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The eukaryotic spindle assembly checkpoint (SAC) delays anaphase
in the presence of chromosome attachment errors. Bub3 has been
reported to be required for SAC activity in all eukaryotes examined
so far. We find that Bub3, unlike its binding partner Bub1, is not
essential for the SAC in fission yeast. As Bub3 is needed for the
efficient kinetochore localization of Bub1, and of Mad1, Mad2 and
Mad3, this implies that most SAC proteins do not need to be
enriched at the kinetochores for the SAC to function. We find
that Bub3 is also dispensable for shugoshin localization to the
centromeres, which is the second known function of Bub1. Instead,
Bub3, together with Bub1, has a specific function in promoting the
conversion from chromosome mono-orientation to bi-orientation.
Keywords: Bub1; Bub3; fission yeast; mitosis; spindle assembly
checkpoint
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INTRODUCTION
The spindle assembly checkpoint (SAC) is a signalling mechanism
that delays anaphase until all chromosomes have achieved correct
attachment to the mitotic spindle (Musacchio & Salmon, 2007). The
core components of the SAC, the proteins Mad1, Mad2, Mad3/
BubR1, Bub1, Bub3 and Mps1/Mph1, were first identified in budding
yeast and their orthologues have subsequently been found in many
other eukaryotes. During mitosis, SAC proteins are concentrated at
kinetochores that are not attached to microtubules. A common
hypothesis suggests that they become ‘activated’ at the kinetochores
and subsequently, on leaving the kinetochore, generate a diffusible
checkpoint signal, which ultimately inhibits the anaphase-promoting
complex or cyclosome (Peters, 2006). Recent studies have indicated
that Mad2 does indeed need to contact a complex of Mad1 and

Mad2 at unattached kinetochores, and that Mad2 and Mad3 are
directly involved in inhibiting the anaphase-promoting complex or
cyclosome (Millband & Hardwick, 2002; De Antoni et al, 2005;
Nezi et al, 2006; Nilsson et al, 2008; Kulukian et al, 2009). Although
Bub1, Bub3 and Mps1 are also found to be present at unattached
kinetochores (Musacchio & Salmon, 2007), their function there and
in SAC signalling in general, is less defined.

Several proteins with a crucial role in the SAC have additional
functions during mitosis. Human BUBR1, BUB1 and BUB3 are
required for stable kinetochore–microtubule attachments (Ditchfield
et al, 2003; Lampson & Kapoor, 2005; Meraldi & Sorger, 2005;
Logarinho et al, 2008); however, their molecular role in promoting
this attachment is not well understood. A function of Bub1 in
ensuring correct chromosome segregation has also been described in
yeast (Bernard et al, 1998; Warren et al, 2002). Bub1 is needed for
the localization of shugoshin proteins to the centromere (Kitajima
et al, 2004), which are also involved in promoting correct
chromosome attachment (Indjeian et al, 2005; Kawashima et al,
2007; Vanoosthuyse et al, 2007; Kiburz et al, 2008). Consequently, it
has been assumed that Bub1 promotes correct chromosome segrega-
tion through its action on shugoshin (Fernius & Hardwick, 2007;
Hauf et al, 2007). Bub3 interacts with Bub1 in all eukaryotes
examined so far (Musacchio & Hardwick, 2002), but whether Bub3
is also required for shugoshin localization has not yet been assessed.

Here, we show that, unlike its binding partner Bub1, Bub3 in
fission yeast is neither essential for shugoshin localization nor for
SAC activity. However, fission yeast Bub3 and its association with
Bub1 are required for correct chromosome segregation, and our
data indicate that Bub3 and Bub1 together promote the transition
from monopolar to bipolar chromosome attachment.

RESULTS AND DISCUSSION
Fission yeast Bub3 is not essential for the SAC
To study SAC activity in fission yeast, we established a live-cell
imaging assay using Plo1–GFP (green fluorescent protein). Plo1
localizes to spindle pole bodies (SPBs) specifically from the point
of entry into mitosis to the onset of anaphase (Bahler et al, 1998;
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Mulvihill et al, 1999). To create a situation in which the SAC is
active, we used the b-tubulin nda3-KM311 allele (Hiraoka et al,
1984). At restrictive temperature, nda3-KM311 mutant cells are
unable to form microtubules and cells show a delay in mitosis that
persists for several hours (Fig 1A; supplementary Fig S1A online).
When the SAC is inactivated by the deletion of mad1, mad2
or bub1, the mitotic delay cannot be sustained and cells exit
mitosis within 1 h. We observed that deleting bub3 did not have
the same effect and such cells were able to remain in mitosis for
considerably longer. We obtained similar results when eliciting
SAC activity through conditional mutants of kinesin-5 (cut7-446)
and cohesin (psc3-1T; supplementary information online, note 1;
supplementary Fig S2 online). Drosophila Bub3 has been shown
to have a function in cell-cycle progression (Lopes et al, 2005).
Therefore, we considered the possibility that bub3D nda3-KM311
cells remained in mitosis because Bub3 was required for
the efficient progression into anaphase. However, the additional
deletion of mad2 in nda3-KM311 bub3D cells considerably
shortened mitosis (Fig 1A), indicating that the SAC had been
active in nda3-KM311 bub3D cells and that Bub3 was not
essential for progression into anaphase. Together, this indicates
that fission yeast Bub3 is not essential for SAC activity, which is
consistent with studies by two other groups (Tange & Niwa, 2008;
V. Vanoosthuyse & K. Hardwick, personal communication). By
contrast, two previous studies had reported that Bub3 is necessary
for SAC function in fission yeast (Millband & Hardwick, 2002;
Vanoosthuyse et al, 2004), as it is in many other eukaryotes (Hoyt
et al, 1991; Kalitsis et al, 2000; Campbell & Hardwick, 2003;
Meraldi et al, 2004; Lopes et al, 2005). We think that the use of
indirect assays to judge SAC function in these earlier studies led to
misinterpretation (supplementary information online, note 2).

Fission yeast Bub3 has been reported to bind to Mad3 and
Bub1, and to be required for their localization to kinetochores
(Millband & Hardwick, 2002; Vanoosthuyse et al, 2004; Kadura
et al, 2005). In addition, we find that Bub3 is required for the
kinetochore localization of Mad1 and Mad2 (Fig 1B; supplemen-
tary Fig S3 online). This implies that the SAC can function with
undetectable levels of these SAC proteins at the kinetochores,
which is not entirely consistent with the standard model
(Musacchio & Salmon, 2007; Simonetta et al, 2009). It also
indicates that fission yeast Bub3 remains intimately linked to the
SAC and we hypothesize that, even in fission yeast, Bub3
contributes to SAC signalling but not in an essential manner.
Interestingly, Caenorhabditis elegans Bub3 becomes dispensable
for SAC activity when Mad2 levels are subtly elevated (Essex
et al, 2009). It is therefore possible that Bub3 has a similar
role in the SAC of all eukaryotes, but whether it is essential
for SAC activity or not depends on other parameters in the SAC
signalling network.

Bub3 is required for correct chromosome segregation
Cells lacking Bub3 are sensitive to the microtubule-destabilizing
drug benomyl (Millband & Hardwick, 2002; Vanoosthuyse et al,
2004), which is a common phenotype of mutants that cause
chromosome segregation defects. Indeed, cells lacking Bub3
showed a delay in mitosis, which was dependent on a functional
SAC (Fig 2A). When directly monitoring the segregation of
chromosome 2 in bub3D cells by using live-cell imaging, we
observed only a slight increase in mis-segregation compared
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Fig 1 | Bub3 is not essential for the SAC, but for the efficient localization

of SAC proteins. (A) Cells expressing plo1–GFP and the b-tubulin

nda3-KM311 allele were followed by live-cell microscopy at 17 1C. The

duration of prometaphase was determined by the presence of Plo1–GFP

on the SPBs. Circles indicate cells in which the entire prometaphase

took place within the recording time. Triangles indicate cells that had

not exited prometaphase when recording was stopped; thus the actual

time of prometaphase must be longer than this value. Kymographs

of exemplary cells are shown in supplementary Fig S1A online.

(B) Kymographs of exemplary mitotic cells that were followed by

live-cell microscopy at 30 1C using Sid4–mCherry to visualize SPBs.

A quantitative analysis is shown in supplementary Fig S3 online.

GFP, green fluorescent protein; SAC, spindle assembly checkpoint;

SPB, spindle pole body.
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to wild-type cells (Fig 2B; Vanoosthuyse et al, 2004). In an
unperturbed mitosis, kinetochores are in close proximity to
SPBs and chromosomes often achieve bi-orientation without
any visible intermediate state. By contrast, when microtubules
are depolymerized, kinetochores tend to ‘uncluster’ from SPBs.
On microtubule repolymerization, chromosomes need to be
retrieved towards the spindle and often undergo a transient state
of mono-orientation before reaching bi-orientation (Grishchuk
& McIntosh, 2006; Franco et al, 2007; Gachet et al, 2008).
We monitored chromosome segregation after depolymerizing
microtubules by using the microtubule-destabilizing drug
MBC (methyl-benzimidazole-2-yl carbamate), and then washing
out MBC. This led to a strong increase in chromosome
mis-segregation in cells lacking Bub3 (Fig 2B), which indicates

that Bub3 is more important for correct kinetochore–microtubule
attachment in a situation in which kinetochores become
unclustered from the SPBs.

Bub3 and Bub1 are required to promote bi-orientation
As chromosome segregation in bub3D cells was particularly
perturbed after microtubule depolymerization and repolymeriza-
tion, we followed chromosome segregation in these cells more
closely. We used the kinetochore protein Mis6 fused to mCherry
and GFP–tubulin as markers, which allowed us to follow all
three chromosomes simultaneously (Fig 3A). By the time imaging
started after washout of the drug, the chromosomes of wild-type
cells had often achieved bi-orientation. Only 7% of all chromo-
somes showed clear mono-orientation for longer than 10 min
(Fig 3C) and chromosome attachment was usually corrected to
bi-orientation within 30 min (Fig 3B,D; supplementary information
online, note 3; supplementary Fig S4A online). By contrast, bub3D
cells more frequently showed mono-oriented chromosomes (20%
of all chromosomes; Fig 3C) and, crucially, mono-oriented
chromosomes in bub3D cells only became bi-oriented after a
considerable delay, if at all (Fig 3B,D; supplementary Fig S4B–D
online). Our results therefore suggest that Bub3 is involved in
converting the mono-orientation of chromosomes to bi-orientation.
Cells lacking Bub3 delayed anaphase when mono-oriented
chromosomes were present (supplementary Fig S5 online), further
supporting the idea that the SAC is functional in bub3D cells
(supplementary information online, note 4). To test whether the
role of Bub3 in promoting the conversion from mono-orientation
to bi-orientation is shared with its interaction partner Bub1,
we assayed chromosome segregation under similar conditions
using a specific bub1 mutant (bub1-DGLEBS), which lacks the
Bub3-interacting region (Larsen et al, 2007). Bub1-DGLEBS did
not localize to kinetochores, abolished Bub3 localization to
kinetochores (supplementary Fig S6 online), but preserved SAC
activity (V. Vanoosthuyse & K. Hardwick, personal communica-
tion). Cells expressing the bub1-DGLEBS mutant showed a defect
in converting chromosome mono-orientation to bi-orientation
that was similar to bub3D cells (Fig 3B–D; supplementary Fig S4E
online). Thus, Bub1 and Bub3 together promote bipolar chromosome
attachment in fission yeast.

Sgo2-independent bi-orientation by Bub3 and Bub1
In fission yeast, Sgo2 is the only mitotic shugoshin protein and its
localization depends on Bub1 (Kitajima et al, 2004). Deletion of
sgo2 also increases mis-segregation specifically after microtubule
depolymerization and repolymerization (Kawashima et al, 2007;
supplementary Fig S7 online). As Bub1 interacts with Bub3
(Vanoosthuyse et al, 2004; Kadura et al, 2005), it is possible
that the defect in bi-orienting chromosomes in bub3D and
bub1-DGLEBS cells resulted from a loss of Sgo2 function.
However, unlike in cells lacking Bub1, Sgo2 still localized to
the centromeres in the bub3D or bub1-DGLEBS mutants (Fig 3E;
supplementary information online, note 5). To determine whether
the bi-orientation defect seen in bub3D and bub1-DGLEBS cells
could nevertheless be due to the loss of Sgo2 function, we
followed chromosome segregation in sgo2D cells after release
from MBC arrest. We found that cells lacking Sgo2 had
pronounced defects in attaching and segregating chromosomes
correctly (supplementary Movie online). However, sgo2D cells
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Fig 2 | Bub3 is required for correct chromosome segregation. (A) The

duration of prometaphase at 30 1C in bub3D, bub3D mad2D, mad2D
and wild-type (wt) cells was determined by live-cell microscopy using

Plo1–GFP as a marker. In all box-whisker graphs, the lines from top to

bottom are: maximum value, 75th percentile, median, 25th percentile and

minimum value. (B) Cells carrying cen2–GFP and mCherry–atb2(tubulin)

were synchronized with HU, released from HU arrest and arrested in

mitosis by treatment with the microtubule-destabilizing drug MBC for

3.5 h. After washout of MBC, segregation of chromosome 2 (cen2–GFP)

was followed by live-cell microscopy at 20 1C. Only those cells that

were already in mitosis when recording was started were considered.

Mis-segregation in unperturbed mitosis was similarly determined by

live-cell microscopy at 20 1C after HU release. GFP, green fluorescent

protein; HU, hydroxyurea.
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showed a similar fraction of mono-oriented chromosomes as
wild-type cells (Fig 3C), and rarely showed a delay in bi-orienting
chromosomes that had been pulled towards one SPB (Fig 3B,D;
supplementary Fig S4F online). When bub3 was deleted in
addition to sgo2, mono-orientation was prolonged, similar to the
bub3D single mutant (Fig 3B,D; supplementary Fig S4G online),
making it unlikely that Sgo2 acts downstream of Bub3 in
promoting chromosome bi-orientation. Therefore, we suggest that
Bub1 and Bub3 together have a Sgo2-independent role in
promoting the conversion from chromosome mono-orientation
to bi-orientation. In human cells, knock down of BUB1 or BUB3
by RNA interference also causes a chromosome congression
defect (Ditchfield et al, 2003; Meraldi & Sorger, 2005; Logarinho
et al, 2008), which might not be caused exclusively by the loss
of shugoshin from the kinetochores (Klebig et al, 2009). Thus,
this function of Bub1 and Bub3 might be conserved between
yeast and humans.

Separate pathways for the correction of mono-orientation
Little is known about the molecular events that occur during
conversion from chromosome mono-orientation to bi-orientation
in any organism. Mono-oriented chromosomes might be captured
directly by microtubules reaching over from the other pole (direct
pathway; Fig 4A). In vertebrate cells, mono-oriented chromo-
somes can move on pre-existing kinetochore microtubules
towards the centre of the spindle (indirect pathway; Fig 4A;
Kapoor et al, 2006). As Bub3 localizes to mono-oriented
chromosomes up to the moment of bi-orientation (Fig 4B), and
the abolishment of Bub3 and Bub1 localization to the kineto-
chores in the bub1-DGLEBS mutant leads to persistent mono-
orientation (Fig 3B–D), we favour the idea that Bub3 and Bub1
promote bi-orientation by modulating kinetochore–microtubule
interactions at the mono-oriented chromosome (indirect pathway).
An additional observation supports the view that the direct
pathway is functional in bub3D cells: when one or more
chromosomes remain mono-oriented or unattached, spindles
often undergo cycles of elongation and shrinkage (Fig 5;
supplementary information online, note 6; supplementary
Figs S4D, S8A online). Interestingly, mono-oriented chromosomes
in bub3D cells often achieved bi-orientation when the spindle
was short (Fig 5C,D). Our interpretation is that mono-oriented
chromosomes in bub3D cells are able to achieve bi-orientation
through capture from the opposite spindle pole (direct pathway),
which is more likely to happen when spindles are short (Fig 5A).
This also explains why chromosome segregation of bub3D cells
is only slightly affected in an unperturbed mitosis (Fig 2B). In
this situation, chromosomes are clustered close to the separating
SPBs at the onset of mitosis and, hence, can rapidly achieve
bi-orientation through the ‘direct’ pathway while the spindle is
still short. After MBC release, by contrast, chromosomes first
need to be retrieved towards the SPB by astral microtubules, and
the spindle elongates while this happens. Once mono-oriented
chromosomes reach the SPB, direct capture becomes unlikely
owing to the paucity of long microtubules coming from the
opposite pole (Grishchuk et al, 2007). Bi-orientation, therefore,
needs a mechanism to move chromosomes closer to the opposing
SPB, which depends on Bub3 and Bub1 (Fig 4A; supplementary
information online, note 7). How Bub3 affects kinetochore–
microtubule interactions of mono-oriented chromosomes remains

an open question. A study in budding yeast did not find any
evidence for a direct interaction between Bub3 and microtubules
(Guenette et al, 1995). One candidate for a mediator between
Bub3 and microtubules is dynein, which has been found to
interact with Bub3 in the mammalian system (Lo et al, 2007)
and to show a genetic interaction in the fungus Aspergillus
nidulans (Efimov & Morris, 1998). In fission yeast, deletion of the
dynein heavy chain (dhc1) causes a defect in the transition from
chromosome mono-orientation to bi-orientation that resembles
that seen in bub3D cells (Grishchuk et al, 2007). For C. elegans,
it has been proposed that dynein is involved in the regulation
of microtubule attachment during both mono-orientation and
bi-orientation (Gassmann et al, 2008). Thus, Bub1, Bub3
and dynein might cooperate at the kinetochores to promote
chromosome bi-orientation.

METHODS
Strains, media and imaging conditions. Strains of fission yeast
used in this study are listed in supplementary Table S1 online. The
bub1-DGLEBS mutant was constructed by deleting the bases
corresponding to amino-acids 264–299 (GKRV...SSIQ). For live-
cell imaging, cells were grown in Edinburgh minimal medium
(Moreno et al, 1991) containing the necessary supplements and
mounted in glass-bottom culture dishes (Ibidi (Martinsried,
Germany) or MatTek (Ashland, MA, USA)). Live cell imaging
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was carried out on a DeltaVision Core system (Applied Precision,
Issaquah, WA, USA) equipped with a climate chamber. MBC
(Sigma, St Louis, MO, USA, 45368) was used at a final
concentration of 20 mg/ml. Detailed descriptions of culture
conditions, live-cell imaging and image analysis are available in
the supplementary information online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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