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Aims Through this proof of concept, we studied the potential added value of machine learning (ML) methods in building
cardiovascular risk scores from structured data and the conditions under which they outperform linear statistical
models.

...................................................................................................................................................................................................
Methods and
results

Relying on extensive cardiovascular clinical data from FOURIER, a randomized clinical trial to test for evolocumab
efficacy, we compared linear models, neural networks, random forest, and gradient boosting machines for predict-
ing the risk of major adverse cardiovascular events. To study the relative strengths of each method, we extended
the comparison to restricted subsets of the full FOURIER dataset, limiting either the number of available patients
or the number of their characteristics. When using all the 428 covariates available in the dataset, ML methods sig-
nificantly (c-index 0.67, P-value 2e-5) outperformed linear models built from the same variables (c-index 0.62), as
well as a reference cardiovascular risk score based on only 10 variables (c-index 0.60). We showed that gradient
boosting—the best performing model in our setting—requires fewer patients and significantly outperforms linear
models when using large numbers of variables. On the other hand, we illustrate how linear models suffer from
being trained on too many variables, thus requiring a more careful prior selection. These ML methods proved to
consistently improve risk assessment, to be interpretable despite their complexity and to help identify the minimal
set of covariates necessary to achieve top performance.

...................................................................................................................................................................................................
Conclusion In the field of secondary cardiovascular events prevention, given the increased availability of extensive electronic

health records, ML methods could open the door to more powerful tools for patient risk stratification and treat-
ment allocation strategies.
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Introduction

Patients with prior symptomatic atherosclerosis cardiovascular dis-
ease are known to have a heterogeneous risk of recurrent cardiovas-
cular event1 and, when treated, are exposed to various degrees of a
verse effects.2–4 A robust stratification of patients could take into ac-
count the risk heterogeneity and allow to better balance treatment
benefit against the associated side effects or identify patients who
would get the greatest benefit from treatment. To this end, several
risk scores for primary or secondary prevention have been devel-
oped on populations of patients with atherosclerotic cardiovascular
diseases (ASCVD): TIMI Risk Score for 2� Prevention (TRS 2�P),5

SMART,6 REACH,7 and SCORE.8 While these scores are validated
and widely used in daily practice, they only exploit small sets of cova-
riates through linear statistical models.

With electronic health record (EHR) systems being widely
deployed in hospitals, the number and availability of patient’s baseline
characteristics increased. Cohorts extracted from those EHR are
now widely used for research9–11 and can include different modal-
ities. For instance, the Swedish MI registry, SWEDEHEART, was re-
cently linked to Biobank, offering the possibility to design prognosis
models on both genetic and clinical data.12 Machine learning (ML)
methods are well suited to estimate prognosis from those high-
dimensional baseline covariates. While classical statistical models as-
sume a linear relationship between the covariates and the outcome,
ML methods can fit a wider class of functions, considering potential
covariate interactions.

In this article, we studied the benefits of using ML methods to de-
velop secondary cardiovascular risk scores on an extensive base of
patients records. To this end, we analysed data from the placebo arm
of the FOURIER trial. We compared different ML approaches to the
linear Cox proportional hazards model to predict major adverse car-
diovascular events (MACE), a composite endpoint comprising car-
diovascular death, myocardial infarction, and stroke. The dataset
contained a set of covariates larger than what is usually recorded in
routine clinical practice. We therefore studied the impact of restrict-
ing the covariate dimension on each model’s performance.
Additionally, we discussed the benefits and drawbacks of each
method in terms of interpretability and ease to deploy.

This work is related to other comparisons of modelling methods
for cardiovascular prognosis like Golas et al.,13 Li et al.,14 Desai et
al.,15 Kwon et al.,16 and VanHouten et al.17 Compared to these stud-
ies, ours focuses on ranking patients by their risk—aiming at properly
discriminating patients to identify those the most at risk to

experience an event over the follow-up period. This approach pro-
vides more methodological information, and empirically assesses the
influence of sample size and number of variables for such a task.

Material and methods

Study population and dataset
Our work was conducted on the FOURIER study’s data. FOURIER is
a phase III, randomized, double-blind, placebo-controlled trial involv-
ing 27 564 patients with ASCVD, either with a history of myocardial
infarction, non-haemorrhagic stroke, or symptomatic peripheral ar-
tery disease. The trial enrolled patients aged between 40 and 85 years
with an LDL-c level >_70 mg/dL or non-high-density lipoprotein chol-
esterol >_100 mg/dL. Patients were on an optimized statin regimen
and randomized to evolocumab (140 mg every 2 weeks or 420 mg
every month) or matching placebo.

The baseline clinical characteristics of the patients include demo-
graphics data, biological measurements, medical history, comorbidities,
as well as information about the cardiovascular diagnosis, treatments,
and procedures. They were previously described in Table 1 from
Sabatine et al.18 For our study, we focused on the 13 756 patients of
the trial control arm who took the placebo, so as not to account for
evolocumab treatment effect. Variable selection was kept to a min-
imum as our comparisons focused on models’ performance on raw
data. Among the 527 recorded covariates, we selected 428, removing
those that had a constant value or whose Pearson correlation to an-
other covariate was equal to 1.

Evaluation methodology
As a first step, we randomly divided the placebo arm into a training
(70% of the whole dataset: 9629 patients) and testing (the remaining
30%: 4127 patients) datasets, using the stratification criteria defined
in the trial. The test set was not used when selecting the models and
their hyperparameters. It was only used for the final models’ evalu-
ation, thus guaranteeing that we did not overestimate the local per-
formance. All the metrics that follow were computed on this test set.

In our benchmark, we selected and evaluated the best model and
their best hyperparameters on the training set using nested cross-
validation. Nested cross-validation, also known as double cross-valid-
ation,19 is a model training and evaluation scheme that consists in re-
peatedly and independently separating subsets of data used for
models’ hyperparameters tuning and performance evaluations. We
performed iterations of nested cross validations each. This method

....................................................................................................................................................................................................................

Table 1 Performance comparison between best performing models

Model C-index (CI 95%) P-value vs. linear P-value vs. NN P-value vs. RF

Linear Cox model 0.618 (0.609–0.627) — — —

Neural network 0.634 (0.626–0.642) 7.8e-2 — —

Random forest 0.674 (0.666–0.681) 1.5e-4 3.2e-3 —

Gradient boosting 0.676 (0.668–0.684) 2.0e-5 1.1e-3 6.1e-1

Based on their performance during the nested cross-validation on the training set, we selected the best performing models and evaluated them on the test set. Comparing the
best models of each category to one another, we found that tree-based models significatively improve the C-index. In terms of Net Reclassification Improvement (NRI), the
best model (gradient boosting) improved patients’ reclassification by 31.6% (19.0%, 40.7%) compared to the linear Cox model.

40 A. Rousset et al.
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helps to prevent overfitting during model selection. The results
reported on the training set were averaged over 10 full repetitions of
a nested cross-validation, each with five inner loops repeated in five
outer loops. The hyperparameter search was performed on the five-
fold inner loop of the cross validation. Using this process, we
obtained 50 performance evaluations (10 repetitions of 5 outer
loops) per considered model.

Each algorithm performance was evaluated for several models
resulting from the nested cross-validation and on different subsets
of the data for the training metrics. The individual confidence for
each of these model’s c-index was computed using the tree-
search algorithm from Newson.20 We then aggregated them using
Chernozhukov et al.,21 which relies on the median of each confi-
dence interval’s lower and upper bounds.

To ensure reproducibility of our simulations, we set an arbitrary
seed for the random number generator of both dataset subsampling
and model training functions. The preprocessing pipeline was kept
minimal and almost identical for all models. We converted all values
to numerical ones by one-hot-encoding categorical variables. As the
only preprocessing difference between models, since linear models
and neural networks do not support missing values and are sensitive
to variable’s scale, we imputed missing values using their median and
standardized the covariates. More complex imputation methods, like
iterative imputation which sequentially imputes variables conditional-
ly on all the others, were evaluated but did not yield any performance
improvement. It was therefore decided to keep the preprocessing
simple as our reference gradient boosting models natively support
missing values and do not require such an imputation by design, while
linear and neural network models do.

Evaluation metrics
Performances were assessed using the concordance index22 (c-index),
a metric related to the receiver operating characteristic area under the
curve (ROC AUC) for survival analysis with censored outcomes. It
estimates the probability that, for any comparable pair of patients, the
predictor score (i.e. the estimated risk of an event) is greater for the
patient with the earlier event. A c-index of 0.5 would be assigned to a
random risk score. The closer to 1 the c-index is, the better the model
ranks the risks considering the observed event occurrence times.
Under no censoring, when all events are observed, c-index’s formula
simplifies to the area under the curve (AUC) formula.

On the test set, the c-indexes for the best models were reported.
These best models were built by taking the best hyperparameters—
those which yielded the best performance on average on the training
data during the nested cross-validation—and training the considered
model over the whole training dataset. We tested, using a z-score
test as in Kang et al.,23 if the difference of performance between the
considered models and the linear model was significant. Additionally,
to assess the change in discrimination for the different models, com-
pared to the best linear one, the net reclassification improvement
(NRI)24 was calculated. Relying on the continuous NRI from
Pencina,25 we quantified the degree to which ML models were mak-
ing correct change decisions between different risk categories.

As a more detailed visualization of the models’ predictive power,
we used time-dependent receiver operating characteristic (ROC)
curves. ROC curve analysis can indeed be extended to censored data

by considering time-dependent ROC curves which give the sensitivity
and specificity compromise at a given horizon in time, as in
Kamarudin.26 These curves allow to better assess the true positive
rate (sensitivity) and false positive rate (1 - specificity) compromise, if a
threshold was to be chosen to make decisions based on the score
value.

Lastly regarding the models’ discrimination capacity, to assess the
ability of the models to stratify the population into relevant sub-
groups, we relied on the trained models to divide the population into
three different groups of equal sizes. The stratified population
Kaplan–Meier curves27 were derived to illustrate the models’ dis-
criminative capacity.

While calibration is not the focus of this study and was not used to
select models, we also reported our best model’s calibration for a
single time-horizon. We relied on the expected calibration error
(ECE) metric from Naeini et al.28 to do so. Across quantiles of pre-
dicted probabilities, ECE assesses the mean difference between the
predicted event probabilities and the actual proportion of patients
who suffered an event.

The TIMI Risk Score for 2� Prevention
The TRS 2�P5 a risk score widely used for secondary prevention, was
considered as the baseline method to which we compared the other
evaluated algorithms. This risk score was developed on a cohort
from the TRA 2�P-TIMI 50 trial, independent from the FOURIER trial.
It contained 8598 stable patients from the placebo arm who had a
previous myocardial infarction (MI) and were followed for a median
of 2.5 years. The score relies on 9 predictors: age, diabetes mellitus,
hypertension, smoking, peripheral arterial disease, previous stroke,
previous coronary bypass grafting, heart failure, and renal dysfunc-
tion. The predictors used for the score were identified in different
steps. First a set of 150 candidates were chosen based on univariate
Z-score, prevalence, and ease of clinical application. Among the can-
didate variables, 16 baseline ones achieved a significance level of
P < 0.10 using a Cox proportional hazards modelling analysis. The 16
characteristics were included in a forward and backward multivariate
analysis, leading to the choice of the 9 predictors.

This score was designed for patients who suffered from a previous
MI, which is not systematic in the population we considered.
Therefore, we used an expanded TRS 2�P by adding a variable to
code for a previous MI occurrence to the standard TRS 2�P compu-
tation, as has been done previously in analogous situations.29

Machine learning methods
In this work, we compare ML to linear statistical methods.

While there is no well-defined frontier between these methods, in
prior articles like Breiman et al.,30 two cultures are defined. On the
one hand, the data modelling culture requires prior hypotheses on
the (unknown) data generating process and prioritizes models’ inter-
pretability. On the other hand, the algorithmic modelling culture—
which would now be designated as ML—can accommodate any
underlying data distribution and prioritizes models’ predictive per-
formance. These interpretability and performance objectives are
often considered as being in conflict.

As in Desai et al.,15 we consider ML methods as those which model
the relationship between outcome and covariates in a non-linear

Can Machine Learning bring cardiovascular risk assessment to the next level? 41
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..form, and limit the statistical methods to linear modelling. Machine
learning methods can fit a wider class of functions than linear mod-
els31,32 and offer the possibility to work with high dimensional covari-
ates. Therefore, the more covariates are available, the more
improvement we expect when relying on ML models. Despite evalu-
ating complex non-linear models, we however do not ignore inter-
pretability. We rely on model agnostic techniques to study which
covariates influence our predictions the most and how they do so.

Explored models, hyperparameters, and
implementation
In this study, we compared the TRS 2�P and linear models to several
ML models for MACE prediction in patients with ASCVD: multilayer
perceptron (MLP) neural networks,33 random forests,34 and gradient
boosting machines.32 These models were selected as they proved to
yield better results in preliminary explorations and prior similar proj-
ects. They were all trained to fit a Cox proportional hazards model
of the time-to-event for MACE, maximizing the partial Cox likelihood
on the training dataset. In this setting, both the time to observed
events and the time to censoring are considered, for patients who
did not suffer any MACE by the time of the last potential endpoint as-
certainment date. For each model, we explored different regulariza-
tion methods and hyperparameters in each experimental setting.
Cross-validations were implemented using scikit-learn.35

Linear models learn a linear combination of variables to predict
the risk, not accounting for any interaction between the patients’
characteristics. They were implemented using elastic-net regulariza-
tion,36 which mixes L1 (Lasso) and L2 (Ridge) regularizations. Several
ratios of L1 and L2 regularizations were explored to better allow
these models to select variables and avoid overfitting the training
data. These models were trained using scikit-survival.37–39

The MLP—or fully connected neural network—is the most classical
architecture for neural networks. They are networks structured with
layers of neurons: the neurons of the first layer each compute a linear
combination of the input variables before applying a non-linear activa-
tion function, those of the second layer do the same from linear com-
binations of the first layer outputs. . . the last layer has only one
neuron which computes the risk from the outputs of the previous
layer. These models have been proven to be able to approximate any
function from their input variables.40 We used the ReLU activation
function for the hidden layers. We explored several depths, mini-batch
sizes, and regularizations. For regularization, batch-normalization
proved to be systematically helpful during our initial tests and was used
in all the further trainings. We implemented our neural networks using
PyTorch.41,42

Random forest and gradient boosting both model the risk as ensem-
bles of regression trees. Random forests are built by training relatively
deep trees in parallel from subsets of the data: each tree is only given
access to a subset of the patients and variables when it is trained. Each
of these trees are low bias but high variance estimators, meaning that
they overfit the subset of the data they were trained on. Yet, the ran-
dom forest predicts the risk by averaging their predictions, thus limiting
the overfitting. Gradient boosting is an opposite approach as it relies
on training shallow trees that are high bias but low variance estimators,
meaning that they underfit the data they are trained on. Yet, these

trees are trained sequentially, each being trained to correct the error
of the previous ones to improve the ensemble’s goodness of fit with
respect to the training data. For these tree-based models, we tested
for several tree depths, learning rates, sampling ratios and variable se-
lection ratios. We also used early stopping to prevent overfitting.
These models were trained using XGBoost.43

Model agnostic interpretability
Interpretability encompasses any means of allowing humans to under-
stand what the causes of a model’s predictions are. This interpretability
can help domain experts assess the reliability of a model. For our appli-
cation, the fact that models mostly rely on variables known to be prog-
nostic of MACE can allow cardiologists to validate that the patterns
learned by the models indeed make sense. Interpretability can even
yield medical insights when less understood patterns are captured,
even if good predictors are not necessarily risk factors as correlation
does not imply causation. Linear models are trivial to interpret: each
variable coefficient indicates how it influences the predictions and
these coefficients’ P-values indicate how reliable this influence is.

Machine learning models extract non-linear patterns from the
data, leveraging interactions between any number of them. This
makes them harder to interpret than linear models and sometimes
considered as black boxes. Yet, methods have been developed to ex-
tract information about the individual importance of each variable for
a considered model. A classical approach for tree-based algorithms
consists in using the variables’ gain, as proposed by Breiman.44

These methods have recently been criticized for being inconsistent
as a variable selection tool, being model specific and not indicating
the interaction direction for a variable. We relied on the model ag-
nostic SHAP (SHapley Additive exPlanation) values45,46 to interpret
the trained models. SHAP values estimate how each variable—or
group of variables—contributes to a model’s predictions. These val-
ues allow ranking the respective prognostic importance of all varia-
bles for a given model, as well as illustrate in which way these
variables impact predictions.

Subsampling
While more than 400 variables are available in the FOURIER trial, the
TRS 2�P only uses 9, making it easier to use in clinical practice. To ex-
plore the impact of the data dimension on the performance, we com-
pared the different algorithms on restricted sets of variables.

As a first experiment, we performed a comparison between mod-
els on subsets of clinically relevant variables.

We compared all the candidate models by training them on the 9
TRS 2�P variables and an additional one indicating the prior occur-
rence of a MI, as in Bohula et al.47 Whereas the TRS 2�P binarized
some variables (e.g. ‘age > 65’), we used the corresponding continu-
ous values when available.

We then selected the following 33 routine clinical variables:

• General: gender, age, smoking status;
• Biology: cholesterol (total), creatinine, left ventricular ejec-

tion fraction, glycaemia, HDL-c, haemoglobin, haemoglobin
A1c, LDL-c;

• Medical history: coronary artery bypass grafting, MI, peripheral ar-
tery disease, stroke;

• Comorbidities: atrial fibrillation, type 2 diabetes, hypertension;

42 A. Rousset et al.
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..• Medication: angiotensin-converting enzyme inhibitors, aspirin, beta
blockers, clopidogrel, enoxaparin sodium, heparin, statin;

• Arteries with stents: left main coronary artery, left anterior
descending, left circumflex, right coronary.

These were chosen because they were present in two hospitals’
cardiology EHR datasets from other ongoing studies.48

Lastly, to assess the reliability of SHAP values as a model interpret-
ation and variable selection tool, we selected the 25 most important
variables defined by the SHAP values of the best-performing gradient
boosting model. This number of most important variables was
chosen as it proved to be sufficient to almost reach peak perform-
ance with most models.

As a second experiment, to further explore the respective
approaches we repeated the comparison on random subsets of varia-
bles to better explore the impact of data dimension on the linear
model—considered as a baseline—and the gradient boosting
model—the best performing model in all the settings. For increasing
dimensions (from 4 to the 428 dimensions of the original data), we
sampled different subsets of variables for all the outer loops of cross-
validation (50 different subsets per considered ratio).

We also evaluated the models on increasing sets of the most im-
portant variables. Variables were selected by decreasing importance
according to the most natural selection method for each model. For
linear models, we ranked variables according to their univariate pre-
dictive power. This predictive power was assessed using the c-index
between each individual variable and the considered outcome. For
gradient boosting models, we used the SHAP values from the best
performing model to rank them by decreasing importance.

As patient data are widely becoming available in EHR databases,
the datasets used to train cardiovascular risk scores are getting larger.
We studied the influence of the dataset size, this time in terms of
number of patients, on the ability of the two reference models—the
linear model as the statistical approach and the gradient boosting
model as the ML method—to capture information. To do so, we
compared them on sub-cohorts of increasing size, randomly selecting
(without replacement) patients in the outer loop of the cross-
validation.

Related work
Our work is closely related to several recent studies that have been
conducted to compare linear models to ML methods in their ability
to accurately predict different cardiovascular outcomes. While previ-
ous studies framed the problem as a classification task (30-day read-
missions in patients with heart failure,13 1-year death,14,15 in-hospital
mortality after an acute myocardial infarction,16 and the presence or
absence of acute coronary syndrome),17 we frame the problem as a
ranking task.

These studies respectively included 37 baseline characteristics for
Kwon et al.,16 88 for VanHouten et al.,17 59 for Li et al.,14 30 (including
unstructured text) for Golas et al.,13 and 54 for Desai et al.15 Our
study included 428 variables, offering the opportunity to work in a
higher dimension setting. To compare with the results obtained in
former studies and allow for easier-to-deploy scores, we also
repeated experiments on smaller sets of variables.

Results

Comparison to other scores
In all that follows, we only compared our different models to the TRS
2�P score as the other standard scores, that we managed to compute
from the available covariates, proved to achieve lower c-indexes. On
the test set, these different risk scores’ performances were:

• TRS 2�P: 0.60
• SMART: 0.56
• REACH: 0.56
• SCORE: 0.51

Evaluation on the full dataset
Using the full set of 428 variables, we observed that ML models
achieve better performances than linear ones in Figure 1, despite the
latter’s regularization. These results are detailed in Table 1, where we
computed the P-values of the c-index difference as well as the NRI
between the best performing model1 in each category.

Results of Figure 1 are averages for all models selected during the
nested cross validation, whereas the results of Table 1 correspond to
the unique best models of each category (according to their perform-
ance during the cross-validation) on the test set to allow for testing
the c-index differences and computing the NRIs, which ex- plains the
slight difference between c-indexes.

The best performing gradient boosting model achieves a c-index
of 0.676, whereas the best performing linear model only achieves
0.618.

Figure 1 Prognostic performance of models for major adverse
cardiovascular events prediction. In this high-dimension setting with
428 variables, tree-based machine learning models (random forests
and gradient boosting) proved to yield significantly better results
than linear models trained on the same feature space. Since better
results were obtained on the training set during the nested cross-
validation, in the following, we only report the metrics on the test
set, as a fairer and more compact assessment of each model’s
performance.
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Even if the best fully connected neural network outperformed the
best linear models, these models did not consistently yield better
performance, despite exploring several optimization algorithms, test-
ing for several depths and regularization strategies (dropout and
batch-norm).

Risk prediction, patient’s stratification,
and calibration
Tree-based ensemble algorithms, namely random forests and gradi-
ent boosting machines, proved to yield the best performance in our
setting. This difference in performance reflects an improved ability to
capture more subtle patterns and predict events recurrence. It ena-
bles a better compromise between sensitivity (true positive rate) and
specificity (true negative rate), which can be illustrated using a time-
dependent ROC curve. The time-dependent ROC curves of the best
linear and ML models of Figure 2 demonstrate the difference in prog-
nosis performance between these methods for a time-horizon of
one year.

This allows in turn to better stratify patients based on their risk of
MACE during the follow-up, as illustrated in the stratified Kaplan–
Meier curves of Figure 3, and prioritize them in refined treatment allo-
cation strategies.

Considering the same 1-year time-horizon as in Figure 2’s time-
dependent ROC curve and 10 bins of predicted scores, we estimated
an ECE of 0.01 for our best ML model’s, which is close to a perfect
calibration of 0.

Model interpretability
In Figure 4, we displayed the SHAP values for the best performing
model. This plot illustrates which 25 variables have the most impact
on the model’s predictions. The fact that the model mostly relied on
age, cardiovascular history, lipids, renal function, and composite
counts of risk factors (including diabetes, smoking status. . .) to assess
the risk is coherent with domain knowledge.

It also shows how they impact the predictions. For example, our
best model learned that high values of microalbumin in the urine in-
crease the risk of MACE. On the other hand, serum albumin has the
opposite influence with low values increasing the chance of MACE.

Evaluation on restricted set of covariates
When using the 10 variables in the TRS 2�P, we observed that, on
such a low-dimension space, all models performed similarly and
achieved c-indexes close to that of TRS 2�P. When using only routine
variables, gradient boosting barely outperformed linear models.

Lastly, when using only the 25 most prognostic variables according
to the SHAP values from our best performing model (as listed in
Figure 4), gradient boosting achieved the same performance as when
it was trained on all the 428 FOURIER variables. Other models
achieved the high performances, even outperforming similar models
trained on all FOURIER variables. This illustrates the ability of ML
models to perform automatic variable selection; thus enabling to
build more compact risk scores, which are therefore more interpret-
able, faster to train and easier to deploy.

When randomly sampling variables from the full dataset, linear
models’ performance increased up to a point but started decreasing
when the dimension was too high due to the increasing number of

Figure 2 Time-dependent receiving operator curve. The receiv-
ing operator curves illustrate the difference between the best linear
and the best model (gradient boosting) in properly attributing a
higher risk to patients from the test set who suffered a major ad-
verse cardiovascular event less than a year after their enrolment.
We chose the duration of 1 year as it is very close to the median of
the recurrence time over our training dataset (353 days). This
threshold was only used to evaluate the models and build these
curves: the models are the ones evaluated in Table 1 which were
trained using the whole follow-up. When arbitrarily calibrating both
models to predict less than 30% false positives (specificity > 70%),
the gradient boosting model achieves an increase in sensitivity of
11% over the linear one (55% vs. 44%).

Figure 3 Stratification of patients based on their risks. The strati-
fication Kaplan–Meier curves show the expectation for the first
major adverse cardiovascular event occurrence during the study
and its confidence interval for each risk group of the best linear and
machine learning models. Taking each group of equal size, these
curves illustrate how the best machine learning model achieves a
much wider separation between the high- and low-risk patients
compared to the best linear model.
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.multicollinearities (ill-conditioned data). On the other hand, the
higher the dimension, the more tree models outperformed linear
ones. When selecting increasing sets of variables according to their
importance, both models once again achieved similar performance if
only a few variables are available. Linear models achieve peak per-
formance with relatively few variables (16� 4% of available covari-
ates) and their performance then decreased as dimension grew.
Gradient boosting models’ performance were similar to linear mod-
els when the number of variables was relatively low (<_20). They
showed a slight but steady improvement when adding more variables,
consistently benefiting from bigger feature spaces and outperforming
linear models. This illustrates how careful variable selection is
required for linear models, whereas gradient boosting can leverage
more complex and high-dimension feature spaces without overfitting
them.

The results of these benchmarks are reported in Figures 5 and 6.

Influence of the number of patients
We performed the evaluation from subsets of 481 patients (5% of
the training patients selected from the control cohort) to subsets of
9629 patients. Experiments on fewer than 400 patients did not yield
comparable results due to the repeated subsampling of the nested
cross-validation: many training subsets ended up containing only cen-
sored data (no observed MACE) and preventing proper model
training.

We observed that gradient boosting models trained with 25% of
the data outperformed linear ones trained on the whole dataset. For
the compared methods, c-indexes kept increasing when adding
patients, showing that they might still improve if more patients were
available.

The results from this comparison are reported in Figure 7.

Discussion

Machine learning can sometimes be perceived as a black box ap-
proach dedicated to prediction from unstructured data, like medical
imaging or natural language text reports, whereas simpler statistical
models can be deemed more relevant for extracting interpretable
patterns from structured tabular data. Yet, we showed that ML mod-
els can actually help build better risk score models from tabular clinic-
al data and reveal how they leverage predictors to do so. This is
especially the case when many patient characteristics are available,
which is more and more frequent in routine clinical practice. The in-
crease in prognosis performance is significant, even when fewer
patients are available as illustrated in Figure 7. Among ML models, we
found that tree-ensemble models and especially gradient boosting
proved to yield better results than linear models or neural networks.
These results are consistent with previous studies in related
fields.14,15,17,49 Kwon et al.16 reached slightly better scores with

Figure 4 Best model prognostic features ranking and influence. The SHapley Additive exPlanations values were extracted from the best-performing
gradient boosting model on the full set of variables. The left plot illustrates the mean absolute SHapley Additive exPlanations value for each covariate,
allowing to select the most important ones for more compact models. The right one provides more detailed information about the direction of these
covariates’ influence on the prognosis across the range of values observed for each variable. For example, according to our model on the considered
population, it illustrates that having a high value (red point) of microalbumin for random urine tests increases the risk of major adverse cardiovascular
events (points on the right).
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..neural networks than with random forests, but did not evaluate gradi-
ent boosting.

Gradient boosting therefore appears as a good default approach
to this kind of task, given that these models are very expressive—
being able to detect complex non-linear patterns—flexible—offering
many regularization and optimization hyperparameters—and that
they can be trained quickly on limited hardware resources. They
proved to perform quite well ‘out of the box’, using the default
XGBoost parameters. To further optimize their performance, con-
ducting the hyperparameter search in the inner-loop of a nested
cross-validation and training gradient boosting models using early
stopping prevented overfitting.

The trained algorithms were composed of thousands of regression
trees or, in the case of the deeper neural network we used, hundreds
of thousands of numerical weights. Interpretation techniques like
SHAP values reveal a summary of how these complex models use
the patient characteristics for their risk prediction. Being model-
agnostic, they allow to compare what different models learned, con-
trary to model-specific interpretations like a linear model’s coeffi-
cients and their P-values, or the gain of tree-ensembles. They also can
help detect and thus prevent overfitting, by permitting to check if the
variables a model considers as predictive are indeed relevant from a
medical point of view.

On the FOURIER trial data, the difference between statistical lin-
ear models and ML models is not as significant when using fewer vari-
ables. Using the most prognostic ones, according to a high-dimension
ML model, linear models manage to achieve a c-index which is close
to the best ML model (Fig 5). Given the similar number of dimensions
compared to these studies, these observations are also aligned with
the findings of Li et al.,14 VanHouten et al.,17 Desai et al.,15 and Akyea

et al.49 As gradient boosting proved to achieve the best performance
in all settings, even if other approaches reached close c-indexes in
some of them, it can be considered a default modelling and/or
variable-selection algorithm when analysing a new dataset.

Yet, many hospital EHRs do not record as much data as we used in
our best models and some of the above observations might be specif-
ic to the studied FOURIER dataset. We therefore do not consider
that the models trained for this study would be relevant for any clinic-
al practice use as they are, as they lack external validation and were
trained on a population with some selection biases.

Building a global risk score relying on more heterogeneous data
from several routine cohorts would be a natural extension of this
study. It would require tackling the challenge of training models on
separate and only partially overlapping feature spaces—leveraging
clinical characteristics which are only available in some hospitals—
and patients with more varied selection criteria. This could be
achieved by relying on a model training strategy called federated
learning.50,51 Federated learning could enable training such a model
without having to gather these EHRs in a single dataset, thus preserv-
ing their privacy while learning to account for their patients’ hetero-
geneity. Additionally, this future work would have to include
prospective external validation to ensure its generalization capability.
With the support of cardiology experts to select the most relevant
variables, such a model could be designed to provide the robustness

Figure 5 Performances depending on variable selection. For the
task of predicting major adverse cardiovascular events, when select-
ing variables—either based on their use in the TIMI Risk Score for
2� Prevention (TRS 2�P), their availability in routine clinical practice
or their importance in our best performing model—compared to
using all of them, we observed that tree-based models’ increase in
performance was consistent and higher when more variables are
available.

Figure 6 Performances depending on the number of used varia-
bles. When randomly sampling variables from the data (right, full
lines), even if some of the selected subsets might lack some com-
mon prognostic variables and not convey much useful information,
we again observed that gradient boosting requires less variables
than linear models to achieve similar performance. When selecting
variables by order of decreasing importance (right, dashed lines)—
using their univariate c-index to the outcome for linear models and
their SHAP values for gradient boosting models—both models
achieve better performance (compared to random variables sam-
pling) in lower dimension regimes by having access to more prog-
nostic variables. The performance of linear models peaks with few
variables,16 while gradient boosting slightly but consistently
improves when more are provided.
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guarantees for a clinical use, allowing for improved patient prioritiza-
tion and treatment allocation strategies.

Conclusion

This study illustrated how non-linear ML models can be used to im-
prove cardiovascular risk prediction from EHR data. Across the range
of available patients and variables, these models proved to perform at
least as well as linear models. Specifically, non-linear machine-learning
models did not show to suffer from being provided too many varia-
bles, while linear models require a more careful feature selection.
Furthermore, we showed how modern interpretation techniques
allow to investigate how these models predict the risk, either to valid-
ate their relevance or to extract medical insights. Applying similar
methods to a more heterogeneous population and variables com-
monly available in routine clinical practice could open the door to
more accurate cardiovascular risk assessment tools.
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