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Parasitic helminths, comprising the flatworms (tapeworms and flukes) and nematodes
(roundworms), have plagued humans persistently over a considerable period of time. It is
now known that the degree of exposure to these and other pathogens inversely correlates
with the incidence of both T helper 1 (Th1)-mediated autoimmunity and Th2-mediated
allergy. Accordingly, there has been recent increased interest in utilizing active helminth
worm infections and helminth-derived products for the treatment of human autoimmune
and inflammatory diseases and to alleviate disease severity. Indeed, there is an
accumulating list of novel helminth derived molecules, including proteins, peptides, and
microRNAs, that have been shown to exhibit therapeutic potential in a variety of disease
models. Here we consider the blood-dwelling schistosome flukes, which have evolved
subtle immune regulatory mechanisms that promote parasite survival but at the same time
minimize host tissue immunopathology. We review and discuss the recent advances in
using schistosome infection and schistosome-derived products as therapeutics to treat or
mitigate human immune-related disorders, including allergic asthma, arthritis, colitis,
diabetes, sepsis, cystitis, and cancer.

Keywords: schistosome, autoimmune and inflammatory diseases, allergic asthma, colitis, diabetes, sepsis,
cystitis, cancer
INTRODUCTION

Schistosoma spp. are digenetic trematodes that cause schistosomiasis (Bilharzia), a disease afflicting
over 230 million individuals in developing countries in Africa, South America, and Asia (1).
Schistosomiasis was reported as being responsible for an estimated global burden of 1.4 million
disability adjusted life years (DALYs) in 2017 (2). Three schistosome species, Schistosoma
haematobium, S. mansoni, and S. japonicum are the most clinically relevant. Liver fibrosis is the
main contributor responsible for the morbidity and mortality among individuals with chronic
hepatosplenic schistosomiasis. Currently, there is no practical vaccine available for schistosomiasis.
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Control of the disease relies predominantly on mass drug
administration (MDA) programs incorporating the drug
praziquantel (3).

Schistosomes are dioecious and have a lifecycle involving an
aquatic snail as an intermediate host and a mammalian definitive
host (4). During the schistosome lifecycle, free-swimming
cercariae penetrate a mammalian host. After skin penetration,
the larvae transform into schistosomula, which can reach the
heart and lungs within 3–5 days, and within 2 weeks the juvenile
worms migrate to the hepatic portal system, where they pair up
and become sexually mature. The paired schistosome adult
worms then migrate to the pelvic venous plexus (S.
haematobium) or the mesenteric veins (S. mansoni and S.
japonicum), where the female worms lay eggs intravascularly,
with patency times varying among species. Eggs disseminate
through the blood flow and many are entrapped in host tissues,
such as the liver and intestine, driving the host immune
inflammatory response, which in turn help discharge the
remaining eggs from the definitive mammalian host. After
release from the definitive host, the eggs hatch in freshwater
and transform into miracidia, which penetrate a specific snail
intermediate host, developing asexually into mother and then
daughter sporocysts; these produce cercariae that are released
into water to continue the life cycle (5). Adult schistosomes can
dwell in the blood vessels of the definitive hosts for decades,
despite being continually exposed to this immunologically
harsh microenvironment.

The long period of host/parasite co-evolution has resulted in
schistosomes modulating the host immune response during
infection using intricate molecular mechanisms. The host
immune response elicited due to schistosome infection is
polarized as it progresses, going from i) an initial T helper type
1 (Th1) response against migrating immature and mature
parasites involving IL-12, interferon-g (IFN-g) and tumor
necrosis factor-a (TNF-a), ii) a switch to a powerful Th2
response, which is primarily induced by egg antigens, with an
elevation in the Th2-type cytokines interleukin (IL)-4, IL-5, IL-9,
and IL-13, under the control of regulatory T-cells (6, 7), and
finally iii) a chronic regulatory phase with a reduced but still
predominant Th2 response due to a prolonged regulatory T-cell
environment involving IL-10 and TGF-b (6, 8, 9). Work with
gene-deficient mice has shown that during the acute phase of a
schistosome infection, the inability to drive Th2-type and anti-
inflammatory responses is associated with a severe condition
characterized by cachexia and significant host mortality (9–11).
A critical event in the schistosome life cycle is the excretion of
eggs from the mammalian host to the external environment, a
process that requires the host evoking CD4+ T-cell-induced
granulomatous inflammation to facilitate the passage of eggs
through the intestine or bladder (12). However, excessive
polarization of the Th2 immune response at the chronic stage
can lead to potentially life-threatening pathology characterized
by periportal fibrosis and portal hypertension (13); this in turn
triggers the host to produce intrinsic factors that elicit a more
balanced regulatory anti-fibrotic immune response to restrict the
deleterious effects of infection (14).
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In areas highly endemic for human schistosomiasis,
schistosome re-infection is a frequent event. Naturally infected
individuals can develop a state of concomitant immunity to
control worm numbers in the host by killing newly invading
larvae with a modified Th2 pulmonary response (8, 15).
Although the exact mechanism(s) underpinning concomitant
immunity remain unclear, it has been suggested that a rich
source of potential immunomodulatory molecules secreted by
previously established adult worms and/or schistosomula surface
antigens could interact with and stimulate the host to develop an
immune response targeting larval worms (16–18). Collectively,
these observations imply that the regulatory immune response
induced by the worm and/or worm-derived components
represents a key component for the mutual benefit of both the
host (pathology limitation) and the parasite (survival and
proliferation). Indeed, observations in murine models and in
humans show that regulatory subsets of CD4+ T cells (Tregs),
both naïve and induced Tregs, play an important role in
balancing the Th1/Th2 response and in modulation of
schistosomiasis-induced immunopathology leading to
granuloma formation and fibrosis both in the liver and
intestine (19–22).
THERAPEUTIC POTENTIAL OF LIVE
SCHISTOSOME INFECTION AND
SCHISTOSOME PRODUCTS FOR
IMMUNOLOGICAL DISEASES

Pivotal research published in the late 1980s by David Strachan,
an epidemiologist at the London School of Hygiene and Tropical
Medicine, showed in an investigation involving more than
17,000 children that those in larger households had fewer
instances of hay fever (23). Subsequent research suggested that
children living in very clean environments appeared to increase
an individual’s susceptibility to a range of other conditions. This
is what is so-called the hygiene hypothesis which has been
supported by epidemiological evidence and experimental
studies and was extended to other allergic diseases and
subsequently to autoimmune diseases (24). However, the term
‘hygiene hypothesis’ is vague and misleading, and has been
widely criticized (25). Accordingly, the concept was later
reformulated as the ‘Old Friends’ hypothesis which argues that
early exposure to the vital microbes was not due to measles, colds
or other childhood (crowd) infections, but rather microbes
already present during primate evolution and in hunter-
gatherer times when the human immune system was in the
process of being shaped (26). With this concept in mind,
parasitic helminths that reside in a chronic state in humans,
and are tolerated by the immune system, can be regarded as
“Old Friends”.

The proclivity for schistosomes to orchestrate immunomodulatory
effects on the host immune system combined with the concept of
the hygiene hypothesis form the basis for developing therapeutics
to protect individuals against the onset of various forms of
February 2021 | Volume 12 | Article 619776
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autoimmune and inflammatory diseases including arthritis,
allergic asthma, diabetes, colitis, sepsis and cancer, or to
ameliorate their severity (Figure 1). In this context, Osada &
Kanazawa (27) reviewed the modulatory effects of a concurrent
schistosome infection, and the injection of whole eggs, soluble egg
antigens (SEA), a soluble antigen preparation of adult
schistosomes (SWAP), or recombinant parasite proteins on
immunological disorders. Due to the potential safety issues and
the accompanying side effects in humans that might be evoked by
a live worm infection or the injection of eggs, the use of SEA,
SWAP and schistosome secreted and surface-exposed molecules
as modulators of the immune system was revisited by Janssen
et al. (28). SEA is a complex mixture of phosphate buffered saline-
soluble (mainly secreted and cytoplasmic) molecules obtained
from mechanically disrupted eggs. Similar to schistosome eggs,
SEA is highly antigenic and can induce the activation of a
considerable immune response. As with a live schistosome
infection, SEA can activate and modulate both the innate
immune response through interacting with dendritic cells (DC),
macrophages, natural killer T (NKT) cells, eosinophils and
basophils, and the adaptive immune system by acting on T cells;
this results in the upregulation of anti-inflammatory cytokines
and the down-regulation of pro-inflammatory cytokines (29, 30).
Individual Schistosoma-derived components including
recombinant proteins, such as rSjcystatin and rSmKI-1,
Frontiers in Immunology | www.frontiersin.org 3
peptides, and small RNAs, have been recently explored as
potential therapeutic targets (Table 1). It has been argued that
intact helminth parasites may be superior to helminth-derived
products for treating chronic inflammatory-associated diseases in
humans (59), but this needs to be validated in the case
of schistosomes.

Given the capacity of schistosomes to hasten or nullify the
development of inflammatory and autoimmune diseases, some
of the disorders that have shown improved outcomes after
schistosome infection or exposure to schistosome components
are now discussed.

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic systemic autoimmune
disease that primarily affects the lining of the synovial joints,
resulting in both cartilage destruction and bone erosion. The
disorder may lead to progressive disability and premature death,
contributing to a significant clinical and economic burden on
society (60). Some biologic agents such as cytokine antagonists
that inhibit TNF-a, IL-1b, or IL-6 (anti-TNF-a, anti-IL-1, or
anti-IL-6) have shown preventive effects that can substitute for
conventional disease-modifying anti-rheumatic drugs (61).
However, no clinically useful biologic therapy is available for
the individually tailored treatment of RA, and patients with RA
usually require a long-term treatment plan, in which side effects
FIGURE 1 | Diagrammatic representation of the use of a live schistosome infection or schistosome-derived products for the prevention/alleviation of a variety of
autoimmune and inflammatory diseases, including (A) arthritis, (B) allergic asthma, (C) colitis, (D) diabetes, (E) sepsis, (F) cystitis, and (G) cancer. Figure 1 was
created with Biorender.com.
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TABLE 1 | Recent studies of schistosome infection and schistosome-derived products shown to suppress immunological disorders.

Disease Animal model/cell Species Treatment Association/Modulatory effect Reference

Rheumatoid
arthritis

CIA mouse model S. mansoni Cercarial infection prior to modelling Splenic IL-17A↓, TNF-a↓, IFN-g↓, IL-4↑, IL-
10↑

(31)

CFA-induced AA rat
model

S. mansoni Intradermal (ID) injection of ASMA after modelling IL-17↓, IL-10↑, IFN-g↑ in serum; Tregs↑ in
joint tissues

(32)

CIA mouse model S. japonicum Intraperitoneal (IP) injection of rSjCystatin prior to
CIA modelling

Splenic IL-4↑, IL-10↑, IFN-g↓, IL-6↓, IL-17↓,
TNF-a↓; collagen specific IgG1↑, IgG2a↓

(33)

CIA mouse model S. japonicum Subcutaneous (SC) injection of SJMHE1 prior to
and after modelling

Splenic IFN-g↓, IL-22↓, TNF-a↓, IL-6↓, IL-
17↓, IL-10↑, TGF-b1↑, Tregs↑

(34)

MSU-induced gout
arthritis model

S. mansoni Intravenous (IV) injection of SmKI-1 after modelling IL-1b↓ in periarticular knee tissue; neutrophil
migration↓ into pleural cavity

(35)

Allergy and
asthma

OVA/alum-induced AAI S. mansoni IP injections of eggs prior to sensitization Eosinophilia↓ in BAL and lungs, OVA-specific
Th2 cytokines↓ in lungs, moDCs↓

(36)

OVA/alum-induced AAI S. mansoni IP injection of Smteg during sensitization IL-5↓, IL-13↓, IL-25↓, CCL11↓, anti-OVA
IgE↓, IL-10↑ in lungs

(37)

PMBCs from asthmatic
subjects

S. mansoni PMBCs from asthmatic subjects stimulated with
Sm29 and Sm29TSP-2 in the presence of Der p1

CD4+CD25hi T lymphocytes↑, CD4+CD25low

T lymphocytes↓, IL-10↑ in the supernatants
(38)

OVA/alum-induced AAI S. japonicum Injection of SjP40 peptides (1st in the left footpad
and base of tail, 2nd IP) before and in the course
of OVA sensitization

IFN‐g↑, IL‐4↓, IL‐5↓, IL‐13↓ in splenocytes;
OVA‐specific IgE↓; IL‐4↓ and IFN‐g↑ in BALF

(39)

OVA/alum-induced AAI S. japonicum SC injection of SJMHE1 during sensitization and
challenge

IL‐4↓ in splenocytes; IL‐4↓, IL‐5↓ and IL‐17↓
in the lungs; IFN‐g↑, IL‐10↑ and IL‐35↑ in the
lungs

(40)

HDM-induced AAI S. japonicum Cercarial infection prior to modelling IL‐4↓in BALF and the lungs, IL‐17↓ in BALF (41)
Colitis DSS-induced colitis mice S. japonicum Cercarial infection prior to modelling IL-6↓, IL-2↓, IL-10↓, IL-17a↓, IFN-g↓ and

TNF-a↓ in serum; ER stress markers IRE1a↓
and IRE1b↓ in colon tissue;

(42)

DSS-induced colitis mice S. mansoni Male-only cercariae infection prior to modelling IFN-g↓, IL-4↑, IL-10↑, and IL-17↑ in MLNs (43)
DSS-induced colitis mice S. mansoni IP injection of freeze/thaw-killed eggs IFN-g↓, IL-2↓, IL-4↓, IL-10↑ in serum; Tregs↑

in colon tissue
(44)

Colitis induced by
chronic adoptive T-cell
transfer in SCID mice

S. mansoni SEA injection after modelling Th2 cells↑, Th17 cells↓ in colon tissue (45)

DSS-induced colitis mice S. japonicum IP injection of rSj16 after modelling TNF-a↓, IFN-g↓, IL-17a↓, Chil3↓, TGF-b↑, IL-
10↑ in colon tissue; Tregs↑ in spleen and
MLNs

(46)

TNBS-induced colitis
mice

S. japonicum IP injection of rSjcystatin after modelling IL-4↑ and IL-13↑ in colon; IFN-g↓, IL-10↑ and
TGF-b↑ in MLNs and spleen

(47)

TNBS-induced colitis
mice

S.
haematobium

SC injection of P28GST prior to modelling IFN-g↓, IL-4↑, IL-13↑ and eosinophil
infiltration↑ in colon tissue

(48)

Type 1
diabetes

NOD mice S. japonicum IP injection of rSjCystatin prior to modelling IFN‐g↓, IL-4↑, IL‐10↑, TGF‐b↑, and Tregs↑ in
spleen and PLN

(49)

NOD mice S. japonicum IP injection of rSjFBPA prior to modelling IFN‐g↓, IL-4↑, IL‐10↑, TGF‐b↑, and Tregs↑ in
spleen and PLN

(49)

STZ-induced diabetic
mice

S. mansoni Cercarial infection prior to modelling M2 macrophage markers, Arg-1↑ and Ym1↑
in PLN

(50)

Type 2
diabetes

Diet‐induced obese mice S. mansoni Cercarial infection/IP injection of SEA after
modelling

Th2 cells↑ and eosinophilia↑ in WAT and liver;
M2 macrophage↑ in WAT

(51)

Leprdb/db mice S. japonicum IP injection of SEA IL-4↑, IL-5↑,Tregs↑ in splenocytes (52)
Sepsis LPS-induced septic mice S. japonicum Cercarial infection prior to modelling M2 macrophage↑, M1 macrophage↓ in

peritoneal lavage cells
(53)

LPS-induced septic mice S. japonicum IP injection of rSj-Cys after modelling IL-10↑, TGF-b1↑,TNF-a↓, IL-6↓, IL-1b↓ in
serum; MyD88↓ in liver, kidney and lungs

(54)

LPS-induced septic mice S. japonicum IP injection of rSj-Cys after modelling IL-6↓, TNF-a↓, IL-10↑ in serum (55)
Cystitis Ifosfamide-induced

hemorrhagic cystitis
model

S.
haematobium

IV injection of IPSE prior to modelling IL-1b-TNFa-IL-6 pathways↓, interferon
signaling↓, oxidative stress↓ in bladder

(56)

Cancer Mouse model of DMH-
induced colon cancer

S. mansoni IP injection of ASMA after modelling IL-17↓, IL-10↑ in serum; splenic CD4+T-
cells↑, intestinal FoxP3+ Tregs↑

(57)

(Continued)
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are generally inevitable (62). Thus, the development of an
innovative prophylactic or therapeutic strategy is critical, and
there has been considerable interest in developing recombinant
immune-modulating drugs for RA treatment.

Collagen-Induced Arthritis Autoimmune Mouse
Model for Rheumatoid Arthritis
The CIA autoimmune mouse model is widely used to study RA
(63, 64). Infection of mice with either S. mansoni or S. japonicum
prior to collagen immunization reduced the severity of CIA (65–
67). In CIA mice, a prior S. mansoni infection was found to
down-regulate the splenic production of Th1 (IFN-g), and pro-
inflammatory cytokines (TNF-a, and IL-17A), and this was
accompanied by the up-regulation of anti-arthritic cytokines
(IL-4 and IL-10) (65). Subsequently it was demonstrated that
the protective effect of a S. japonicum infection against CIA is
infection stage-dependent, i.e., protection was only provided in
the ASCIA group {when the first injection of type II collagen
(CII) was given at the acute stage [7 weeks post infection (p.i.)]},
but not in the ESCIA group [when the first injection of CII was
given at an early stage (2 weeks p.i.)] (66). The protective effects
in the former group were associated with increased production of
IL-4 and IL-10 and reduced production of IFN-g in the spleen.
As a result, the importance of a dominant and long-lasting Th2
response in suppressing autoimmune joint inflammation was
suggested by these authors (66). Another group then explored
the effects of S. japonicum infection on CIA by challenging DBA/
1 mice with unisexual or bisexual cercariae 2 weeks prior to CII
injection or at the onset of CIA (67). This study showed that S.
japonicum infection (unisexual or bisexual) 2 weeks prior to CII
immunization significantly reduced the severity of CIA. This
outcome was consistent with earlier results obtained with a S.
mansoni infection by Osada et al. (65) but not with previous
observations by He et al. (66). In the protected mice, significant
down-regulation of Th1 (IFN-g) and pro-inflammatory
cytokines (TNF-a, IL-1b, and IL-6), and up-regulation of Th2
(IL-4) and the anti-inflammatory cytokine IL-10 were observed.
Song et al. (67) also demonstrated that when the established CIA
mice were challenged with bisexual S. japonicum cercariae,
exacerbating effects on the disease were elicited at 1-week p.i.
Notably, S. mansoni infection exhibited both ameliorating and
exacerbating effects on spontaneous autoimmune arthritis in IL-
1 receptor antagonist (IL-1Ra)-deficient mice (68). While S.
mansoni infection partially protected the IL-1Ra-deficient mice
from arthritis with reduced IL-17 and TNF-a and enhanced IL-4
and IL-10 splenic responses, the infected mice had increased
levels of IgG rheumatoid factor and anti-dsDNA IgG in serum
Frontiers in Immunology | www.frontiersin.org 5
which likely contributed to the exacerbating autoimmune effects
(68). By employing signal transducer and activator of
transcription 6 (STAT6) knock-out (KO) and IL-10 KO mice,
Osada et al. (31) later demonstrated that STAT6-related
cytokines (IL-4, IL-13) and IL-10 are essential for the
suppression of CIA by a S. mansoni infection.

Adjuvant Arthritis (CFA-Induced AA) Induced Rat
Model
Schistosome antigenic components have been employed to
circumvent the potential deleterious effects caused by a live
worm infection. Autoclaved antigen, derived from S. mansoni
cercariae (ASMA), has been tested for a potential protective effect
on adjuvant arthritis (CFA-induced AA) induced in rats by
subcutaneous and intradermal injections of complete Freund’s
adjuvant into the paw and tail, respectively (32). Intradermal
injection of ASMA, after CFA-induced AA, attenuated the
progression of clinical signs of polyarthritis, and improved the
gait and increased the body weight of animals, with reduced
production of IL-17 and increased serum levels of both IL-10 and
IFN-g. The authors suggested that up-regulation of Foxp3+

Tregs, with subsequent modulation of both pro- and anti-
inflammatory cytokines, contribute to the anti-arthritic activity
(32). Unlike the CIA model, in which it has been proposed that
the anti-arthritic effect of schistosome infection is induced by
Th2-polarization with increased levels of protective Th2
cytokines and suppression of the pathogenic Th1 cytokines, in
the CFA-induced AA rat model, IFN-g (the cytokine strongly
associated with a Th1 response) increased after ASMA
treatment; this may have been due to the presence of
mycobacteria, constituting the main antigenic component in
the CFA adjuvant, inducing the high level of endogenous IFN-
g recorded (32). Nevertheless, these authors concluded that in
this case, the higher level of IFN-g might have contributed to
ameliorating rather than exacerbating the effects (32).

rSjCystatin and SJMHE1 as Immunomodulators
To date, two immunomodulatory molecules originating from S.
japonicum have shown prophylactic/therapeutic effects on CIA
in the murine model. Prophylactic injection of rSjCystatin, i.e.
administration prior to CIA, was shown to significantly alleviate
tissue pathologies based on parameters such as paw clinical
scores, incidence of arthritis, and histopathology scores of
joints (33). These effects appeared to be related to the
inhibitory modulation of Th1 and Th17 responses and the
upregulation of Th2 and Tregs responses as evidenced by a
shifted cytokine profile, i.e. the levels of anti-arthritic cytokines
TABLE 1 | Continued

Disease Animal model/cell Species Treatment Association/Modulatory effect Reference

Hepatoma cell lines/mice
bearing Hepa1-6
xenografts

S. japonicum Transfection of Sja-miR-3096 mimics into cell
lines/IV injection of Sja-miR-3096 mimics into
mice bearing Hepa1-6 xenografts

PIK3C2A↓; tumor weight↓ (58)
February 2021 | Volume 12 | Art
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nodes; MSU, monosodium urate; NOD, non-obese diabetic; SC, subcutaneous; SCID, severe combined immunodeficiency; PLN, pancreatic lymph node; WAT, white adipose tissue.
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(IL-4 and IL-10) were notably increased, while the levels of IFN-
g, and pro-inflammatory cytokines (IL-6, IL-17, and TNF-a)
were significantly suppressed in the prophylactic rSjCystatin-
treated mice (33). In contrast, therapeutic injection of
rSjCystatin, i.e. administration of rSjCystatin to mice with
established CIA, showed no significant differences in clinical
parameter incidence and histological examination scores,
suggesting that post-injection of rSjCystatin does not prevent
the outbreak of inflammation or synovitis and cartilage
degradation in these mice (33). Treatment with SJMHE1, a
short linear peptide from the HSP60 protein of S. japonicum,
resulted in a significant reduction in joint inflammation,
accompanied by suppressed clinical symptoms, lower incidence
of arthritis and reduced severity of arthritis in CIA mice (34). In
this study, SJMHE1 injection significantly reduced
inflammation, pannus, and cartilage and bone damage scores
on histopathological examination of mouse paws. Similar to that
observed with rSjCystatin, these effects were linked to the
modulation of key cytokines involved in the pathogenesis of
CIA, wherein the splenic expression levels of IFN-g, IL-22, and
pro-inflammatory cytokines (TNF-a, IL-6, and IL-17) were
down-regulated while the inhibitory cytokine IL-10, TGF-b1
mRNA, and the percentage of CD4+CD25+Foxp3+ T cells
(Tregs) were up-regulated (34).

Therapeutic Effects of Sj16 and SmKI-1
Additional individual Schistosoma-derived molecules have also
been shown to exhibit therapeutic effects on arthritis models
such as the CFA-induced AA rat model and the monosodium
urate (MSU)-induced gout arthritis model. Treatment with
rSj16, a 16-kDa recombinant protein from S. japonicum,
induced an anti-inflammatory effect, and was shown to protect
rats from CFA-induced knee joint inflammation and paw
swelling in a dose-dependent manner, with the serum levels of
TNF-a, NO, and IL-1b decreased and IL-10 increased (69).
These effects were thought to be associated with interruption of
maturation and function of DCs, in an IL-10-dependent manner
(69). The N-terminal nuclear localization signal (NLS) domain of
rSj16 has been demonstrated to be associated with increased
production of IL-10 (70). Another molecule of interest is SmKI-
1, a Kunitz type protease inhibitor from S. mansoni (71) which
plays an important role in inhibiting neutrophil function (35).
Mice given rSmKI-1 intravenously showed decreased
inflammation in the knee joint after monosodium urate (MSU)
administration with a 90% decrease in myeloperoxidase (MPO)
activity, and reduced neutrophil accumulation, hypernociception,
and overall pathological score (35). In addition, rSmKI-1
significantly decreased the level of the pro-inflammatory
cytokine IL-1b in MSU-induced gout, promoting neutrophil
influx to the sites of tissue injury and those associated with joint
damage. Joint damage was also reduced with diminished
leukocyte infiltration and hyperplasia from the synovial
membrane after rSmKI-1 treatment. Similar to rSmKI-1, an
active S. mansoni infection also exhibited modulating effects on
MSU-induced gout arthritis with a significant reduction in
neutrophils in the articular knee cavity (35).
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Allergy and Asthma
The prevalence of these two atopic diseases has increased
dramatically over the past decades worldwide, not only in
developed but also in developing countries (72). The
immunopathogenesis of allergic sensitization, such as occurs in
atopic asthma, is associated with cytokines produced by Th2
cells, including IL-4, IL-5, IL-9, and IL-13 (73). It has been
speculated, based on epidemiological and experimental evidence,
that helminth infections or their products may help control the
development of allergy and asthma. S. mansoni has been shown
to be highly effective in protecting humans and mice against
allergic sensitization (73, 74). However, the association between
schistosome infection and allergic disease is still elusive due to
conflicting results of epidemiological studies in low-income
countries, with some reports showing an inverse association
between schistosome infection and allergic diseases, while
others recorded positive schistosome-allergy associations
including mite atopy in Ghanaian schoolchildren (75), atopy
and wheeze in Uganda fishing communities (76), and allergy in
Zimbabweans (77). A cross-sectional study in a schistosomiasis-
endemic area in Brazil revealed an inverse association between S.
mansoni infection burden and allergic reactivity to common
household dust allergens in individuals eliminating more than 12
eggs/g of feces (78). Overall, these studies indicate that the effect
of a schistosome infection on allergic disease is complex,
involving multiple factors including genetic associations,
infection burden, and the presence of co-infections.

Ovalbumin/Alum-Induced AAI Model for the Study of
Allergic Asthma
Over the past two decades, there has been considerable interest in
exploring the effect of schistosome infection (79–81) or
schistosome-derived products (82–84) on the development of
airway inflammation in different mouse models. A widely used
murine model is the OVA/alum-induced AAI model for the
study of allergic asthma, a chronic inflammatory airway disease
characterized by reversible airflow obstruction, which represents
over 60% of all asthma case (85). Another important model is the
house dust mite (HDM, Dermatophagoides pteronyssinus, Der
p1)-induced allergic airway inflammation model, mimicking
severe asthma, in which Th17 and neutrophils are dominant
responders (41).

Though both schistosomiasis and allergic diseases such as
asthma can stimulate a strong Th2-type immune response with
elevated concentrations of IgE and eosinophilia, schistosome
infection can also reduce the inflammation due to allergic asthma
by modulating a variety of immune cells, cytokines and
chemokines resulting in a decreased Th2 response. For
example, chronic S. japonicum infection suppressed airway
eosinophilia, mucus production and antigen-specific IgE
responses induced by OVA sensitization and challenge with
reduced allergen-driven IL-4 and IL-5 production, but had no
significant effect on IFN-g production (86). In this study,
dendritic cells were suggested to be involved in the process of
helminth infection-mediated modulation of allergic inflammation
with a significant decrease in IL-4/IL-5 production and increased
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IL-10 production (86). In the HDM-induced murine asthma
model, S. japonicum infection prior to modeling significantly
attenuated airway hyper-responsiveness by reducing the
infiltration of inflammatory cells (particularly eosinophils and
neutrophils) into the bronchoalveolar lavage (BAL) fluids and the
lungs, during the early and late stages of HDM sensitization and
challenge (41). These effects were associated with the down-
regulation of the Th2 cytokine IL-4, which inhibited eosinophil
infiltration and the Th17 cytokine IL-17, which contributed to the
amelioration of neutrophil infiltration; in contrast, comparable
levels of the Th1 cytokine IFN-g were observed in the BAL fluids
and lungs of infected and uninfected mice indicating limited
modulation of the Th1 response (41). This protective
mechanism in allergic airway inflammation may be related to
the continuous up-regulation of Treg cells in the spleen upon S.
japonicum infection (41). In addition, S. japonicum infection
causes the down-regulation of serum HDM-specific IgE that can
activate mast cells and basophils during the immunopathogenesis
of asthma, and is associated with reduced allergic airway
inflammation (41). Infection with S. mansoni prevents allergic
airway inflammation and anaphylaxis in mice through the
induction of IL-10-producing CD1d(high) regulatory B cells
that were shown to prevent ovalbumin-induced allergic airway
inflammation following passive transfer to ovalbumin-sensitized
recipients; the regulatory B cells induced pulmonary infiltration of
Tregs, independent of TGF-b, thereby suppressing allergic airway
inflammation (87).

Similar to a live worm infection, intraperitoneal injection of
isolated S. mansoni eggs prior to allergic sensitization also
showed a protective effect on OVA/alum-induced AAI with
less eosinophilia in the BAL and lungs, less cellular influx into
lung tissue, less allergen-specific Th2 cytokines (IL-5 and IL-13)
in bronchoalveolar lavage fluid (BALF) and mediastinal lymph
nodes, and lower levels of OVA-specific IgG1 and IgE antibodies
in serum (36). Notably, although an allergic OVA-specific Th2
response was absent, treatment with egg antigens induced a
strong systemic egg‐specific Th2 response with increased levels
of IL-5, IL-13, and IL-10. Additionally, the S. mansoni egg‐
induced protection was independent of both Tregs and B cells,
but was associated with reduced pulmonary influx of pro-
inflammatory monocyte-derived dendritic cells (moDCs) (36).

In a murine model of asthma, treatment with soluble
schistosome egg antigens (SEA) significantly increased the
percentage and suppressive activity of regulatory CD4+CD25+

T cells, inhibited the expression of Th2 cytokines (IL-4 and IL-5),
relieved antigen-induced airway inflammation, and suppressed
asthma (82). Recently, Marinho et al. (37) demonstrtaed the
ability of the S. mansoni schistosomula tegument (Smteg) to
modulate OVA-induced airway inflammation in a murine
model. Treatment with Smteg during OVA sensitization
resulted in a reduction of protein extravasation and the
number of eosinophils in the BAL, and decreased
inflammation, collagen deposition and also eosinophil numbers
in the lungs. Pro-inflammatory cytokines and chemokines (IL-5,
IL-13, IL-25, and CCL11) and specific anti-OVA IgE levels were
decreased and the levels of IL-10 were increased in the lungs.
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However, IL-10 was shown to be produced by monocytes with a
significantly increased percentage of CD11b+F4/80+IL-10+ and
CD11c+CD11b+IL-10+ cells in the lungs of Smteg-treated mice.
Overall, this study suggested that the modulation of Smteg
occurred mainly through the activity of macrophages and DCs
but not Th cells, and emphasized the role of innate immunity
over adaptive immunity in airway inflammation in Smteg-
treated animals (37).

Sm22.6, PIII, and Sm29 as Immune-Modulators in
the Murine Model of OVA-Induced AAI
A number of other Schistosoma-derived molecules have been
tested for their ability to suppress allergic airway inflammation.
For example, Cardoso et al. (83) explored the capability of three
S. mansoni antigens, Sm22.6, PIII, and Sm29, in modulating the
immune response in the murine model of OVA-induced AAI.
Immunization with these S. mansoni antigens protected mice
against allergic inflammation, as evidenced by a significantly
reduced number of inflammatory cells and eosinophils being
recruited to the airways, and the reduced serum level of OVA-
specific IgE produced in the immunized animals. The frequency
of Tregs was higher in the groups of mice immunized with
Sm22·6, Sm29 and PIII, compared with controls, but higher
levels of IL-10 in the BAL relative to the non-immunized group
was observed only in mice immunized with Sm22·6; decreased
levels of IL-4 and IL-5 in the BAL were observed in mouse groups
immunized with PIII and Sm22·6 compared with non-
immunized animals. Collectively, the study by Cardoso et al.
(83) implied that Tregs might play a key role in this process of
immune modulation. However, different insights were obtained
with Sm29 in a human study by de Almeida et al. (38), in which
by employing peripheral blood mononuclear cells (PBMC)
isolated from asthmatic patients, Sm29 and Sm29TSP-2 (a
chimeric antigen comprised of Sm29 and SmTSP-2) were
tested for their ability to modulate lymphocyte activation in
response to the house dust mite allergen Der p1. The addition of
both antigens to PMBC cultures from asthmatic subjects
stimulated with Der p1 showed an increased frequency of
CD4+CD25hi T lymphocytes and a decreased frequency in the
population of CD4+CD25low cells compared with unstimulated
groups; in contrast, no significant difference was observed in the
frequency of CD4+CD25hi T cells expressing Foxp3 in the
cultures stimulated with Der p1 in the presence or absence of
either antigen (38).

Schistosome Peptides Can Modulate Immune
Responses in Airway Inflammation
Peptides from S. japonicum have also shown potential to
modulate the immune response in airway inflammation by
down-regulating Th2 and up-regulating Th1 response and
Tregs and IL-10. For example, immunization with peptides P6,
P25, and P30 from SjP40, a S. japonicum protein homologue of
SmP40 (the major egg antigen in S. mansoni), was shown to
inhibit airway inflammation in the OVA-induced allergic asthma
mouse model, with reduced peribronchial airway inflammation
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and mucus production, decreased airway cellular infiltration and
a substantial reduction in eosinophils in bronchoalveolar lavage
fluid (BALF) (39). Compared with OVA only treated mice, the
SjP40 peptides induced production of Th1-type cytokines,
particularly IFN‐g, and inhibited the production of Th2
cytokines, such as IL‐4, IL‐5, and IL‐13 (39). In addition,
immunization with the three peptides resulted in an increased
level of IgG2a, promoted by IFN‐g, but decreased IgE and IgG1
antibody production, promoted by Th2 cytokines. These data
revealed a novel immune protective mechanism involving T cell
epitopes from helminth-derived Th1-inducing antigens in
modulating allergic asthmatic responses through an enhancing
Th1 response (39). Also, the aforementioned peptide, SJMHE1,
suppressed airway inflammation in the OVA-induced allergic
asthma mouse model with modulation of pro- and anti-
inflammatory cytokines in splenocytes and lungs, and
decreased numbers of infiltrating inflammatory cells and
eosinophils (40). SJMHE1 treatment during OVA sensitization
and challenge in BALB/c mice significantly reduced the IL‐4
mRNA level in the splenocytes, suppressed the expression of IL‐
4, IL‐5, and IL‐17 mRNA in the lungs, and increased IFN‐g, IL‐
10, and IL‐35 mRNA, indicating the suppressive effect was likely
associated with decreased populations of Th2 and Th17 cells and
an increased frequency of Th1 and Treg cells (40). While the
suppressive mechanism involving the elevation of IL-10 in the
allergic asthma mouse is different from that in the CIA model,
schistosomes and their products modulate distinct targets
regulating Th1/Th2/Th17-associated inflammation in the
different models. SJMHE1 treatment did not alter IgE levels,
suggesting that application of small peptide molecules from
schistosomes and other helminths as potential drugs for
allergic asthma or other allergic diseases may represent a safer
therapy pipeline compared with utilizing a live worm infection or
whole parasite proteins, which may elicit unwanted side effects
in patients.

Inflammatory Bowel Disease -Like Colitis
Inflammatory bowel disease (IBD) produces symptoms such as
diarrhea, fatigue, bloody stool, and weight loss; it is a chronic
inflammatory disorder of the gastrointestinal tract and mainly
includes Crohn’s disease (CD) and ulcerative colitis (UC) (88).
Although the pathogenesis of IBD is still not completely clarified,
the disease is suggested to be caused by an uncontrolled
aggressive cellular immune response in genetically prone
individuals (89). The inflammation during CD is associated
with Th1 lymphocytes and Th17 cells (90); UC is associated
with an atypical Th2 response characterized by antigen in the
mucosal microfiora activating NKT cells that, in turn, secrete IL-
13, resulting in the cytolysis of epithelial cells (91). A recent
epidemiological study showed that the prevalence of IBD is
consistently higher in countries with a high socio-demographic
index such as the UK, the USA, Canada, and Australia (92).

IBD-Like Colitis Models
Two types of IBD-like colitis murine models have been
developed for the study of immune-regulating mechanisms of
Frontiers in Immunology | www.frontiersin.org 8
helminth infections on IBD. One is a chemical-induced
experimental colitis model in which there is interference of the
intestinal mucosa by administration of dextran sulfate sodium
(DSS), or di- or tri-nitrobenzene sulphonic acid (DNBS or
TNBS). This type of model can be used for exploring the
involvement of innate immune cells such as DCs, eosinophils
and macrophages in immune-regulating mechanisms (48, 93).
The other type gives rise to an inflammatory T cell response, an
example being the T-cell transfer model, which is used for
investigating the modulatory mechanism of the adaptive
immune system on IBD (45).

Infection with S. mansonimale worms reduced the severity of
DSS-induced colitis in BALB/c mice, but neither a male-female
paired egg-laying worm infection nor the injection of eggs was
effective (93). The authors suggested that the protection from
colitis by a male-worm only infection was mediated by a
mechanism dependent on a novel colon-infi ltrating
macrophage population (F4/80+CD11b+CD11c-) but not on
Tregs and other lymphocytes or a simple modulation of Th2
responses. In contrast, egg-laying worms in outbred NMRI mice
attenuated some clinical symptoms of colitis such as body weight
loss and shortening of colon length when DSS was administrated
9 weeks p.i (94). Furthermore, Floudas and co-workers (43)
compared the fecal microbiota of mice infected with adult male
S. mansoni worms, and male- and female-worm-infected mice
and showed that schistosome infection altered the composition
of the intestinal microbiota which in turn modulated
susceptibility to DSS-induced colitis. In this study, mice with a
S. mansoni male-only worm infection showed reduced
susceptibility to colitis after DSS administration with a
significant decrease in the disease activity index (DAI) score,
colon damage and MPO activity, while a S. mansonimale-female
worm infection exacerbated the severity of colitis. Compared to
uninfected mice, S. mansoni-infected individuals harbored
changes in microbial species with a significant increase in
colitogenic microbiota such as Parabacteroides and Bacteroides
genera, which are associated with aggravated experimental
colitis. In addition, the male-female-infected mice had a
distinct microbiota composition compared to that of male-
infected mice and uninfected controls, which may influence
the development of colitis (43). S. japonicum infection also
showed potential for attenuating DSS-induced colitis in
Kunming mice, a feature which has been linked to decreased
Th1, Th2 and Th17 responses, characterized by a significant
decrease in the serum levels of IL-6, IL-2, IL-10, IL-17, IFN-g and
TNF-a (42). In detail, after administration with DSS at 4 weeks
p.i., S. japonicum-infected mice had longer colon lengths,
suffered less weight loss, lower histological and DAI scores,
and less infiltration of inflammatory cells into colon tissue
compared with uninfected DSS-treated mice. Moreover, the
expression levels of proteins involved in endoplasmic reticulum
(ER) stress, such as IRE1a, IRE1b, GRP78, and CHOP, were
lower in the S. japonicum-infected and DSS treated group
compared with the DSS alone group, indicating ER stress
could be involved in attenuating DSS-induced colitis in mice
after exposure to S. japonicum (42).
February 2021 | Volume 12 | Article 619776

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mu et al. Schistosomes Modulating Immunological Diseases
With TNBS-induced colitis, which shares features of CD, S.
mansoni infection (95), injection of freeze/thawed-killed eggs (from
both S. mansoni and S. japonicum) (96–98), or S. mansoni soluble
worm proteins (SmSWP) (90) attenuated inflammation in
experimental animal models. S. mansoni infection, prior to
intracolonic administration of TNBS, significantly reduced the
severity of the TNBS-induced immune disorder in a rat model, as
evidenced by lower macroscopic and microscopic damage scores
and by a more rapid decrease in colonic MPO activity compared
with injection of TNBS alone (95). Exposure to schistosome eggs
ameliorated TNBS-induced gut inflammation in mice by reducing
the Th1 response and increasing the Th2 response, as shown by
decreased IFN-g but increased IL-10 expression in a variety of
tissues such as colon and spleen and in serum (96–98). In addition,
the percentages of Tregs increased in the spleens of egg-exposed and
TNBS-treated mice compared with TNBS-treated animals alone
(97). In a study exploring the therapeutic potential of helminth
soluble proteins in TNBS-induced colitis, treatment with SmSWP
suppressed the expression of pro-inflammatory cytokines (IFN-g
and IL-17) in the colon and mesenteric lymph nodes, whereas there
was a significant increased production of regulatory cytokines (IL-
10, TGF-b) in colon tissue (90). These observations suggest that the
protective effects of schistosome infection or schistosome products
in TNBS-induced colitis are linked to increased Th2 and
Treg responses.

With respect to SEA, the immunomodulation effects are
dependent on the timing of antigen injection and DSS
administration. Injection with SmSEA after the commencement
of DSS application did not protect NMRI mice from colitis (94). In
contrast, SmSEA immunization prior to DSS application markedly
ameliorated the course of DSS-induced colitis characterized by
lower DAI and macroscopic inflammatory scores, reduced MPO
activity, and increased expression of FoxP3+ Tregs and Th2
cytokines, suggesting that SmSEA may have potential for
development as a prophylactic helminthic therapy due to this
positive modulatory effect (44). However, these observations
conflict with an earlier report by Smith et al. (93) showing that an
egg-laying schistosome infection or injection of eggs did not render
mice resistant to colitis induced by DSS. In an adoptive T-cell
transfer SCID mouse model, induced by transfer of CD4+CD25-

CD62L+ T cells, SmSEA alleviated the severity of colitis through a
colonic T-cell-dependent mechanism (45). Repeated administration
of SmSEA weekly or twice a week ameliorated clinical signs and
intestinal inflammation with significant reductions in the clinical
disease and colonoscopic scores. Twice a week administration of
SmSEA induced the anti-inflammatory effect of a Th2 response,
which down-regulated the number of IL-17a-producing effector T
cells (Th17 cells) and significantly upregulated the number of IL-4-
producing effector Th2 cells in the colonic lamina propria
mononuclear cells (LPMCs) (45).
Schistosoma Recombinant Proteins and
Extracellular Vesicles for Treating IBD-Like Colitis
Recently, Schistosoma-derived recombinant proteins and
extracellular vesicles (EVs), especially exosome products from
Frontiers in Immunology | www.frontiersin.org 9
innate immune cells stimulated by schistosome antigen, also
exhibited therapeutic potential for the treatment of IBD-like
colitis. Recombinant Sj16 (rSj16), a 16-kDa secreted protein of S.
japonicum produced in Escherichia coli, was shown to alleviate
disease severity in DSS-induced colitis mice; this resulted from
down-regulation of pro-inflammatory cytokines such as TNF-a,
IFN-g, IL-17a, and Chil3, whose expression is high in IBD
individuals, and up-regulation of the anti-inflammatory
cytokines (TGF-b and IL-10), with increased percentages of
Tregs (46). Moreover, the treatment of rSj16 on DSS-induced
colitis altered the expression of specific genes in the colon,
leading to the inhibition of the PPAR-a signaling pathway
which plays an important role in the development of DSS-
induced colitis (46).

Injection of recombinant S. japonicum cystatin (rSjcystatin)
after TNBS administration significantly reduced inflammatory
parameters and ameliorated the severity of colitis in mice; this
resulted from a decreased level of IFN-g in three organs and
elevated levels of IL-4, IL-13, IL-10, and TGF-b in the colon and
increased numbers of Tregs in the mesenteric lymph nodes
(MLNs) and intestinal lamina propria mononuclear cells
(LPMCs) (47). However, injection of rSjcystatin prior to TNBS
induction failed to show decreases in the inflammation indexes
compared with the colitis mice (47).

Unlike rSjcystatin, administration of S. haematobium
glutathione S-transferase (P28GST), a recognized vaccine
candidate against urinary schistosomiasis, prior to TNBS
induction, exhibited a more beneficial effect on the modulation
of disease severity and immune responses in experimental colitis
(48). Immunization of rats or mice with P28GST showed an anti-
inflammatory effect at the same level as schistosome infection in
reducing acute colitis and the expression of pro-inflammatory
cytokines (48). P28GST induced a Th2 response involving
increased eosinophil infiltration suggesting that eosinophils
play a crucial role in the immunomodulation of colitis by
P28GST (Driss et al., 2016). Furthermore, P28GST, applied in
the form of biodegradable and biocompatible poly(lactic-co-
glycolic acid) (PLGA)-based microparticles before TNBS
induction, showed potential for preventive treatment with the
Wallace score (a measure of the severity of inflammation) being
significantly decreased in mice compared with a placebo (99).

In another approach, Wang et al. (100) demonstrated that
intraperitoneal injection of mice with exosomes derived from DCs
treated with S. japonicum SEA alleviated established acute DSS-
induced colitis. Compared with SEA-untreated DC exosomes and
SEA, SEA-treated DC exosomes showed a greater effect in
alleviating the clinical scores on body weight loss, diarrhea and
bleeding, and also, prevented colon damage and ameliorated the
reduction in colon length; pro-inflammatory cytokines, TNF-a,
IFN-g, IL-17a, IL-12, and IL-22, were decreased after the treatment,
but the precise mechanism involved needs to be further investigated.

Type 1 Diabetes
Type 1 diabetes (T1D) is an organ-specific autoimmune disorder
caused by the immune system attacking and destroying insulin-
producing b cells in the pancreas (101, 102). The prevention of
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the disease in individuals at-risk has proved challenging. The
decreased exposure to helminths in modern societies has been
suggested as a key factor involved in the raised incidence of T1D.
Indeed, it has been proposed that the hygiene hypothesis should
be extended from allergic to autoimmune diseases as well (24).
T1D is recognized mainly as a Th1‐mediated disorder, although
recent data indicate the possible involvement of follicular helper
T cells, as well as T cells co‐producing IFN‐g and IL‐17 during
the development of the disease (103). The immunomodulatory
mechanisms in helminth infections that protect against T1D
include a Th1 to Th2 shift and Tregs expansion (104).

Cooke et al. (105) were early pioneers in the field exploring
the preventive effect of schistosome infection and schistosome
products on T1D. They found that S. mansoni infection and eggs
prevented T1D in non-obese diabetic (NOD) mice, with the
immune response switching from Th1 to Th2 (105).
Furthermore, injected soluble extracts of S. mansoni worms or
eggs were shown to completely prevent the onset of T1D in the
NOD mouse but only when the administration commenced in
animals at 4 weeks of age, with potential involvement of the
innate immune system, and cellular participation involving bone
marrow‐derived DCs and Va14i NKT cells (106). The same
group demonstrated that SmSEA prevented T1D onset by
enhancing Th2 responses and Treg activity in NOD mice, and
suggested that TGF-b from T cells is crucial in the prevention of
T1D (29, 107). At the molecular level, w-1, a well-characterized
glycoprotein in SEA responsible for inducing a Th2 response,
was identified as a key component involved in the induction of
Foxp3+ Tregs in NOD mice (108). Recently, the aforementioned
protein, rSjCystatin, which is a secretory cysteine protease
inhibitor, and recombinant fructose-1,6-bisphosphate aldolase
from S. japonicum (rSjFBPA) exhibited potential to significantly
reduce the onset of T1D and ameliorate its severity in NODmice;
this was associated with increased production of Th2 and Treg
cytokines, such as IL-10 and TGF-b (49). In streptozotocin
(SZT)-induced diabetic mice, S. mansoni infection or SmSEA
also proved to be protective against the disease (109, 110).
Furthermore, another study showed that S. mansoni infection
could partially protect pancreatic islets from degradation and
induced an anti-hyperglycemia effect in STZ-induced
experimental T1D mice, that was independent of T-cell
cytokine modulation (IL-10), STAT6 and Tregs (50).

Type 2 Diabetes
Type 2 diabetes (T2D) is a common inflammatory disease
characterized by persistent hyperglycemia due to insulin
resistance. It has been estimated that the incidence of diabetes
was 463 million in 2019, and the figure may increase to 700
million by 2045, with approximately 90% of cases being due to
T2D (111). The regulatory mechanisms through which
Schistosoma infection and Schistosoma products modulate the
innate and adaptive immune responses against T2D have been
comprehensively reviewed (30). In a cross-sectional study, Chen
et al. (112) reported that T2D prevalence was lower in
individuals with a previous S. japonicum infection (PSI) than
those without a PSI (14.9% vs. 25.4%); PSI was also associated
with a lower body mass index, and reduced blood glucose,
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glycated hemoglobin A1c, and insulin resistance score. It has
also been shown that S. mansoni infection and SmSEA protect
against metabolic disorders such as T2D by promoting a Th2
response, eosinophilia, and white adipose tissue (WAT) M2
(alternatively activated macrophages) polarization (51).
Similarly, using a type 2 diabetes Leprdb/db mouse model, it was
demonstrated that the administration of 50 µg S. japonicum SEA
twice a week for 6 weeks significantly reduced insulin resistance
and blood glucose and correlated with an elevation in the level of
the Th2 cytokines IL-4 and IL-5 in spleen cells (52).
Furthermore, the frequency of spleen regulatory T cells
increased significantly in the SEA-administrated group,
suggesting key roles for Th2 and Treg responses induced by
SEA in reducing insulin resistance; SEA can thus provide a
potential novel therapy for the treatment of T2D (52).

Sepsis
Despite the availability of modern antibiotics and resuscitation
therapies, sepsis remains one of the major threats to critically ill
patients in terms of morbidity and mortality (113). Currently, a
new consensus definition for sepsis has been recommended; that
it is a life-threatening organ dysfunction caused by a
dysregulated host response to infection (114). Microvascular
damage occurs in the early stage of sepsis and can lead to
multisystem organ dysfunction (MODS) and ultimately death
(115). The inflammatory response elicited by schistosomal eggs
trapped in the intestinal wall facilitates their movement from the
vascular system to the gut, which may result in the simultaneous
translocation of bacteria. It has been demonstrated that SmSEA
exhibits a suppressive effect on dendritic cells in the
inflammatory response to pathogenic factors, such as
lipopolysaccharide (LPS), CpG, and poly-I:C, which can lead to
sepsis (116). Furthermore, S. japonicum infection can activate
macrophage differentiation into the M2 phenotype and suppress
LPS-induced M1 macrophage activation in the LPS-induced
septic mouse model (53). Recently, Li et al. (54) investigated
the role of S. japonicum cystatin (rSj-Cys) in regulating the
inflammatory response of bacterial sepsis induced in BALB/c
mice by cecal ligation and puncture (CLP). Treatment with rSj-
Cys provided significant therapeutic effects on CLP-induced
sepsis in the mice characterized by increased survival rates,
alleviated overall disease severity with reduced tissue injury in
the kidney, lung and liver. These outcomes were associated with
upregulated levels of IL-10 and TGF-b1 cytokines and reduced
pro-inflammatory cytokines IL-1b, IL-6, and TNF-a; MyD88
expression in liver, kidney and lung tissues of rSj-Cys-treated
mice was reduced. In vitro assays also showed that rSj-Cys
inhibited the release of mediator nitric oxide and pro-
inflammatory cytokines by macrophages stimulated by
lipopolysaccharide (LPS). These therapeutic effects were thus
associated with downregulation of pro-inflammatory cytokines
and upregulation of regulatory cytokines (54). The same team
showed that in a murine model of LPS-induced sepsis,
intraperitoneal administration of rSj-Cys significantly alleviated
LPS-induced organ pathologies, reduced the levels of liver and
renal functional indexes and pro-inflammatory cytokines, and
increased the serum level of IL-10 (55). The same group showed
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tha t rS j -Cys s ign ificant ly reduced seps i s - induced
cardiomyopathy in mice and suggested this molecule should be
considered as a potential therapeutic for preventing and treating
sepsis-associated cardiac dysfunction (117).

Cystitis
Chronic cystitis, an inflammation of the urinary bladder, often
due to bacterial infection, is also a feature of urogenital
schistosomiasis caused by S. haematobium (118). Unexpectedly,
some molecules derived from this schistosome species have been
shown to have potential in the treatment of cystitis. A major S.
haematobium egg secretory protein H-IPSE [the homolog of IL-4-
inducing principle of S. mansoni eggs (M-IPSE)], which can
infiltrate the nuclei of host cells and bind genomic DNA (119),
has been found to alleviate chemotherapy-induced hemorrhagic
cystitis (CHC) in a mouse model via the down-regulation of pro-
inflammatory pathways including the IL-1b-TNFa-IL-6 pathway,
interferon signaling, and a reduction in oxidative stress (56, 120). It
was shown that a single intravenous dose of H-IPSE (H-IPSEH06)
given to mice was more effective than 2-mercaptoethane sulfonate
sodium (MESNA), the current drug of choice for mitigating CHC,
in an IL-4-dependent manner (120). This study represents the first
therapeutic exploitation of a uropathogenic-derived molecule in a
clinically relevant bladder disease model (120). In a subsequent
study, the same group found that local bladder injection of the IPSE
ortholog, H-IPSEH03, might be more effective in preventing
hemorrhagic cystitis than the systemic administration of
IPSEH06 (121).

Cancer
A substantial body of evidence supports the association between
long-standing chronic inflammation and cancer (122).
Schistosomiasis and the liver fluke diseases opisthorchiasis and
clonorchiasis can induce carcinogenesis (123). Indeed, S.
haematobium is a Group-1 carcinogen and, alarmingly, is the
leading cause of bladder cancer globally (124). On the other
hand, there is growing evidence showing that parasite infection
or parasite-derived products can also reduce cancer
tumorigenesis through the induction of apoptosis, activation of
the immune response, avoidance of metastasis and angiogenesis
(125, 126). For the first time, S. mansoni was reported recently to
have a therapeutic effect on murine colon cancer (57). S. mansoni
antigen was shown to inhibit colon carcinogenesis with
significant decreases in tumor lesion size and the number of
neoplasias; although the antitumor mechanism operating
remains to be determined, this study suggests that schistosome
antigens could potentially play a role in future cancer
treatment (57).

It is noteworthy that recent research showed that
schistosome-derived miRNAs can also mediate anti-tumor
activity in host liver cells during schistosome infection (58).
An S. japonicum egg EVs-derived miRNA (Sja-miR-3096) was
shown to be present in the hepatocytes of infected mice. The
miRNA significantly prevent the growth of liver tumor cells by
cross-species regulation of the murine and human
phosphoinositide 3-kinase class II alpha (PIK3C2A) gene. The
Sja-miR-3096 mimics suppressed cell proliferation and
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migration of both human and murine hepatoma cell lines by
targeting phosphoinositide 3-kinase class II alpha (PIK3C2A). A
murine hepatoma cell line was generated that stably expressed
the pri-Sja-miR-3096 gene and cross-species processing of the
schistosome pri-miRNA to the mature Sja-miR-3096 in the
mammalian cell was demonstrated; inoculation of this cell line
into the scapula and livers of mice led to the complete
suppression of tumorigenesis of the hepatoma cells. In
addition, tumor weight was significantly reduced after
intravenous administration of Sja-miR-3096 mimics. Thus,
schistosome miRNA-mediated anti-tumor activity occurs in
host liver cells during schistosomiasis, thereby increasing host
resistance to liver cancer, and points the way forward to
developing parasite miRNAs as promising new agents for
cancer treatment (58).
CURRENT CHALLENGES AND FUTURE
PERSPECTIVES

Despite recent key findings using active schistosome infection or
Schistosoma components for the treatment of autoimmune and
inflammatory diseases, cancer, and other illnesses, some
challenges remain and these and future perspectives are
now considered.

(1) A number of clinical trials with controlled helminth
infections have been applied in the treatment of inflammatory
diseases with disappointing and conflicting results (127). So far,
no similar work has been carried out with controlled schistosome
infection. However, a controlled human S. mansoni infection
model now has been estalished (128), which may not only
advance the development of novel therapeutics, diagnostics
and vaccines for schistosomiasis, but may also pave the way
for controlled human schistosome infection studies for the
treatment of autoimmune and inflammatory diseases.

(2) Most reports and observations in this area are based on
murine models; while extensively providing insights and
evidence to predict the utility of schistosome molecules for the
treatment/alleviation of human diseases, the suitability of the
mouse to recapitulate human conditions remains in question for
immune-mediated inflammatory diseases, since there are
considerable differences between human and mouse
immunology (129). In addition, there are considerable
differences in the patterns of gene expression associated with
inflammatory diseases in human patients compared with animal
models (130). Thus, future studies will need to change focus from
studies on animal models to undertaking human clinical trials.

(3) A limited number of schistosome molecules have been
investigated for potential in treating autoimmune and
inflammatory diseases. In-depth transcriptomic and proteomic
analysis of the different schistosome species and/or different
developmental stages, such as egg secretome studies which
have led to the discovery of highly sensitive antigens for the
diagnosis of schistosomiasis (131–135) may facilitate the
identification of additional molecules with therapeutic
potential. An increasing number of candidates applicable for
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therapy purpose have been identified from other helminths
(136), specific examples being anti-inflammatory protein-2
(AIP-2) from hookworm (137) and EgKI-1, a potent Kunitz
type protease inhibitor from Echinococcus granulosus (126); on
this basis, one could speculate that the schistosome orthologs of
these molecules would likely elicit similar therapeutic effects. In
addition, if these and other orthologs can provide the requisite
therapeutic efficacy, in-depth analysis of the underlying
molecular regulatory mechanisms would follow.

(4) Further work should be undertaken on schistosome
extracellular vesicles (EVs), which as indicated earlier, are
small membrane-bounded secreted vesicles that can transmit a
wealth of bioactive cargos, such as proteins, lipids, glycans, DNA,
messenger RNAs (mRNAs) and miRNAs between cells thereby
playing a key role in cell-cell communication (138). A number of
EV components have already been identified in schistosomes
(18, 139–141), providing a basis for their application as
biomarkers for human schistosomiasis, as novel vaccine targets
(142, 143) or as modulators of the host immune response.
Indeed, it has been recently shown that S. japonicum EVs can
be taken up primarily by macrophages and other host immune
cells when the miRNA cargo (miR-125b and bantam) is
transferred to recipient cells; this promotes macrophage
proliferation and TNF-a production by regulating targets
including Pros1, Fam212b, and Clmp and emphasizes the
ability of Schistosoma EV components to modulate the host
immune response thereby helping to facilitate parasite survival
(144). Furthermore, S. mansoni EV‐enclosed miRNAs have been
shown to modulate host T helper cell differentiation (145). It will
be intriguing to determine whether this immune-regulatory
propensity of schistosomes can be harnessed for the future
treatment of human autoimmune and inflammatory diseases
and cancer.

(5) As of Dec 11, 2020, the COVID-19 pandemic had caused
1,586,047 deaths around the world and accumulating evidence
showed that there is a higher concentration of pro-inflammatory
cytokines, such as IL-6, in severe cases compared with moderate
cases (146). An increasing number of studies indicate that the
“cytokine storm” may contribute to the mortality of COVID-19,
most likely induced by the IL-6 amplifier (147). A couple of
Disease-modifying anti-rheumatic drugs, such as tocilizumab
and hydroxychloroquine, have been proposed as potential
immune-modulating therapies for the treatment of COVID-19
(148). Many of the Schistosoma components listed in Table 1 are
prone to induce Th2 and Treg immune responses; it would be
informative to evaluate whether some of these components, such
as rSjCystatin and SJMHE1, could be potential preventive and/or
Frontiers in Immunology | www.frontiersin.org 12
therapeutic drug candidates for severe COVID-19. On the other
hand, some of the Schistosoma molecules shown to suppress
immunological disorders may impair the protective efficacy, in
schistosomiasis-endemic populations, of antibacterial and
antiviral vaccines, notably those in development against SARS-
CoV-2 which tend to induce a Th1-biased immune response
(149). Similarly, such schistosome components may have a
potential detrimental effect on cancer treatments, which
usually require a Th1 immune response for effectiveness (150).
The future clinical application of Schistosoma components
should, therefore, be carefully scrutinized before deployment
at scale.
CONCLUSIONS

As mass deworming programs are increasingly implemented in
developing countries, the incidence of autoimmune and
inflammatory diseases can be expected to rise in the forthcoming
decades considering the basic concept of the “Old Friends”
hypothesis. Controlled helminth infections and/or helminth-
derived products may become new weapons for the prevention
and/or cure of these disorders. Although there are still considerable
challenges, particularly in regard to undertaking safe human clinical
trials, schistosome-derived products may play an important future
role as immunotherapies for acute and chronic inflammatory
diseases, particularly when the underpinning immunomodulatory
mechanisms are further explored and revealed.
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