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Cancer cells exhibit increased glycolytic flux and adenosine triphosphate (ATP)
hydrolysis. These processes increase the acidic burden on the cells through the
production of lactate and protons. Nonetheless, cancer cells can maintain an alkaline
intracellular pH (pHi) relative to untransformed cells, which sets the stage for optimal
functioning of glycolytic enzymes, evasion of cell death, and increased proliferation and
motility. Upregulation of plasma membrane transporters allows for H+ and lactate efflux;
however, recent evidence suggests that the acidification of organelles can contribute
to maintenance of an alkaline cytosol in cancer cells by siphoning off protons, thereby
supporting tumor growth. The Golgi is such an acidic organelle, with resting pH ranging
from 6.0 to 6.7. Here, we posit that the Golgi represents a “proton sink” in cancer
and delineate the proton channels involved in Golgi acidification and the ion channels
that influence this process. Furthermore, we discuss ion channel regulators that can
affect Golgi pH and Golgi-dependent processes that may contribute to pHi homeostasis
in cancer.
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INTRODUCTION

Cancer cells require large amounts of energy in the form of adenosine triphosphate (ATP)
to drive rapid proliferation and support cellular processes including the activation of cell
signaling pathways, membrane transport, and DNA and protein synthesis (Alberts, 2015; Zhu and
Thompson, 2019). Interestingly, cancer cells frequently switch to a less efficient glucose metabolism
pathway for ATP production, compared to untransformed cells (Heiden et al., 2009; Liberti and
Locasale, 2016). This cancer hallmark phenomenon is known as the Warburg effect. Untransformed
cells mostly rely on mitochondrial oxidative phosphorylation (OXPHOS) for energy production,
which is a highly efficient process where oxygen and glucose-derived pyruvate fuel the TCA cycle
and drive the electron transport chain to produce 36 ATPs per glucose molecule (Heiden et al.,
2009; Liberti and Locasale, 2016). Although cancer cells are generally equipped with a functional
OXPHOS pathway, glucose metabolism is frequently switched to aerobic glycolysis where pyruvate
is fermented to lactate, even when oxygen is available. This switch in metabolism is thought
to provide essential building blocks for the rapid production of biomass and to facilitate rapid
proliferation. However, the pathway leads to the production of only two ATPs per glucose molecule
and thus requires the cells to boost glucose consumption to meet energy demands. A byproduct
of this metabolic rewiring is the increased production of lactate and a surge in H+. Further
contributing to the surge in H+ is the hydrolysis of ATP that supports cellular processes and
accelerated proliferation. High lactate and H+ levels can have devastating effects on cellular fitness
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by lowering the intracellular pH (pHi). Surprisingly though,
the pHi of cancer cells is not acidic, but is even more alkaline
relative to untransformed cells (Webb et al., 2011; Corbet
and Feron, 2017; Zheng et al., 2020). The maintenance of this
alkaline pHi provides cancer cells with an optimal environment
for glycolytic enzyme activity and cellular advantages to
proliferate, migrate, and withstand cell death cues. To avoid
the accumulation of cytosolic H+, cancer cells express multiple
families of transporters on the plasma membrane, including
vacuolar H+-ATPases, sodium-hydrogen exchangers, and
monocarboxylate transporters, all of which can extrude protons
(Figure 1). However, increasing evidence shows that the
regulation of pH homeostasis in cancer is not as straightforward
as extrusion of protons at the plasma membrane level, as
acidification of organelles, such as lysosomes and the Golgi,
contributes to the maintenance of an alkaline cytosol (Liu
et al., 2018; Funato et al., 2020; Galenkamp et al., 2020). These
organelles therefore function as repositories for H+ storage
or means to extrude protons through an alternative pathway.
Hence, because of their role in siphoning off cytosolic protons,
these organelles can be considered the “proton sinks” of the cell.

PROTON SINKS IN CANCER

The presence of acidic organelles and proton pumping into
their lumen can conceptually contribute to the upkeep of an
alkaline cytosol by sequestering protons or targeting them for
the extracellular space through exocytosis. While it is conceivable
that both normal and cancer cells might exploit organelle-
mediated sequestering of protons for pHi maintenance, the
available literature specifically points to this process as being
selective to cancer cells (Liu et al., 2018; Funato et al., 2020;
Galenkamp et al., 2020). This idea is consistent with the
notion that cancer cells produce more acidic moieties relative to
untransformed cells due to their altered metabolism.

Acidic organelles in mammalian cells belong to the endocytic
and secretory pathway and each of these organelles has a distinct
resting pH (Paroutis et al., 2004; Casey et al., 2010). Notably,
the Golgi pH gradually descends through the sub-compartments;
starting at pH 6.7 at the cis-Golgi, reaching pH 6.0 at the
trans-Golgi network and ultimately ending in the formation
of secretory vesicles and granules which can reach pH values
as low as 5.2. Lysosomes are the cell’s most acidic organelle
with a resting pH that ranges between pH 4.7 and 5.5, and
endosomes acidify as they mature; early endosomes have a resting
pH of 6.3–6.5 that decreases to pH 5.5 in late endosomes. The
luminal pH of these organelles is required for proper organelle
function and regulation of the organelle pH is important
for maintaining cellular fitness. For instance, in the Golgi,
luminal pH levels regulate the activity of glycosyltransferases and
vesicular trafficking (Axelsson et al., 2001; Kornak et al., 2008;
Maeda et al., 2008; Hucthagowder et al., 2009; Rivinoja et al.,
2009), while in the lysosomes the pH activates hydrolases and
mediates cargo degradation (Chen et al., 2020).

The pH scale is a negative logarithm and thus these organelles
contain proton concentrations that are 10–1,000 times higher

than those found in the cytosol of cancer cells, which has pH
values of 7.4 and higher (Webb et al., 2011, 2021; Corbet and
Feron, 2017; Zheng et al., 2020). Lysosomes, endosomes, and
the Golgi each occupy 3% or less of the total volume of a cell
(Alberts, 2015; Valm et al., 2017). But due to these high luminal
proton concentrations, these organelles may function as proton
repositories that contribute to maintaining an alkaline pHi in
cancer. Even small changes in the pH of these organelles can
translate to high molar quantities of H+ ions at the cytosolic
level. For instance, in cervical cancer, with lysosomes showing a
resting pH of 4.6, an increase of ∼0.7 pH units in the lysosome
pH was able to bring about a∼0.4 pH unit decrease in the cytosol
(Liu et al., 2018). Moreover, in pancreatic cancer, a ∼0.5 pH
unit increase in trans-Golgi network pH resulted in a ∼0.5 pH
unit decrease in pHi and ablation of the Golgi through Brefeldin
A administration produced similar effects on pHi homeostasis
(Galenkamp et al., 2020). In these cases of induced pH alteration
of the lysosome and Golgi, the increase in organelle pH and the
concomitant decrease in cytosolic pH reduced the viability of the
cells, marking the importance of these organelles in maintaining
an alkaline pHi and cell fitness in cancer cells.

In addition to storing protons, the Golgi and lysosomes can
potentially target protons to the extracellular space through
exocytosis, which adds an extra layer by which these organelles
can regulate pHi homeostasis (Figure 1; Jaiswal et al., 2009;
Rivera-Molina and Toomre, 2013; Deng et al., 2016; Nugues
et al., 2018; Funato et al., 2020). Interestingly, exocytosis may
be further stimulated in cancer cells by the acidification of
the extracellular surroundings and alkalinization of the cytosol.
During tumor acidosis, the extracellular fluid can reach pH 6.5
through increased proton and lactate extrusion (Webb et al.,
2011; Corbet and Feron, 2017; Zheng et al., 2020). As an
adaptation to this acidic environment, lysosomes are targeted
for fusion with the plasma membrane to protect the cells from
acidity, but thereby also contribute to maintaining an alkaline
cytosol (Steffan et al., 2009; Damaghi et al., 2015; Funato et al.,
2020). Moreover, cytosolic acidification was discovered to inhibit
Golgi to plasma membrane trafficking (Cosson et al., 1989), while
an alkaline pHi promotes exocytosis (Pernas-Sueiras et al., 2005;
Huck et al., 2007). An alkaline cytosol was recently shown to
change the protonation status of PI4P, a phosphatidylinositol that
predominantly localizes to the Golgi and is required for secretory
vesicle formation (Dippold et al., 2009; Rahajeng et al., 2019;
Waugh, 2019; Shin et al., 2020). Using a yeast model system,
it was demonstrated that reduced PI4P protonation in response
to cytosolic alkalinization increased PI4P protein binding (Shin
et al., 2020). It remains to be determined whether this protonation
status promotes secretory vesicle formation. Nonetheless, PI4P
is an important docking station for GOLPH3, a Golgi-localizing
oncoprotein frequently upregulated in cancer, which is described
to increase secretory vesicle formation and Golgi-to-plasma
membrane trafficking (Halberg et al., 2016; Waugh, 2019; Sechi
et al., 2020). Multiple cancer types have been found to display
increased and malignant Golgi-dependent secretion that drives
metastasis, a process enhanced by extracellular acidification
(Webb et al., 2011; Halberg et al., 2016; Corbet and Feron,
2017; Capaci et al., 2020; Gupta et al., 2020; Tan et al., 2020;
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FIGURE 1 | The Golgi contains proton channels and inherent properties that may convert the organelle into a proton sink in cancer. (A) The Golgi is an acidic
organelle that shows a decreasing pH gradient along the sub-compartments, eventually leading to the formation of acidic secretory vesicles and granules. The
luminal proton concentration is 10–100 times higher as the cytosol and thus the organelle may function as a proton repository that contributes to the upkeep of an
alkaline intracellular pH (pHi) in cancer cells. The resting pH of the Golgi and vesicles is thought to be mediated by proton loading and counter ion conductance.
Additionally, a proton leak pathway allows for reducing luminal proton content, but the pathway is suggested to be absent in secretory vesicles. (B) Ion channels at
the Golgi regulate the luminal H+ content. V-ATPase: Vacuolar H+-ATPases load the lumen constitutively with protons in an ATP-dependent manner. NHE7/8:
Sodium-hydrogen exchanger 7 (NHE7) has been implicated in proton loading by exchanging protons for luminal Na+. However, the directionality of NHEs at the
Golgi is debated since other studies propose that NHE7 and NHE8 function as a proton leak pathway. AE2a: Anion exchanger 2a is a Golgi-residing AE2 isoform
that buffers the Golgi through HCO3

− loading in exchange for Cl−. The buffering presents a sought-after proton leak pathway by providing means to neutralize
luminal protons through the production of water and carbon dioxide, which can exit the lumen through diffusion. The directionality of AE2 is reversible and therefore
bicarbonate influx is gradient-dependent. GPHR: Golgi pH regulator loads the lumen with Cl− in a voltage-gated manner. Hence, it provides the chloride ions
required for counterion conductance to sustain the constitutive activity of V-ATPases. In addition, GHPR is thought to provide the chloride ions to allow for
AE2a-mediated HCO3

− buffering. TMEM165: Transmembrane protein 165 ion selectivity and directionality is still under investigation but data points toward
Ca2+/Mn2+ transport in exchange for H+. (C) Secretory vesicles are targeted for exocytosis and thus present a pathway by which the Golgi may target protons to
the extracellular space and convert the Golgi into a proton sink by siphoning off cytosolic H+. Secretion is upregulated in cancer, but the role in regulating pHi
homeostasis remains to be determined. (D) In response to an acidic extracellular environment, lysosomes have been shown to be targeted for exocytosis, thereby
maintaining an alkaline pHi and protecting the cells from extracellular acid.

Zheng et al., 2020). Whether the malignant secretion presents
a pathway to boost proton extrusion through the Golgi and
whether that contributes to the metastatic potential of cancer
cells and pHi homeostasis is a concept that requires further
investigation (Figure 1).

Organelle pH levels are tightly regulated to support cell
function; however, changes in organelle pH are detected in
cancer. Multiple cancer types display a decreased lysosome
pH compared to tissue-matched untransformed cells (Webb
et al., 2021). Lysosomes of triple negative breast cancer cells
are significantly more acidic than lysosomes of untransformed
mammary epithelial or benign breast cancer cells. Similarly,
the lysosomes of pancreatic ductal adenocarcinoma (PDAC)
cells with mutant KRAS show a >0.5 pH unit decrease
compared to normal human pancreatic duct epithelial cells
or PDAC cells lacking oncogenic KRAS. Transformation of

normal kidney or mammary cells with mutant KRAS or mutant
HRAS, respectively, results in a lysosome acidification similar to
cancer cells. Interestingly, mutant RAS transformation-mediated
reduction in lysosome pH coincides with cytosol alkalinization,
but a direct link between these observations remains to be
established. Nonetheless, a direct link between alkaline pHi and
lysosome pH was found for cervical cancer cells, where loss of
lysosome acidification coincides with a reduction in cytosolic pH,
which points to lysosomes functioning as a proton sink (Liu et al.,
2018). The lysosome as a proton sink in cancer is extensively
reviewed by Chen et al. (2020). The medial/trans-Golgi is
proposed to become more alkaline in cancer, as determined by
comparing various human cancer cell lines to canine kidney
epithelial cells and human and monkey fibroblasts (Rivinoja et al.,
2006; Kokkonen et al., 2019; Khosrowabadi et al., 2021). However,
no differences in luminal pH were observed when comparing
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the trans-Golgi network of Chinese hamster ovary (CHO) and
cervical cancer cells (Demaurex et al., 1998). If there is indeed an
increase in Golgi pH in cancer cells, this might not necessarily
be linked to reduced proton loading since organelle pH also
relies on buffering capacity. Such a buffering effect could result
in increased luminal pH, while still allowing for the capture
of protons from the cytosol. The alkalinization in the Golgi
is proposed to occur through exchanger-mediated bicarbonate
buffering that reduces the luminal proton content by converting
HCO3

− and H+ into H2O and CO2, which can readily occur
at the resting pH of the Golgi since the pKa of HCO3

− is 6.4
(Khosrowabadi et al., 2021). With this increased pH buffering
capacity, the Golgi in cancer cells is possibly better equipped
to tolerate proton sequestration and allow for additional proton
loading relative to normal cells, which may contribute to clearing
cytosolic protons. However, additional studies are required to
confirm this potential.

GOLGI pH REGULATION

The Golgi pH is thought to be regulated at multiple levels
through proton pumping, proton leakage, buffering, and counter
ion transport. Significant advances have been made in the
understanding of these processes, but a comprehensive model
for luminal Golgi pH regulation in cancer largely remains
unresolved. Regulators of Golgi pH have mainly been identified
in non-cancerous models and the variety of cancer types and their
genomic differences may contribute to alternative regulation.
Moreover, cancer frequently displays changes in ion channel
expression levels and localization and is therefore proposed as
a channelopathy, which, given the multitude of ion channels
that can set off pH changes, beclouds the direct translation of
non-cancerous findings to cancer models (Litan and Langhans,
2015; Prevarskaya et al., 2018). Notably, it should be considered
that changes in expression levels do not necessarily translate
to changes in pH levels since ion channel activity can also
be driven by membrane potential and ion gradients. Here, we
will outline the regulators of Golgi pH homeostasis thus far
identified (Figure 1).

Vacuolar H+-ATPases
The Vacuolar H+-ATPase (V-ATPases) is the main acidifier
of organelles along the endocytic and secretory pathway and
its activity is required for both endocytosis and exocytosis
(Vasanthakumar and Rubinstein, 2020). The importance of the
proton pump in Golgi acidification is well illustrated by studies
from Llopis et al. (1998) who showed that V-ATPase inhibition
with bafilomycin A1 led to Golgi alkalinization, reaching pH
values close to the cytosolic pH levels. The proton pump is a
multi-subunit protein complex that transports H+ ions across
the membrane using ATP as an energy source. Expression levels
of the different subunits are tissue-, cell-, and organelle-specific,
and, in cancer, the subunits are frequently differentially expressed
(Couto-Vieira et al., 2020). The localization of V-ATPase to the
Golgi and endosomes is thought to occur through the V0a2
subunit, and its role in proper Golgi function is illustrated by the

Golgi dysfunction observed in cutis laxa patients, which harbor a
mutation in ATP6V0A2 (Kornak et al., 2008; Hucthagowder et al.,
2009). In cancer, V0a2 subunit expression is mostly unaffected
at the transcriptional level (ATP6V0A2,1) (Tang et al., 2019),
but the subunit may show differential localization to the plasma
membrane, as observed in ovarian cancer (Kulshrestha et al.,
2015). Here, knockdown of the subunit results in cytosolic
acidification, indicating that V-ATPase activity is important for
pHi homeostasis, but additional studies are required to determine
if the Golgi is involved (Kulshrestha et al., 2016).

The V-ATPase proton pump has been demonstrated to
transport protons constitutively into the Golgi lumen, where the
resting pH is dictated by a balance between proton pumping
and proton leakage (Schapiro and Grinstein, 2000; Wu et al.,
2001). Inhibition of V-ATPases causes luminal alkalinization
of the Golgi and secretory vesicles, highlighting the role for
V-ATPase in acidifying these organelles. However, artificial
luminal acidification in combination with V-ATPase inhibition
only results in gradual alkalinization of the Golgi and is not
detected in secretory vesicles (Wu et al., 2001). These results
indicate the possible presence of a proton leak pathway at the
Golgi, which is non-existent or minimal in secretory vesicles.
Interestingly, at the lysosome, V-ATPase is shown to be regulated
by the oncoprotein STAT3, which increases proton pump activity
in response to sensing cytosolic acidification, thereby restoring
the alkaline pHi in cancer (Liu et al., 2018). The role of STAT3
in regulating Golgi acidification seems to be absent, since the
study did not find evidence for STAT3 localization at the Golgi.
Nevertheless, a large number of proteins have been identified to
interact with the V-ATPase proton pump, which could possibly
affect its Golgi acidification capacity (Merkulova et al., 2015).

Na+/H+ Exchangers
Sodium-hydrogen exchangers (NHEs) are a family of
electroneutral membrane ion transporters that transfer protons
across membranes in a 1:1 exchange for Na+, and in some
cases Li+ and K+ (Pedersen and Counillon, 2019). The family
consists of nine isoforms that share a conserved architecture
and can be classified into two groups: the plasma membrane
NHEs (NHE1-5) and the endomembrane NHEs (NHE6-9),
although NHE8 can be considered a separate group as it exerts
its function at both the plasma membrane and endomembranes.
Both NHE7 and NHE8 have been identified to localize to
the Golgi and have been implicated in the regulation of the
Golgi resting pH (Numata and Orlowski, 2001; Nakamura
et al., 2005). NHE7 expression is frequently increased in
cancer (SLC9A7,1 (Tang et al., 2019) and overexpression of
NHE7 in a breast cancer cell line enhances cell adhesion,
invasion, and anchorage-independent growth (Onishi et al.,
2012). No significant differences are observed for NHE8
expression in tumors relative to tissue-matched controls
and no data is available for its role in cancer (SLC9A8,1)
(Tang et al., 2019).

The NHE7 and NHE8 exchangers were originally
proposed to function as a Golgi leak pathway for protons

1http://gepia2.cancer-pku.cn
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(Numata and Orlowski, 2001; Nakamura et al., 2005), allowing
H+ to flow out of the lumen through the ion gradient formed
by the elevated H+ levels relative to the cytosol. The notion
that sodium-hydrogen exchangers act as a proton leak pathway
was supported by the original findings that exogenous NHE8
expression in monkey fibroblasts increased the pH of the Golgi
and NHE7 expression in CHO cells increased the Na+ influx
into endomembrane structures (Numata and Orlowski, 2001;
Nakamura et al., 2005). However, CHO cells lacking plasma
membrane NHE1 did not confirm the NHE7 leak pathway
since the Golgi resting pH was unaltered after exogenous
NHE7 expression (Khayat et al., 2019). Nevertheless, exogenous
expression of an NHE7 mutant linked to intellectual disability
did cause alkalinization of the Golgi. According to the proton-
leak hypothesis, the authors proposed a model in which the
mutation transformed the exchanger into a hyperactive proton
leak responsible for the luminal alkalization (Khayat et al.,
2019). Subsequent studies on NHE8 have pointed toward a role
in regulating the function and morphology of multivesicular
bodies, with no observed changes in luminal pH (Lawrence
et al., 2010). The proton-leak hypothesis warrants further
scrutiny, especially since an increase of cytosolic Na+ to 103 and
140 mM, concentrations similar to physiological extracellular
concentrations known to drive NHE1-mediated proton
extrusion, had minimal effects on the Golgi pH, suggesting that
the Na+/H+ leak activity at the Golgi is insignificant (Demaurex
et al., 1998; Schapiro and Grinstein, 2000).

An opposing hypothesis for the function of NHE7 at the Golgi
is in a role as a proton loader. NHE7 expression is frequently
increased in cancer, as is the case for PDAC (Galenkamp et al.,
2020). Here, endogenous NHE7 localization was confirmed at
the trans-Golgi network and knockdown of NHE7 resulted
in alkalization of the organelle and a concomitant increase
in cytosolic pH. A thorough assessment of NHE7 features by
Milosavljevic et al. (2014) revealed that the exchanger functions
as an acid loader. Importantly, NHE7 was shown to display
non-reversible proton transport from the cytosol to the lumen,
arguing against NHE7 being able to function as a proton
leak pathway at the Golgi. Moreover, the study indicated that
NHE7-mediated proton loading is only effectuated by high Na+
concentrations, not by K+, and is constitutively activated by
cytosolic H+.

Anion Exchangers
The anion exchangers (AEs) family contains membrane
transporters that electroneutrally and reversibly exchange Cl−
for HCO3

− (Romero et al., 2013). The exchangers mediate
bicarbonate buffering that contributes to pH homeostasis by
sequestering H+ at acidic pH levels and which leads to the
conversion of protons and bicarbonate into water and CO2. Both
products can readily escape the lumen of organelles through
diffusion and, possibly, aquaporin water channels (Nozaki et al.,
2008; Alberts, 2015). Of special interest is the Golgi-localized AE2
isoform AE2a (Holappa et al., 2001). AE2 gene transcription is
upregulated in multiple cancer types and is linked to promoting
cell viability, proliferation, migration and invasion of cancer
cells (SLC4A2,1) (Hwang et al., 2009, 2019; Zhang et al., 2017;

Celay et al., 2018; Tang et al., 2019; Khosrowabadi et al.,
2021). The AE2a isoform is reported to increase the Golgi
resting pH and therefore represents a likely candidate for
the proton leak observed at the Golgi (Wu et al., 2001;
Khosrowabadi et al., 2021).

Golgi pH Regulator
The Golgi pH regulator (GPHR) is a voltage-gated chloride
channel that regulates Golgi pH through counter ion
conductance (Maeda et al., 2008). The influx of chloride ions into
the Golgi allows for H+ pumping by reducing the membrane
potential, which increases through continuous H+ pumping by
the V-ATPases (Llopis et al., 1998; Maeda et al., 2008). Moreover,
GPHR can conceivably provide the chloride ions required for
anion exchanger-mediated bicarbonate transport at the Golgi
(Becker and Deitmer, 2020). GPHR is mainly localized to the
Golgi and the introduction of an inactivating mutation or
downregulation increases the Golgi resting pH, causes disruption
of Golgi integrity, impairs glycosylation, and Golgi to plasma
membrane trafficking (Maeda et al., 2008; Vavassori et al., 2013;
Sou et al., 2019). Little is known about the role of GPHR in
cancer and its expression is largely unaffected by transformation
(GPR89A/B,1) (Tang et al., 2019).

Transmembrane Protein 165
The ion specificity of transmembrane protein 165 (TMEM165)
is still debated, but research findings point to the function of
a Ca2+/Mn2+ transporter in exchange for H+ (Lebredonchel
et al., 2019; Stribny et al., 2020; Wang et al., 2020). TMEM165
localizes to the Golgi and knockdown of TMEM165 in normal
liver cells results in Golgi acidification, suggesting TMEM165 is
a proton leak pathway (Foulquier et al., 2012; Wang et al., 2020).
However, in cervical cancer cells knockdown of TMEM165 was
shown to cause acidification of lysosomes (Demaegd et al., 2013).
Nonetheless, the role of TMEM165 as a possible regulator of
Golgi pH is supported by glycosylation abnormalities found in
patients harboring a TMEM165 mutation, which is tightly linked
to Golgi pH homeostasis (Foulquier et al., 2012). TMEM165 is
upregulated in a few cancer types and is linked to promoting
migration and invasion (TMEM165,1) (Lee et al., 2018; Tang et al.,
2019; Murali et al., 2020).

Cystic Fibrosis Transmembrane
Conductance Regulator
The role of cystic fibrosis transmembrane conductance regulator
(CFTR) in regulating Golgi pH is controversial since studies have
described seemingly contradictory findings. Moreover, CFTR is
not a Golgi-resident protein per se but traffics through the Golgi
to reach the cell surface. Nonetheless, this counterion channel
has been shown to change Golgi pH in a cystic fibrosis model
(Poschet et al., 2001). CFTR is a cAMP-activated Cl−/HCO3

−

channel best known for causing the life-limiting cystic fibrosis
disease through the F508del mutation, but mutations and
differential expression are also linked to cancer predisposition
(Amaral et al., 2020). Gene expression is increased or reduced
depending on the cancer type (CFTR,1) (Tang et al., 2019). The
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F508del mutation causes CFTR misfolding, ER retention, and
degradation (Cheng et al., 1990; Denning et al., 1992). In
a PDAC cell line derived from a cystic fibrosis patient, the
F508del mutation was shown to cause Golgi dispersion which
was reverted by wild-type CFTR expression (Hollande et al.,
2005). Cells harboring the mutation show hyperacidification
of the Golgi, which is counteracted by restoring 1508-CFTR
folding or reintroduction of wild-type CFTR (Chandy et al.,
2001; Poschet et al., 2001). However, reduced Cl− influx by
decreased expression of CFTR at the Golgi cannot explain the
increased acidity, since Cl− is a H+ counterion that reduces
the membrane potential. This led to the proposal of a model
in which Na+ efflux from the organelle is increased in the
absence of CFTR, allowing for additional H+ pumping (Poschet
et al., 2002). The CFTR chloride channel represses sodium efflux
by inhibiting the epithelial sodium channel, ENaC, resulting
in Na+ build up due to the action of Na+/K+-ATPases. This
leads to reduced proton pumping in response to the increase
in membrane potential caused by Na+ ions. Nonetheless, the
role of CFTR in regulating Golgi pH remains controversial
as administration of cAMP had little effect on Golgi pH of
CFTR mutant and wild-type cells (Llopis et al., 1998; Chandy
et al., 2001). This in contrast to previous studies where cAMP
was found to alkalinize the Golgi, but where overexpression
of CFTR did not significantly change the pH of the organelle
(Seksek et al., 1995, 1996).

DISCUSSION

The concept of the Golgi as a proton sink remains to be fully
explored and requires more extensive studies that specifically
address the contribution of the Golgi to maintenance of cytosolic
pH. Moreover, plasma membrane transporters are historically
thought to predominately regulate pHi and the role of organelles
in this homeostatic process needs additional scrutinization
(Paroutis et al., 2004; Casey et al., 2010; Webb et al., 2011;
Corbet and Feron, 2017; Zheng et al., 2020). It would be
interesting to examine the level of contribution that alternative
pathways have on H+ efflux, such as exocytosis and proton
loading of lysosomes and the Golgi, and whether these pathways’
contributions are distinctive for cancer vs. untransformed cells.
In cancer, both the perturbation of Golgi and lysosome pH
has been shown to affect the pH of the cytosol, but equivalent
analyses of normal cells is lacking (Liu et al., 2018; Funato
et al., 2020; Galenkamp et al., 2020). As an acidic organelle,
the Golgi subtracts protons from the cytosol and, as a part of
the secretory pathway, might target H+ for the extracellular
space. Conceptually, it may be possible that the Golgi can
contribute to pHi homeostasis in both cancer and normal cells.
However, one observation that this might not be the case is
that the depletion of NHE7 in normal pancreatic cells did not
affect the cytosolic pH, while loss of NHE7 in PDAC cells
resulted in alkalinization of the Golgi that caused a decrease in
cytosolic pH (Galenkamp et al., 2020). A likely explanation is
that organelle acidification plays a greater role in cancer cells
due to the acidic burden that these cells have to withstand

in response to amplified aerobic glycolysis and ATP hydrolysis
(Webb et al., 2011; Corbet and Feron, 2017; Zheng et al., 2020).
Alternatively, acidic organelles in cancer may exhibit increased
or altered activity that exacerbates the effect on cytosolic pH
when perturbed. Indeed, cancer cells show increased Golgi-
mediated secretion which would increase the number of protons
secreted through this pathway (Halberg et al., 2016; Capaci et al.,
2020; Gupta et al., 2020; Tan et al., 2020). Given this enhanced
secretory flux, perturbation of the secretory pathway might result
in greater accumulation of protons in the cytosol, relative to
untransformed cells. Additionally, cancer cells display altered
luminal ion levels, and differential transporter levels or activity,
which could potentially bring about changes in proton loading
(Litan and Langhans, 2015; Prevarskaya et al., 2018).

The contribution of additional Golgi proton loaders or
leak pathways and their physiological relevance alongside
V-ATPase, which is the main acidifier of secretory and endocytic
organelles, in cancer and normal cells is limitedly studied.
In cancer, the Golgi is proposed to display elevated buffering
capacity via increased AE2a expression and bicarbonate loading
(Khosrowabadi et al., 2021). A conceivable source of bicarbonate
for transport into the Golgi lumen are the carbonic anhydrases
present at the cell surface, which are upregulated in cancer
and convert carbon dioxide and water into H+ and HCO3

−

(Mboge et al., 2018). In turn, bicarbonate is imported by the cell
through Na+/HCO3

− cotransporters that utilize the existing Na+
gradient between the cytosol and extracellular fluid (Becker and
Deitmer, 2020). Additionally, the cytosolic carbonic anhydrase
CAII may provide HCO3

− as it has been determined to localize
to the Golgi (Alvarez et al., 2001). Importantly, CAII and AE2
are able to form a transport metabolon, a complex between the
anion exchanger and carbonic anhydrase, which is proposed
to be required for full bicarbonate transport activity by AE2
(Vince and Reithmeier, 2000; Sterling et al., 2001; Gonzalez-
Begne et al., 2007; Becker and Deitmer, 2020). Luminal chloride
ions required for the counter ion transport in the HCO3

−

exchange are most likely transported to the lumen through
chloride channels, such as GPHR, present at the Golgi (Maeda
et al., 2008). Although AE2a does not directly mediate proton
leakage, but provides a means for proton neutralization, it
presents a plausible option for the proton leak pathway that had
previously been identified, but for which thus far a compelling
candidate is lacking (Wu et al., 2001). Given that the pKa of
bicarbonate is 6.4, in the Golgi lumen, bicarbonate and H+
can convert to water and carbon dioxide without requiring
carbonic anhydrases (Mboge et al., 2018). This alkalinization
of the Golgi by increased bicarbonate buffering may provide
means for additional subtraction of protons from the cytosol.
The contribution of the pathway to cytosolic pH alkalinization
in cancer ultimately depends on the fate of the carbon dioxide
and whether it remains within the cell and converts back to
bicarbonate in a carbonic anhydrase-dependent or independent
manner, or whether it leaves the cell and thereby leads to the
neutralization of intracellular protons.

The sodium-hydrogen exchanger NHE7 had previously been
proposed as a proton leak pathway at the Golgi, but more
recent data has pointed toward NHE7 functioning as a proton
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loader (Numata and Orlowski, 2001; Milosavljevic et al., 2014;
Galenkamp et al., 2020). Endogenous NHE7 localizes to the
trans-Golgi network; however, the transporter can be present
on post-Golgi vesicles, endosomes, and traffic to the plasma
membrane when overexpressed or when endocytosis is inhibited
(Numata and Orlowski, 2001; Lin et al., 2005, 2007; Nakamura
et al., 2005; Fukura et al., 2010; Onishi et al., 2012; Khayat
et al., 2019; Galenkamp et al., 2020; Lopez-Hernandez et al.,
2020). Whether NHE7 is required for the formation of post-Golgi
vesicles and endosomes, or whether it is a passenger, and if it
regulates post-Golgi vesicle acidification has not been carefully
assessed. When forced to express at the plasma membrane,
NHE7 is shown to function as a proton loader of endosomes,
with no leak activity (Milosavljevic et al., 2014). However, cells
with and without NHE7 expression displayed similar steady-
state endosomal pH levels. Inhibition of NHE7 with the pan-
NHE inhibitor EIPA reduced acidification of endosomes to a
similar extent as bafilomycin A1, whereas the effect of EIPA was
absent in cells without NHE7 expression. These data indicate that
NHE7 can function alongside V-ATPases in mediating luminal
acidification and that the steady-state pH might involve both
transporters. NHE7 knockdown in PDAC cells was shown to
alkalinize the Golgi, but a direct evaluation of Na+-mediated
proton loading of the Golgi lumen remains to be carried out
(Galenkamp et al., 2020). Nonetheless, the involvement of NHEs
in Golgi acidification in PDAC was confirmed by treatment
with EIPA. Altogether, the data fits a model in which NHE7
acidifies the trans-Golgi network, possibly alongside V-ATPases.
It cannot be completely ruled out that the downregulation or
inhibition of NHE7 affects V-ATPase activity or that proton
extrusion at the plasma membrane partially contributes to the
observed effects. NHE7 constitutively binds protons (Km = 2.5
10−7 M), but has a low affinity for Na+ (Km = 240 mM) and
thus needs high Na+ concentrations to drive proton transport
against the gradient between the Golgi lumen and the cytosol
(Milosavljevic et al., 2014). These findings suggest that, if NHE7
functions as an acid loader at the Golgi, a source of luminal
Na+ should be present. Thus far the concentrations of Na+ at
the Golgi have not been determined and might be differentially
regulated in cancer. Na+/K+-ATPases present at the Golgi are
likely not the source of Na+, since their inhibition did not
affect Golgi pH in cervical cancer cells (Llopis et al., 1998)
and reduced Golgi resting pH in cystic fibrosis control cells
(Poschet et al., 2001). However, luminal Na+ concentration
could be driven by retrograde transport from endosomes
to the trans-Golgi network, which delivers extracellular Na+
obtained through endocytosis (Tu et al., 2020). This process is
thought to contribute to the high Na+ concentrations observed
in lysosomes, where Na+ is the predominant cation at a
concentration of ∼150 mM (Wang et al., 2012; Xu and Ren,
2015). A role for this pathway in Na+ delivery to the Golgi has
yet to be assessed.

Altogether, the available data indicates that additional
transporters besides V-ATPase can co-regulate the luminal pH
of the Golgi and contribute to the extraction of protons from
the cytosol. The role of each of these transporters and whether
the correct physiological conditions are met to allow for each

of these transporters to function remains to be determined
on a contextual basis and could be differentially regulated in
untransformed cells vs. cancer.

CONCLUSION

Cancer is a pathological state in which cells are exposed
to chronic stresses that can alter cellular processes in
order to provide growth benefits despite the harsh tumor
microenvironment (Webb et al., 2011; Corbet and Feron, 2017;
Zheng et al., 2020). One such stress is the increased production
of H+ ions, which can lead to cellular acidification and tumor
acidosis. Despite these conditions, cancer cells maintain an
alkaline pHi that allows proliferation to thrive. The Golgi is
shown to contribute to the upkeep of this alkaline cytosolic pH
in cancer by functioning as a proton sink (Galenkamp et al.,
2020). Whether the Golgi also plays a role in the maintenance
of cytosolic pH in normal cells remains to be determined. In
addition to the proton storage capacity, the Golgi contains
inherent properties, the secretory pathway, to target protons
for the extracellular space. This pathway becomes malignant in
cancer and may promote proton extrusion and provide means
to drive metastasis (Halberg et al., 2016; Capaci et al., 2020;
Gupta et al., 2020; Tan et al., 2020). The limited understanding
of the players involved in Golgi pH homeostasis in cancer
impedes the targeting of this pathway as a therapeutic strategy.
Further investigation is warranted to fully comprehend the
contribution of the Golgi ion channels to Golgi pH and pHi
homeostasis in cancer. It would be beneficial to scrutinize
how ion channels in the Golgi are regulated, as they may
be affected by changes in expression levels or subcellular
localization, or through activation cascades, such as observed
in the WNK signaling pathway, and by secondary messengers,
such a cAMP and PDGF (Seksek et al., 1995; Alessi et al.,
2014). Such examinations may provide valuable insights into
ways to therapeutically disrupt pH homeostasis in cancer and
may open new avenues for pharmacological intervention,
which are eagerly needed to improve clinical outcomes for
cancer patients.
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