a point should be still considered as neighbors. The exact

distance value (50 miles) does not significantly change our results, as long as it does not vary signifi-

cantly. With the definition of the neighborhood map in place, we proceeded to compute the direc-

tion-specific coefficients of causality between neighboring counties. It follows that we would obtain

a set of coefficients for each county and one for each of its neighbors, capturing the degree of

causal influence from a given particular county to its respective neighbors. Our algorithm also com-

puted the probability of each coefficient arising by chance alone, and we ignored coefficients that

have more than a 6% probability that two independent processes lacking any causal connection

gave rise to the particular computed value of the coefficient. Once the coefficients had been calcu-

lated for each neighbor, we computed the resultant direction of causal influence outflow from that

particular county. This was carried out by visualizing the causality coefficients as weights on the

length of the vectors, from the centroid of the considered county to the centroids of its neighbors.

We then calculated the resultant vector (see Figure 3). Viewed systematically across the continental

US, these local vectors formed a discernible pattern; we observed the emergence of a non-random

structure with clearly discernible paths outlining the ‘causality field’ (see Figure 3, Plates G, J, K). To

interpret the plots, note that streamlines start at their thinnest part, their direction is indicted with

thickening line; typically multiple streamlines coalesce into a river-like pattern.

Inferring statistical ‘Granger-causality’ from data
Granger attempted to obtain a precise definition of causal influence (Granger, 1980) from the fol-

lowing intuitive notion: Y is a cause of X, if it has unique information that alters the probabilistic esti-

mate of the immediate future of X.

Here, we used a new, non-parametric approach to Granger causal inference (Chattopad-

hyay, 2014) (Approach 1). In contrast to state-of-the-art binary tests (Baek and Brock, 1992;

Hiemstra and Jones, 1994), we computed the degree of causal dependence between quantized

data streams from stationary ergodic sources in a non-parametric, non-linear setting.

Our approach was significantly more general to common, regression-based implementations of

Granger causal inference, and did not involve any autoregressive moving average (ARMA) modeling.

All such commonly used techniques impose an a priori linear structure on the data, which then con-

strains the class of dependency structures we can hope to distill.

True causality, in a Humean sense, cannot be inferred (Hume, 1993; Kant, 1998). Among other

reported approaches to ascertaining causal dependency relationships, the work of J. Pearl

(Pearl, 2009a) is perhaps most visible, and builds on the paradigm of structural causal models (SCM)

(Pearl, 2009b). While Pearl’s work is often claimed to be able to answer causal queries regarding
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the effects of potential interventions, as well as regarding counterfactuals, our objective in this paper

is somewhat different. We are interested in delineating whether infection transmission pathways can

be distilled from the patterns of infection’s spatio-temporal incidence.

Approach 2: Poisson regression on putative factors
In Approach 2, we investigated the relative importance of putative factors as follows: Specifically, let

Nijk denote the total number of patients in county i, who are of age j, and gender k. Denoting the

number of individuals diagnosed with influenza in a given county during given week as yijk, we mod-

eled the within-county disease incidence counts for every county (for which data was available) in the

US using the following mixed-effect Poisson regression model:

Pðyijk jli;j;kÞ ¼
l
yijk
ijk e

�lijk

yijk !
(6)

withlijk ¼Nijk exp aþXbþ sib1;i þnib2;iþZv
� 	

;

where, a is the intercept, X and b are a fixed-effect design matrix and a vector of fixed effects,

respectively, si is 1�m vector of changes in rate of infection in the ith county 1;2; ::;m weeks prior to

the current, b1;i is a m� 1 vector of auto-correlation fixed effects, ni is a 1�ð3mÞ vector of changes in

the rate of infection in the neighbors of the ith county 1;2; ::;m weeks prior to the current (the neigh-

bors are subdivided into land neighbors, Twitter neighbors, and air neighbors), b2;i is a ð3mÞ� 1 vec-

tor of county-neighborhoods fixed effects, and v and Z are random effects and their design matrix,

respectively. Variable m represents the depth of ‘memory’ of auto-regression in weeks, in our case

m¼ 4.

In this way, the total number of rows in matrix X is 510� 3; 143 (weeks � counties), with county-

specific socioeconomic covariates and week-specific weather covariates. For disease initiation analy-

sis, we included only a subset of time series covering approximately 50 weeks.

We did not use an explicit spatial smoothing. The county-level random effects were used to

account for possible heterogeneity in disease reporting across counties. However, as predictors, we

used average infection rate values of immediate neighbors for the county (one, two, three, and four

weeks in the past). This prediction structure afforded an implicit spatial smoothing, dampening spuri-

ous fluctuations in infection rates.

Out-of-sample prediction and ROC analysis with mixed-effect poisson
regression
We carried our out-of-sample prediction with the models inferred with mixed-effect regression. The

steps were as follows:

1. We trained the model parameters with data from the trigger periods corresponding to the first
six seasons.

2. Once we identified the coefficient’s variables, we used it to predict the response variable
(influenza incidence) for the last three seasons.

As expected, the predicted incidence does not exactly match the observed out-of-sample data.

Nevertheless, we see positive correlation (Figure 5, Plate A). Because we were modeling a necessar-

ily spatio-temporal stochastic process, the predictive ability of the model is difficult to judge simply

from the observed positive correlation. To resolve this, we investigated the performance of our

model by computing how well it predicted the counties that experience flare-ups during the trigger-

periods in the out-of-sample data. This exercise is reduced to a classification problem, by first choos-

ing a threshold on the number of reported cases per week to define what is meant by a ‘flare-up’

(see description below). To quantify the prediction performance, we constructed ROC curves for

each of the three target seasons, for each fixed week, as follows:

1. We first quantized the incidence data to reduce it to a binary stream. In particular, we chose a
threshold (ten), such that for each county, and each week, we reported a ‘1’ if the number of
reported cases was greater than the threshold, and ‘0’ otherwise. Note this quantization is dif-
ferent to what we used in carrying out our non-parametric Granger analysis in Approach 1.
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2. For each county i, and week j, we then ended up with the binary class variable Xj;i 2 f0; 1g and
a decision variable Yj;i 2 R, where the former is the quantized incidence described above, and

Yj;i is the response predicted by the model, normalized between 0 and 1.

3. For a chosen decision threshold �D 2 R, we could determine the predicted class bXj;i 2 f0; 1g

as:bXj;i ¼
1; if Yj;i�D
0 otherwise

�

4. Comparing the observed and predicted classes, we computed the false positive rate (FPR:
defined as the ratio of false positives to the sum of false positives and true negatives), and the
true positive rate (TPR: defined as the ratio of true positives to the sum of true positives and
false negatives). Finally, we constructed the ROC curve, which shows the relationship of the
TPR and the FPR as the decision-threshold �D is varied.

5. We constructed Receiver Operating Characteristic (ROC) curves for each week in the out-of-
sample period, and estimated the area under curve (AUC). The AUC measures the perfor-
mance of the predictor (our model) to correctly classify the counties that would go on to have
a disease incidence greater than the initial set threshold (ten cases in our analysis). In the per-
fect case, we would have an AUC of 100%, which implies that we can achieve zero false posi-
tives, while getting a 100% true positive rate. Our best model achieves approximately 80%

AUC for the trigger weeks, as shown in Figure 5.

Variable and model selection
Approaches 2 and 3 have different limitations; these affect which approach is most effective at which

statistical detection task.

Approach 2 (mixed-effect regression analysis) can use a whole dataset for model selection, that

can span individual predictors, their combinations, and even interactions between factors (see

Table 5; Figure 1—figure supplement 2; Figure 1—figure supplement 3; Figure 1—figure sup-

plement 4; Source data 2; Source data 3; Supplementray file 3; Source code 1). Model selection

allows us to choose a model with the right balance of complexity and explanatory power, thus

enabling this analysis to detect collinear explanatory variables and drop the weaker predictors that

increase model complexity but do not add explanatory power.

For example, the best model in our mixed-effect regression model series, with deviance informa-

tion criterion (DIC) 185; 926:6 (see Table 5, the last model), includes a term d_max_HUS_min_3 *

d_t_avg_min_3 that denotes an interaction between the weekly change in the maximum specific

humidity and the weekly change in the average temperature, both of which are weather parameter

changes recorded three weeks before the current week. Because it does not split datasets,

Approach two is more powerful at detecting interactions between explanatory variables and rather

complicated models. However, this approach is more susceptible to bias (picking non-causal correla-

tions that are inherent in the raw data), if the data are unbalanced, unlike with Approach 3.

We added and removed random effects to the model structure, taking out and adding fixed

effects, executing the regression algorithm, and plotting the DIC achieved against model complex-

ity. Here, model complexity is simply proxied by the descriptional complexity in terms of how large

the model was (the number of factors in the regression equation). We stopped when the drop in

DIC stabilized (See Figure 1—figure supplement 3 ). Notably, the DIC has been shown to select

overfits (Ando, 2011; Plummer, 2008; van der Linde, 2012), and does not properly account for

model complexity in practice. Our driving idea was the identification of the Pareto front that trades

off accuracy (in terms of DIC) with model complexity in a transparent manner. This is, of course, a

‘greedy approach,’ in the sense that we do not guarantee that we have indeed found the ‘best’ pos-

sible model. However, because our cross-validation (Figure 5) yielded good results, we deemed the

stopping rule to be satisfactory.

Approach 3: County-matching effect analysis
We designed Approach three specifically to balance biased observational data. While Approach

three does not allow for explicit model selection, it is good at detecting simpler combinations of

predictors putatively ‘causally’ affecting the outcome variable. However, because this approach

involves splitting data into smaller and smaller subsets, as the complexity of predictor function

(‘treatment’) grows, it quickly runs out of statistical power.
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These two approaches’ properties explain the perceived misalignment of results from the two

streams of analysis. For an intuitive understanding of matching approaches, consider specific humid-

ity’s effect on influenza prevalence. The county-matching method’s goal is to deduce associations

putatively interpreted as causality relations. For example, consider testing the question of whether

counties with higher-than-average mean maximum specific humidity do, indeed, have higher influ-

enza prevalence, in a statistically significant sense, when compared to counties that do not, provided

all other factors are held constant.

Let Y denote the set of all US counties, and let S be the set of all factors we find to be significant

in our mixed-effect regression analysis. Now, for any subset of factors KS, we denote the comple-

ment set as K ¼ S n K. Additionally, we define the Boolean function T : S� Y ! ftrue; falseg, (the

treatment function) where for some factors s 2 S, and some counties y 2 Y , the Boolean value Tðs; yÞ

is true if the signal or treatment corresponding to the factor s is present in county y. We used the

sign for the coefficients we obtained in our best mixed-effect regression model to determine what

counts as a positive signal. For example, because maximum specific humidity (denoted by the vari-

able max hus avg) enters with a positive coefficient, if county y experiences a higher-than-average

maximum specific humidity, thenTðmax hus avg; yÞ is true.

To simplify the notation, we usedTs
y to denote a true signal, and :Ts

y to denote a false one.

Finally, for any KS, we define the following three sets, which we refer to as the W-sets:

WK
treated ¼ y2 Y :

^

k2K

T
k
y

( )
(8)

WK
matched�control ¼

y2 Y : :
^

k2K

T
k
y

 !
^
 
9y0 2WK

true 8r 2K ðTr
y0 ^T

r
yÞ _ ð:Tr

y0 ^:Tr
yÞ

� �� �!( )
(9)

WK
other ¼ y2 Y : :

^

k2K

T
k
y

 !( )
nWK

matched�control (10)

Clearly, WK
treated is the treated set, that is, the set of counties which exhibit the signal encoded by

the set K is then the matched control set of counties, which lack the signal, but each county in this

set has a matching counterpart in WK
treated.

The W-sets allow us to set up a 2� 2 contingency table for any chosen subset of factors KS as

described before. Specifically, we split the sets WK
treated and WK

matched�control into two subsets each, rep-

resenting those counties which experience a spike in influenza prevalence and which do not. The 2�

2 contingency table is then subjected to Fisher’s exact test.
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Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco JJ, Vespignani A. 2009. Multiscale mobility networks and the
spatial spreading of infectious diseases. PNAS 106:21484–21489. DOI: https://doi.org/10.1073/pnas.
0906910106, PMID: 20018697

Balcan D, Vespignani A. 2011. Phase transitions in contagion processes mediated by recurrent mobility patterns.
Nature Physics 7:581–586. DOI: https://doi.org/10.1038/nphys1944, PMID: 21799702

Barreca AI, Shimshack JP. 2012. Absolute humidity, temperature, and influenza mortality: 30 years of county-
level evidence from the United States. American Journal of Epidemiology 176:S114–S122. DOI: https://doi.
org/10.1093/aje/kws259, PMID: 23035135

Bedford T, Riley S, Barr IG, Broor S, Chadha M, Cox NJ, Daniels RS, Gunasekaran CP, Hurt AC, Kelso A, Klimov
A, Lewis NS, Li X, McCauley JW, Odagiri T, Potdar V, Rambaut A, Shu Y, Skepner E, Smith DJ, et al. 2015.
Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature 523:217–220.
DOI: https://doi.org/10.1038/nature14460, PMID: 26053121

Boni MF, Gog JR, Andreasen V, Christiansen FB. 2004. Influenza drift and epidemic size: the race between
generating and escaping immunity. Theoretical Population Biology 65:179–191. DOI: https://doi.org/10.1016/j.
tpb.2003.10.002, PMID: 14766191

Boni MF, Gog JR, Andreasen V, Feldman MW. 2006. Epidemic dynamics and antigenic evolution in a single
season of influenza A. Proceedings of the Royal Society B: Biological Sciences 273:1307–1316. DOI: https://doi.
org/10.1098/rspb.2006.3466

Boni MF. 2008. Vaccination and antigenic drift in influenza. Vaccine 26:C8–C14. DOI: https://doi.org/10.1016/j.
vaccine.2008.04.011, PMID: 18773534

Brock W. 1991. Causality, chaos, explanation and prediction in economics and finance. In: Casti J, Karlqvist A
(Eds). Beyond Belief: Randomness, Prediction, and Explanation in Science. p. 230–279.

Brockmann D, Helbing D. 2013. The hidden geometry of complex, network-driven contagion phenomena.
Science 342:1337–1342. DOI: https://doi.org/10.1126/science.1245200, PMID: 24337289

CDC. 2016. The United states center for disease control and prevention. http://www.cdc.gov/flu/weekly/
overview.htm [Accessed August, 2016].

Centers for Disease Control and Prevention, Fiore AE, Shay DK, Broder K, Iskander JK, Uyeki TM, Mootrey G,
Bresee JS, Cox NJ. 2009. Prevention and control of seasonal influenza with vaccines: recommendations of the
Advisory Committee on Immunization Practices (ACIP), 2009. MMWR. Recommendations and Reports :
Morbidity and Mortality Weekly Report. Recommendations and Reports 58:1–52. PMID: 19644442

Charu V, Zeger S, Gog J, Bjørnstad ON, Kissler S, Simonsen L, Grenfell BT, Viboud C. 2017. Human mobility and
the spatial transmission of influenza in the United States. PLoS Computational Biology 13:e1005382.
DOI: https://doi.org/10.1371/journal.pcbi.1005382, PMID: 28187123

Chattopadhyay I, Lipson H. 2013. Abductive learning of quantized stochastic processes with probabilistic finite
automata. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
371:20110543. DOI: https://doi.org/10.1098/rsta.2011.0543, PMID: 23277601

Chattopadhyay I, Ray A. 2008. Structural transformations of probabilistic finite state machines. International
Journal of Control 81:820–835. DOI: https://doi.org/10.1080/00207170701704746

Chattopadhyay I. 2014. Causality networks. arXiv. http://arxiv.org/abs/1406.6651.
Chlanda P, Schraidt O, Kummer S, Riches J, Oberwinkler H, Prinz S, Kräusslich HG, Briggs JA. 2015. Structural
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Appendix 1
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Non-parametric Granger Causal Inference

Standard Implementations of Granger Causal Inference
Suppose that one is interested in the possibility that a vector series Yt causes another vector

Xt. Let Jn be an information set available at time n, consisting of terms of the vector series Zt,

that is,

Jn ¼ fZt : tng (11)

Jn is said to be a proper information set with respect to Xt, if Xt is included within Zt.

Further, suppose that Zt does not include any component of Yt, and define

J 0n ¼ fðZt ;YtÞ : tng (12)

Inferring causality in the mean is easier, and if one is satisfied with using minimum mean

square prediction error as the criterion to evaluate incremental predictive power, then one

may use linear, one-step-ahead least squares predictors to obtain an operational procedure: If

VARðXjJnÞ is the variance of one-step forecast error of Xnþ1 given Jn, then Y is a prima facie

cause of X with respect to J 0n if:

VARðXjJ 0nÞ<VARðXjJnÞ (13)

Testing for bivariate Granger causality in the mean involves estimating a linear, reduced-

form vector autoregression:

Xt ¼ AðLÞXt þBðLÞYt þUX;t (14)

Yt ¼CðLÞXt þDðLÞYt þVY;t (15)

where AðLÞ, BðLÞ, CðLÞ, and DðLÞ are one-sided lag polynomials in the lag operator L with

roots all-distinct, and outside the unit circle. The regression errors UX;t;VY;t are assumed to be

mutually independent and individually i.i.d. with zero mean and constant variance. We used a

standard joint test (F or �2-test) to determine whether lagged Y has significant linear

predictive power for current X.

The null hypothesis that Y does not strictly Granger cause X is rejected if the coefficients of

the elements in BðLÞ are jointly significantly different from zero.

Linear tests presuppose restrictive and often unrealistic (Darnell and Evans, 1990;

Epstein, 1987) structure on data. Brock (Brock, 1991) presents a simple bivariate model to

analytically demonstrate the limitations of linear tests in uncovering nonlinear influence. To

address this issue, a number of nonlinear tests have been suggested, e:g:, with generalized,

autoregressive, conditional heteroskedasticity (GARCH) models (Asimakopoulos et al., 2000),

using wavelet transforms (Papadimitriou et al., 2003), or heuristic, additive relationships

(Chu et al., 2005). However, these approaches often assume a class of allowable non-

linearities; thus not quite alleviating the problem of presupposed structure. This is not just an

academic issue; Granger causality has been shown to be significantly sensitive to non-linear

transformations (Roberts and Nord, 1985).

Non-parametric approaches, e:g: the Hiemstra-Jones (HJ) test (Hiemstra and Jones, 1994)

on the other hand, attempt to completely dispense with presuppositions regarding causality

structure. Given two series, Xt and Yt, the HJ test (which is a modification of the Baek-Brock

test [Baek and Brock, 1992]) uses correlation integrals to test if the probability of similar

futures for Xt given similar pasts, change significantly if we condition instead on similar pasts

for both Xt and Yt simultaneously.

Chattopadhyay et al. eLife 2018;7:e30756. DOI: https://doi.org/10.7554/eLife.30756 38 of 44

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.30756


Nevertheless, in order to achieve consistent estimation of the correlation integrals, the data

series are required to be ergodic, stationary, and absolutely regular i:e:-mixing, with an upper

bound on the rate at which the b-coefficients approach zero (Denker and Keller, 1983). The

additional assumptions beyond ergodicity and stationarity serve to guarantee that sufficiently

separated fragments of the data series are nearly independent. The HJ test and its variants

(Diks and Panchenko, 2006; Seth and Principe, 2010) have been quite successful in

econometrics; uncovering nonlinear causal relations between money and income (Baek and

Brock, 1992), aggregate stock returns and macroeconomic factors (Hiemstra and Kramer,

1995), currency future returns (Asimakopoulos et al., 2000) and stock price and trading

volume (Hiemstra and Jones, 1994). Surprisingly, despite clear evidence that linear tests

typically have low power in uncovering nonlinear causation (Hiemstra and Jones, 1994;

Asimakopoulos et al., 2000), the application of non-parametric tests has been limited in areas

beyond financial and macroeconomic interests.

1.1 Our Approach: Non-parametric Approach Based on Probabilistic
Automata
We use a new, non-parametric Granger causality-based test for quantized processes

(Chattopadhyay, 2014).

Going beyond binary hypothesis testing, we quantify the notion of the degree of causal

influence between observed data streams, without presupposing any particular model

structure. Generative models of causal influence are inferred with no a priori, imposed

dynamical structure beyond ergodicity, stationarity, and a form of weak dependence. The

explicit generative models may be used for prediction. The proposed inference algorithms are

PAC-efficient (Chattopadhyay, 2014), i:e, we are guaranteed to find good models with high

probability, and with small sample complexity.

Modeling Framework: Probabilistic Automata and Crossed
Probabilistic Automata
In this section, we briefly describe the notion of probabilistic automata, the inference problem,

the notion of causal states, and the decision fusion strategy for multiple models.

Self Models
The event catalogue’s quantized data streams may be viewed as sample paths from hidden,

quantized stochastic processes that drive the observed dynamics. A self-model for such a

stream is a generative model that captures statistically significant symbol patterns that causally

determine (in a probabilistic sense) future symbols. A good modeling framework for such self-

models are probabilistic finite state automata (PFSA) (Chattopadhyay and Lipson, 2013;

Chattopadhyay, 2014).

One such self model, shown in Figure 1 (Plate A(i)), is an example of a simple PFSA with

two states generated from a binary symbol sequence. Note that, for this particular example, a

sequence 11 localizes or synchronizes the machine to state q2, which then implies that the next

symbol is a 0 with a probability of 0:1 and a 1 with a probability of 0:9. Thus, given this

stream’s self-model, along with the short history 11, we can predict the symbol distribution in

the next time step. Notably, the states in a PFSA are not the alphabet symbols themselves,

but are equivalence classes of symbol sequences (histories) that lead to statistically equivalent

futures. This particular example has two states–not because of the fact that the alphabet is

binary, but because there are only two distinct distributions that dictate the next symbol from

any point in the dynamical evolution. The symbol value is distributed as either ½0:1 0:9� or

½0:3 0:7� over the binary event alphabet, and the current context or ‘state’ dictates which

distribution is in effect chosen. These contexts are simply historical sequence equivalence

classes that could have potentially lead to the present state; the specific history belonging to

whichever current equivalence class actually transpired makes no difference in the future.

Hence, these classes are dynamical states for the discrete stochastic evolution of the system at

hand. The transition structure of the PFSA (represented in the graph as the labeled edges with
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probabilities) specifies how we move between these classes as new symbols are generated, or

as new data is acquired.

The inference problem here is to determine both the number of states and the transition

structure given a sufficiently long, quantized data stream. In our unsupervised approach, there

are no restrictions on admissible graphs for the inferred PFSA, and no a priori constraints on

the number of states that may appear (Chattopadhyay and Lipson, 2013).

Thus, the number of states inferred by our algorithm is a direct measure of the statistical

complexity of the underlying process (Crutchfield, 1994). An inferred single-state, self model

implies that the stream is a sequence of independently generated symbols (white noise or a

Bernoulli process), and is therefore uninformative.

The inference algorithm identifies the number of causal states by searching for distinct

‘contexts’–sequences which, once transpired, lead to a distinct probability distribution of the

next symbol. The computation proceeds as follows (Chattopadhyay and Lipson, 2013):

1. Let the set of all possible sequences up to a length L be denoted as SL.
2. Compute the probability of a future symbol (at a specified time shift) being s0 or s1 after a

specific string ! from the set SL is encountered; call this distribution f! for the string !.

3. Call the set of probability distributions obtained by this method as F.
4. Find clusters in the set F, such that individual clusters are separated by some pre-specified

distance �>0. These clusters represent the causal states, as they are classes of histories

(sequences) that lead to identical, immediate future.

5. Suppose string ! is in cluster qi, and sequence !s0 is in cluster qj; it then follows that, in the

inferred PFSA, there is a transition labeled s0 from the corresponding state qi to state qj. Car-

rying out this procedure for each symbol of the alphabet for each inferred cluster or state

identifies the complete transition structure of the model.

6. Once the transition structure is identified, we choose an arbitrary initial state and step

through the model as dictated by the input data stream. We count the number of times each

edge or transition is traversed, and, by normalizing the count, we arrive at an estimate of the

edge probabilities.

This completes the PFSA inference.

Formal Definition of PFSAs and Future Prediction
Mathematically, a PFSA is a 4-tuple G ¼ ðQ;S; d; epÞ, where Q is the set of states, S is the

symbol alphabet, d : Q� S ! Q is the transition function specifying the graph structure such

that for any state q 2 Q, dðq;sÞ 2 Q is the end state of the transition from state q via symbol s,

and ep : S� Q ! ½0; 1� is the symbol probability function such that for any state q 2 Q, epðq;sÞ 2
½0; 1� is the probability of generating the symbol s 2 S from the state q, with the constraint:

8q2Q;
X

s2S

epðq;sÞ ¼ 1 (16)

We specify a time shift D when we infer a PFSA G from a given input stream; this time shift

is the delay with which the inferred model makes predictions. Specifically, each transition step

in G is translated to D steps in the quantized stream. Thus, if we know that the current state in

the model is q0, then the predicted symbol D steps for the future are s with probability

epðq0;sÞ.
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Appendix 1—figure 1. Intuitive Description of Self and Cross Models. Plate A illustrates the

notion of self-models. Historical data is first represented as a symbol sequence (denoted as

‘Data stream’ in Plate A) using space-time discretization and magnitude quantization. For

example, we may use a spatial discretization of �3
� in both latitudes and longitudes, a

temporal discretization of 1 week, and a binary magnitude quantization that maps all

magnitudes below 4:0 to symbol 0, and all higher magnitudes to symbol 1. This symbol stream

then represents a sample path from a hidden, quantized stochastic process. A self-model is a

generative model of this data stream, which captures symbol patterns that causally determine

(in a probabilistic sense) future symbols. Specifically, our inferred self-model (see Plate A(i) for

an example) is a probabilistic, finite state automata (PFSA). Plate B illustrates the notion of

cross-models. Instead of inferring a model from a given stream to predict future symbols in

the same stream, we now have two symbol streams (Data Stream I and Data Stream II), and

the cross-model is essentially a generative model that attempts to predict symbols in one

stream by reading historical data in another. Notably, as shown in Plate B(i), the cross-model is

syntactically not exactly a PFSA (arcs have no probabilities in the cross-model, but each state

has an output distribution). We call such models ”crossed probabilistic finite state automata,’

or XPFSA. Once these models are inferred, they may be used to predict the future evolution

of the data streams. Thus, the self-model in Plate A may be initialized with its unique

stationary distribution, after which a relatively short observed history would dictate the current

distribution on the model states. This, in turn, would yield a distribution over the symbol

alphabet in the next time step. For a cross-model, we would be able to obtain future symbol

distribution in the second stream, given a short history in the first stream. Note that the cross-

model from I! II is not necessarily the same as the cross-model in the other direction.

DOI: https://doi.org/10.7554/eLife.30756.033

Note that, if we have two models G1 ¼ ðQ1;S; d1; ep1Þ and G2 ¼ ðQ2;S; d2; ep2Þ with time shifts

D1 and D2 respectively, it follows that with each step the models make predictions at different

points in time in the future.

Note that to make a prediction using a PFSA, we must know its current state. This is non-

trivial in general due to the synchronization problem (Chattopadhyay and Lipson, 2013;

Chattopadhyay, 2014). We find an approximation of the current state as follows:
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1. Compute the he PFSA states’ stationary distribution using standard Markov chain tools.
2. Treat the stationary distribution row vector } as the initial state distribution. The rationale

here is that if we assume that the model has been operating for a sufficient length of time,

the current distribution must be very close to the stationary distribution in the expected

sense.

3. Compute the square matrices, Gs 2 RjQj�jQj, for each symbol s 2 S, such that the ijth element

of Gs, denoted as Gsjij, which signifies the probability of going from state qi to state qj via

the symbol s.

4. Use a relatively short history h ¼ s1 � � �s‘ of past symbols (before the current time) to update

the state distribution as follows:

}½k� ¼ normalize }½k�1�
Ghk

� �
;k¼ 1; � � � ; ‘ (17)

where hk is the kth entry of the short history h, and }½k� is the state distribution at step k. It

follows from ergodicity that the updated distribution }‘ is an estimate of the current state

distrbution.

The predicted distribution over the symbol alphabet D steps in the future (if the time shift

for the model is D), is then simply:

Prðspredicted ¼ sÞ ¼
X

q2Q

}‘
qepðq;sÞ (After D time steps)

where }‘
q is the current probability for state q, i:e:, the entry corresponding to state q in }‘.

Cross Models
Unlike a self model, which attempts to predict future symbols in the same stream, a cross

model attempts to predict symbols in a target stream after reading a short history in the

source stream. Plate B(i) in Figure 1 illustrates a simple cross model with two states. Note that

the model syntax is different from a PFSA; in particular, there are no probabilities on the arcs,

though each state has a specified output distribution. Thus, if we see sequence 101101 in data

stream sB (See Figure 1, Plate B), then we are in state q2 in the cross-model, and hence the

next symbol in the data stream sA can be predicted to be 0 with a probability of 0:7 and 1 with

a probability of 0:3. We call such models crossed Probabilistic Finite State Automata (XPFSA)

(Chattopadhyay, 2014). A cross model state or an XPFSA has a slightly different

interpretation from PFSA; while PFSA states are equivalence classes of histories that lead to

identical futures in the same stream, the XPFSA are equivalence classes of histories in the

source stream that lead to identical futures in the target stream (the future evolution in the

target stream does not matter).

XPFSA inference ˜ (Chattopadhyay, 2014) is similar in principle to PFSA inference. Here,

we have two input data streams, the source stream sA over the source alphabet SA, and the

target stream sB over the source alphabet SB. The broad steps are as follows:

1. Let the set of all possible sequences up to a length L in source stream sA be denoted as SAL .

2. Compute the probability of a future symbol (at a specified time shift) being s 2 SB in the tar-

get stream sB after a specific string ! from the set SAL is encountered in the source stream;

call this distribution fsA ;sB
! for the string !.

3. Call the set of probability distributions obtained in this manner as FsA ;sB .
4. Find clusters in the set FsA;sB , such that the clusters are separated by some pre-specified dis-

tance �>0. These clusters now represent causal states of the cross-dependence between the

stream (from sA to sB), because they are classes of histories (sequences) in the source stream

that leads to identical, immediate futures in the target stream.

5. Suppose string ! is in a cluster corresponding to state qi, and sequence !s0 is in a cluster

corresponding to qj; it then follows that, in the inferred XPFSA, there is a transition labeled

s0 from the corresponding state qi to state qj. Carrying out this procedure for each symbol of

the source alphabet for each inferred cluster or state identifies the complete transition
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structure of the cross model. Note that the cross-model transitions are only labelled with

symbols from the source alphabet.

6. Once we have identified the transition structure, we choose an arbitrary initial state in the

XPFSA and step through the model as dictated by the source data stream. Each time we

reach a particular state in the cross-model, we note which symbol from target alphabet SB

transpires in the target stream (at the specified time shift). Once we reach the end of the

input source stream, we normalize the symbol count vectors corresponding to the cross-

model states, and this determines the output distribution at each state. Note that each out-

put distribution is a probability distribution over the target alphabet. This completes the

XPFSA inference.

An XPFSA may be thought of as a direct generalization of a PFSA, and any PFSA can be

represented as an XPFSA. To illustrate this, note that predicting future symbols in the same

stream can be thought of as predicting symbols is a second, but identical, copy of the first

stream.

If all histories in a source stream are equivalent in this sense, then we have a single state

XPFSA, which implies that the source cannot provide any new information on what is going to

happen in the target stream based on its own history. Hence, that source lacks any causal

influence on the target. Thus, as before, the complexity of the inferred models is directly

related to the statistical complexity (Crutchfield, 1994) of the learnable, dynamical

relationships underlying data streams themselves.

XPFSAs are asymmetric in general; the model for how a source influences a target does not

need to be identical when the roles played by the streams are reversed. However, two streams

are statistically independent if and only if the XPFSAs in both directions are single state

machines (Chattopadhyay, 2014).

This leads us to the notion of the causality coefficient, gA
B, from data stream sA to data

stream sB. True to Granger’s notion of statistical causality, gA
B rigorously quantifies the amount

of additional information we can obtain about the immediate future in stream sB through

observing stream sA.

Explicitly, the coefficient is defined as the ratio of the expected change in the entropy of

the next-symbol distribution in stream sB conditioned over observations in the stream sA to the

entropy of the next-symbol distribution in stream sB, conditioned on the fact that no

observations are made on stream sA. We show that causality coefficient gA
B takes values on the

closed unit interval and that higher values indicate a stronger predictability of sB from sA, i:e:,

therefore, a higher degree of causal influence. We have g ¼ 0 if and only if the inferred

machine has a single state, and streams sA; sB are statistically independent if and only if

gA
B ¼ gB

A ¼ 0.

Thus, the interpretation of the causality coefficient which is central to our development is as

follows:

gA
B ¼ 0:3 (say) from sA to sB means that we can acquire, on average, 0:3 bits of additional

information about sB from each bit read from sA, over what is already available from the past

history of sB.

This is very different from computing correlations, and it assumes no model structure a

priori for the hidden dynamics driving the data streams.

Importantly, it turns out that inferring self models is simply a special case of cross model

inference, in which the target stream is simply a time-shifted version of the first stream.

Formal Definition of XPFSAs and Future Prediction
Formally, an XPFSA is also a 4-tuple GA!B ¼ ðQ;SA;D; epÞ, where Q is a set of states, SA is the

input alphabet. The transition function d : Q� SA ! Q is defined as before (in the case of the

PFSA), but the symbol probability function is defined as ep : Q� SB ! ½0; 1�, with

8q2Q;
X

s2SB

epðq;sÞ ¼ 1 (18)

where SB is the target alphabet, which is distinct from SA in general. Note that the symbol

distribution specified by ep is over the target alphabet SB.
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As before, there is a time shift D associated with inferred XPFSA, such that each symbol

transition in the model maps to D steps in the target stream. If we know the current state of

the XPFSA to be q0, and we observe symbol s 2 SA in the source stream, then the predicted

symbol in the target stream (D steps in the future) is s0 2 SB, with a probability of

epðdðq0;sÞ;s0Þ.

As before, determining the current state in the XPFSA is non-trivial. We estimate the

current state distribution in a manner similar to that used for self models:

1. Note that the XPFSA graph does not have probabilities on it edges. However, the corre-

sponding source stream’s self model does have symbol probabilities on its own edges, and it

models the source stream. The problem is that the graph for the self model, and that of the

cross model, might not be identical. We solve this problem using projective composition of

probabilistic automata (Chattopadhyay and Ray, 2008). This operation takes the self model

for the source stream GA, and projects it on the inferred XPFSA graph GA!B, and the result is

a PFSA GA3:0pt�3:0pt

�����!

GA!B with the same structure as that of GA!B.

2. Once we obtain GA3:0pt�3:0pt

�����!

GA!B, we can estimate its current state as described in the

case for self models (using observed symbols in the source stream).

3. Let the current state distribution be }‘. Then, the predicted future symbol (at time shift D) in

the target stream is s0 2 SB with a probability of:

Prðspredicted ¼ s0Þ ¼
X

q2Q

}‘
qepðq;s0Þ

where GA3:0pt�3:0pt

�����!

GA!B (note we are using the ep from the XPFSA, and not from the

projected PFSA).

Computation of the Coefficient of Causality
Let HA;HB be stationary ergodic processes over finite alphabets SA;SB respectively. Then, the

causal dependence coefficient of HB on HA, denoted as gA
B, is formally defined as the ratio of

the expected change in the entropy of the next symbol distribution in HB. This is due to

observations in HA, which show the entropy of the next symbol distribution in HB. In the

absence of data in HA, i:e:, we have (Chattopadhyay, 2014):

gA
B ¼ 1�

E h fHA ;HB

x

� �� �

h f
HA ;HB

l

� � (19)

where the entropy h uð Þ of discrete probability distribution u is given by
P

i ui log2 ui, l is the

empty string, and Eð�Þ is the expectation operator over all possible sequences in the source

stream. Once we infer the cross model, computing gA
B is straightforward.

Choice of Quantization Schemes
The weekly time series of county-specific records for the number of reported influenza cases is

quantized to a binary stream. If yk is the number of reported cases for a given fixed county at

the week index k, then the quantized binary stream yk is obtained as follows:

yk ¼
1 if yk>yk�1

0 otherwise

�
(20)
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