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Virtual reality and the Internet of *ings have shown their capability in a variety of tasks. However, their availability in online
learning remains an unresolved issue. To bridge this gap, we propose a virtual reality and Internet of *ings-based pipeline for
online music learning. *e one graph network is used to generate an automated evaluation of learning performance which
traditionally was given by the teachers. To be specific, a graph neural network-based algorithm is employed to identify the real-
time status of each student within an online class. In the proposed algorithm, the characteristics of each student collected from the
multisensors deployed on their bodies are taken as the input feature for each node in the presented graph neural network.With the
adoption of convolutional layers and dense layers as well as the similarity between each pair of students, the proposed approach
can predict the future circumstance of the entire class. To evaluate the performance of our work, comparison experiments between
several state-of-the-art algorithms and the proposed algorithm were conducted. *e result from the experiments demonstrated
that the graph neural network-based algorithm achieved competitive performance (sensitivity 91.24%, specificity 93.58%, and
accuracy 89.79%) over the state-of-the-art.

1. Introduction

Due to the global pandemic novel coronavirus [1], most of
the pedagogical practices in all countries have to be carried
out online, which significantly impacts or even hampers the
expansion of teaching and learning activities [2]. *erefore,
it is necessary to ensure the students concentrate on the
content of courses during the process of learning. Mean-
while, the teachers also need to comprehend the dynamic
changes of the entire online class. Both requirements have
rendered the automatic identification of the status of the
students become a thorny task.

In recent decades, virtual reality (VR) related techniques
[3, 4] have been extensively exploited in a plethora of ap-
plications [5] ranging from industrial manufacturing [6],
healthcare [7], entertainment [8, 9], and education [10, 11].
Meanwhile, different types of Internet of things (IoT) have
also been deployed in practice [12], e.g., commercial and
industrial scenarios [13, 14], medical assistance [15], and

smart cities [16]. Both of them have shown their capacity and
potential value in multidisciplinary tasks. However, online
education especially music teaching remains a frontier
domain that needs to be developed. Meanwhile, it requires
an effective mechanism for measuring the students’ aca-
demic performance since the adoption of the current
evaluating manner might not be advisable.

Meanwhile, the deep learning-based models that
emerged in the last years have been widely accepted as a
powerful instrument in a plethora of domains and appli-
cations including but not limited to computer vision [17, 18],
natural language processing [19], data mining [20], com-
puter-aided diagnosis [21], recommendation system [22],
and forecasting [23–26]. A variety of architectures were
proposed in deep learning orientation, including the con-
volutional neural network (CNN) [27], recurrent neural
network (RNN) [28], autoencoder [29], and generative
adversarial network (GAN) [30]. It is worth noting that the
deep learning-based algorithms focus on unveiling the inner
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patterns hidden in Euclidean samples and they usually
neglect the non-Euclidean data with complicated associa-
tions and interdependency, e.g., social networks. *erefore,
these deep models suffer from applying the common
computational operators used in the CNN, RNN, autoen-
coder, and GAN to the graph domain.

On the other hand, to cope with the non-Euclidean data,
numerous graph neural networks (GNNs) were put forward
with different patterns and have shown their satisfactory
performance in the recent period. As the work of Good-
fellow et al. [30] is taken as an early work of GNN, the
recently emerged GNNs can be roughly divided into four
categories, including convolutional GNNs [31, 32], recurrent
GNNs [33, 34], graph autoencoders (GAEs) [35, 36], and
spatial-temporal GNNs [37, 38].

Although, plenty of GNN-based algorithms have been
presented to cope with various machine learning tasks, e.g.,
handwritten signature recognition [31, 37], document dis-
crimination [32, 35], ranking [33], program verification [34],
and human activity detection [38]. In recent 5 years, for
instance, Zhang et al. [39], proposed a deep graph clustering
framework. First, a feature transformation module is built
up of both the node and graph topology. Second, a graph
embedding and a self-supervised learning mechanism are
introduced to constrain graph embedding by using the graph
similarity and self-learning loss. To deal with the molecular
graph generation issue for drug discovery, Shi et al. [40]
presented a flow-based autoregressive model, which com-
bines both the autoregressive and flow-based approaches.
Zheng et al. [41] proposed a graphmultiattention network to
predict traffic conditions for temporal phases ahead at
differentiated positions within a traffic network graph.
Aiming at addressing the fact-checking problem in the text,
Zhong et al. [42] proposed a method for reasoning about the
semantic level structure of evidence by using semantic role
labeling. *ese algorithms have shown their performance in
various scenarios. However, most of the GNN-based
methods ignore feature information for each node in the
graph.

Bearing the abovementioned analysis in mind, this work
fills a gap in the literature by introducing VR integrated with
IoT into musical pedagogy. To the best of our knowledge,
this is also an early work for the employment of VR and IoT
in online education. First of all, the proposed music teaching
platform exploits the VR techniques to offer a uniquely
immersive service for each student to experience an actual
scenario without any hefty cost. For instance, the students
can virtually perform in front of a large audience without a
real stage. Second, it can collect the real-time status of the
students by using IoT sensors. Accordingly, the students’
physiological status including the heart rate, respiratory rate,
temperature, and facial appearance can be captured. *ird,
the GNN model can then be introduced to represent the
integral circumstance of the students to form the whole
feature vector space of the online class. *e personal in-
formation of all students captured from the IoT sensors is
denoted as the nodes in a graph. *e subjective judgment of
the students’ performance (positive or negative) made by the
teachers is used as the ground truth in the training samples.

Afterwards, a binary-class (positive and negative) graph
neural network is trained over the manually labeled data
samples. Accordingly, the subtle variation in this graph can
be identified and predicted with high accuracy. *e pre-
sented GNNs are then tested on the input samples and the
practical condition of the students can be generated by
updating the features embedded in the graph nodes. In
general, the proposed network is supposed to alleviate the
workload of the teacher in an online music class, while the
network’s output can unveil the status of each student
revealed by the VR and IoT devices.

To evaluate the performance of the proposed framework,
we conducted comparison experiments between state-of-
the-art GNN models on the practical data samples collected
from an online music class. Accordingly, the experimental
results output from the proposed GNNs indicated that the
GNN-based pipeline can come up with the practical engi-
neering requirements.

In general, the contributions of this work consist of the
following:

(1) To our best knowledge, this is an early work for using
VR and IoT in an online music learning platform

(2) A semisupervised learning framework is proposed to
recognize the students’ status with GNNs. *e sit-
uation of the entire class can be revealed
prominently.

(3) *e experimental results demonstrate the effective-
ness and efficiency of the proposed framework

2. Materials and Methods

2.1. Online Music Learning Framework and Dataset. An
online music learning system (as shown in the left com-
ponent of Figure 1) was built upon VR integrated with IoT
sensors. *is system consists of head-mounted VR display
devices (Skyworth S801) and IoT sensors. *e VR apparatus
has 100° field of view and an optic lens. Before each class
started, the students were instructed to wear both the VR
apparatus and the wearable IoT sensors.

For each student, the data samples (heart rate, respi-
ratory rate, temperature, and facial appearance) were col-
lected and came into a feature vector at every 5 minutes.
*en, three teachers labeled each sample as positive or
negative separately by using a majority voting mechanism.
In total, 6,104 recordings (3,020 positives and 3,084 nega-
tives) from 16 students were collected in this study.

2.2. Graph Neural Network

2.2.1. Problem definition. It is supposed that n subjects (i.e.,
the students as input samples) are available, denoted by S�

[S1, S2, ..., Sn]. Each student then can be denoted by one
matrix Si ∈Rm×ni, where m represents the total number of
IoT sensors mounted on each student, n is the length of the
feature derived from the corresponding IoT sensor, and
ni ∈ {0, 1}. *e weighted graph used in the proposed GNN is
denoted as a tuple G � (V, E, W), where V is the set of m
vertices, E represents the set of edges, and W ∈Rm×ni is the
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adjacency matrix of the graph. Meanwhile, Wi,j represents
the weight of the edge from vi ∈V to vj ∈V . In general, a
global threshold is employed in the adjacency matrix to
eliminate the irrelevant entries in the adjacent matrix or
nodes in the graph. *e space complexity of the proposed
graph network is O(n2).

In general, the personal information of all students
captured from the IoT sensors is denoted as the nodes in an
undirected graph. Accordingly, the student’s heart rate,
respiratory rate, temperature, and facial appearance are
integrated as a feature vector to represent the integral cir-
cumstance of the students. Meanwhile, the similarity be-
tween each pair of students is taken as the value of the edge
between the two students denoted by two nodes. *e edges
with values lower than 0.4, which is set by conducting
preliminary experiments, are eliminated from the graph.

In the proposed GNN model, the graph convolutional
operator used can be considered as the spectral multipli-
cation, which is equal to the convolution operator used in
the temporal domain. Accordingly, the corresponding
spectral filter can be realized by introducing the eigen-
functions of the normalized Laplacian into GNN.

L � Im − D
− 1/2

WD
− 1/2

, (1)

where D denotes the degree of the matrix and Im is an
identity matrix. Furthermore, the Laplacian matrix can be
implemented by using Chebyshev polynomials [43]:

Tk(L) � 2LTk−1(L) − Tk−2(L), (2)

where T0(L)� 1 and T1(L)� L.
*e K-ordered polynomial then yields unbiased K filters.

Accordingly, the filtered outcome of the signal by K filters
can be formulated as

o � gθ(L)∗ c � 
k

0kθkTk(L
−

)c, (3)

where c denotes one IoT sensor mounted on a student,
L
−

� 2/λmaxL − Id, and λmax is the maximal eigenvalue of the
normalized Laplacian L. *e output of the lth layer can then
be expressed as

o
l
s � 

Fin

i�1
gθl

i
(L)c

l
s,i, (4)

where Fout and Fin denote the output filter and input filter,
respectively. θl

i∈ RK is the Chebyshev coefficient and xl
s,i is

the input graph at layer l for student s.

A pooling layer is located at the end of the proposed
GNN. In a fashion of semi-unsupervised learning, the fea-
ture map generated from the presented GNN can yield a
pairwise association between the subjects. *e intact GNN
with the pooling operator is demonstrated in Figure 2.

2.2.2. Network Architecture. As described in Table 1, there
are 3 pairs of convolutional layers integrated with the rec-
tified linear unit (ReLU) as well as a pooling layer within the
proposed GNN architecture. To guarantee the invariant scale
for the graphs, the pooling is only incorporated at the end of
the convolution operations. *e dropout rate of every
convolutional layer is 0.5.

In the initial stage, the training rate is set to 0.001 with
fixed 500 iterations. Once the decrease in validation accuracy
lasts for two consecutive iterations, then the learning rate is
multiplied by 0.5. During the training process, 80% of the
samples were used as the training set and the remaining 20%
were taken as the testing set, and 100 of the training samples
were used as the validation set. In total, there were less than
1,000 parameters in the proposed graph network. We
trained the whole model by leveraging a back-propagating
strategy and no overfitting was observed during training.
Furthermore, the expected outcome of the proposed net-
work is the binary status of each student (node in the graph)
that is positive or negative.

3. Results and Discussion

3.1. Performance Evaluation Metrics. In this work, we used
accuracy, sensitivity, and specificity in the experiments to
measure the performance of the comparing methods.

(1) Sensitivity: the ratio between the number of true
positives (TP, the samples are labeled as positive by
the teachers; meanwhile, the method generates the
correct result) and the number of all of the samples.

Sensitivity �
TP

TP + FN
, (5)

where FN denotes the false negative (the outcome of
one sample labeled as positive is negative).

(2) Specificity: the ratio between the number of true
negatives (TN, the outcome of one sample labeled as
negative is negative) and the number of all of the
samples.

Specif icity �
TN

TN + FP
, (6)

where FP denotes the false positives (the outcome of
one sample labeled as negative is positive).

(3) Accuracy: the ratio between the number of correctly
identified subjects and the number of all of the
samples.

Accuracy �
TP + TN

TP + FN + TN + FP
. (7)

Non-Euclidean
data graph

Figure 1: *e pipeline from the online music learning platform
with VR and IoT sensors to the non-Euclidean data structure.
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3.2. Experimental Results. In this work, the proposed GNN
was implemented with the TensorFlow 2.0 deep learning
architecture with Python as the programming language.

*e edge between each pair of students in the graph
would affect the whole structure of the graph. A global
threshold is expected to determine if one edge is preserved or
not. *us, we tested the effects of various threshold values to
determine the optimal threshold. In the preliminary test,
only 9 different numbers were leveraged (0.1, 0.2, ..., 0.9).
Meanwhile, to decrease the computation complexity of
calculating the optimal threshold value, only the subsamples
were used during this stage. According to the outcome from
the subsamples in Figure 3, 0.4 is chosen as the threshold
value in the following experiments.

Second, we conducted the experiments on the 6,104
samples captured from 16 students by using the proposed
approach. For each student, the corresponding number of
samples ranged from 197 to 405. It is widely accepted that
the quantity and quality of the training samples significantly
relate to the performance of machine learning models, as
well as the deep learning models.

Learning-based algorithms: accordingly, the sensitivity,
specificity, and accuracy yielded from our model can rise or
fall for different students in an online class, as shown in
Figure 4.

As shown in Figure 4, the accuracy for all of the students
is greater than 80% by using the proposed approach, while
the accuracy of students 5, 12, and 13 is almost 100%.
Moreover, we also examined the samples collected from
student 6 whose accuracy is the lowest among the students.
We found that student 6 contains the fewest samples (197)
compared with the other students.

Generally, the proposed method can provide satisfactory
sensitivity and specificity for most of the subjects. However,
its performance relates to the quantity and quality of the
input samples. By improving the data sample, the proposed
GNN can be a potentially valuable instrument for online
learning performance evaluation in practice.

*ird, we conducted the comparison experiments be-
tween the state-of-the-art and the proposed framework on
the entire dataset that was manually collected. Experimental
results as shown in Figure 5 demonstrate that the current
work achieved competing performance over the state-of-
the-art techniques. Although the sensitivity produced by
[37] is better than the proposed approach, this work out-
performed the state-of-the-art methods [31, 37, 38] in both
the specificity and accuracy of the whole data samples.

4. Discussion

*e results of the experiments show that the proposed
method can provide a favorable outcome for the issue that
has an intrinsic graph structure, and it can be useful for other
cases rendering similar characteristics. However, there are
some limitations of the presented approach that need to be
addressed before it is applied to those tasks. For instance, it
does not take temporal information into consideration.
*erefore, the relations between sequential samples might be

Graph Adjacent matrix

Convolution

Convolution

ReLU

ReLU

ReLU

Pooling

Output

Figure 2: *e structure of the proposed GNN.

Table 1: Details of the proposed GNN architecture.

Layer Conv ReLU Conv ReLU Conv ReLU Pooling Class
Channels 16 N/A 32 N/A 64 N/A N/A 2
K-order 9 N/A 9 N/A 9 N/A N/A N/A
Stride 1 N/A 1 N/A 1 N/A N/A N/A
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Figure 3: *e optimal threshold value set in the proposed GNN.
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neglected by using our approach. Moreover, this method is
unable to handle less structured representations.

5. Conclusions

In this work, the VR apparatus and IoT sensors were in-
troduced to implement an online music learning platform.

By leveraging it, personal information can be collected and
formed into a non-Euclidean graph. Since it is difficult to
employ the manners commonly adopted in an offline
classroom, the identification and prediction of the students’
real-time state deserve in-depth research for the online
learning scenes. Bearing this in mind, we proposed a spatial-
temporal GNN-based framework. Both the interdependent
associations between the students and the corresponding
development process can be unveiled from the presented
GNN model.

To evaluate the performance of the proposed framework,
comparison experiments were conducted between the state-
of-the-art techniques and the proposed method. Experi-
mental results demonstrated that the combination of VR and
IoT, as well as GNN, should be taken as a potentially valuable
instrument for online music learning.

In the future, the application of global average pooling
(GAP) needs to be studied since it is supposed to decrease
the number of parameters and eliminate overfitting and we
will continue to delve into the online learning platforms and
the applications of various machine learning-based algo-
rithms into them.
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