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ABSTRACT We report work to quantify the impact on the probability of human genome polymorphism both
of recombination and of sequence context at different scales. We use population-based analyses of data on
human genetic variants obtained from the public Ensembl database. For recombination, we calculate the
variance due to recombination and the probability that a recombination event causes amutation. We employ
novel statistical procedures to take account of the spatial auto-correlation of recombination and mutation
rates along the genome. Our results support the view that genomic diversity in recombination hotspots arises
largely from a direct effect of recombination on mutation rather than predominantly from the effect of
selective sweeps. We also use the statistic of variance due to context to compare the effect on the probability
of polymorphism of contexts of various sizes. We find that when the 12 point mutations are considered
separately, variance due to context increases significantly as wemove from 3-mer to 5-mer and from 5-mer to
7-mer contexts. However, when all mutations are considered in aggregate, these differences are outweighed
by the effect of interaction between the central base and its immediate neighbors. This interaction is itself
dominated by the transition mutations, including, but not limited to, the CpG effect. We also demonstrate
strand-asymmetry of contextual influence in intronic regions, which is hypothesized to be a result of
transcription coupled DNA repair. We consider the extent to which the measures we have used can be
used to meaningfully compare the relative magnitudes of the impact of recombination and context on
mutation.
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Germline mutations are estimated to occur in humans with an
average probability of 1:28 · 1028 per site per generation, with
�93% of these being point mutations (Roach et al. 2010; Jónsson
et al. 2017a). Germline point mutations result in the creation of single
nucleotide variants (SNVs) in a population. Evidence of genomic
heterogeneity in mutation has been predominantly derived from
between or within species analysis of genetic variation. For instance,
mutation heterogeneity is implicitly supported by genomic hetero-
geneity in substitution rates (Hodgkinson et al. 2009; Ying et al. 2010)

and in the relative abundance of nucleotides (Cuny et al. 1981). More
recently, explicit de novo mutation studies (e.g., Michaelson et al.
2012; Francioli et al. 2015; Smith et al. 2018) have been reported, and
these too support a heterogeneity in mutation processes. The mech-
anistic origins of this mutation heterogeneity remain unclear. Likely
candidates include a direct mutagenic influence of meiotic recom-
bination and the effect of sequence neighborhood. Analyses of these
potential contributors have predominantly drawn on SNV analyses
and have led to inconsistent conclusions. Here we focus on devel-
opment and application of a consistent analytical framework to
quantify the relative importance of these different factors.

It has been established that the rate of mutation is non-uniform
along the genome of humans and other species. The phenomenon of
mutation heterogeneity was first observed in the bacteriophage T4
prior to the availability of DNA sequencing (Benzer 1961). Sub-
sequent DNA sequence analyses of homologous genes revealed that G
and C nucleotides were far more mutable than A and T nucleotides
(Coulondre et al. 1978; Gojobori et al. 1982) and that mutation rates
at these sites are influenced by neighboring bases (Bulmer 1986). We
now have evidence that such non-uniformity can occur at scales
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ranging from individual nucleotides to multi-megabase sized regions
(Hodgkinson and Eyre-Walker 2011). For instance, the heterogeneity
of DNA composition suggests the existence of mutation rate hetero-
geneity at megabase scales and this has been supported by de novo
mutation studies (Smith et al. 2018).

Previous studies have identified a number of key determinants of
mutation rate, prominent among which are recombination rate and
sequence neighbors. However, these studies have differed in certain of
their conclusions. For example, relatively recent studies of de novo
mutations have provided strong evidence of a direct causative effect of
recombination on mutation (Arbeithuber et al. 2015). That nucleo-
tide diversity is higher in regions of high recombination has been
known for some time (Lercher and Hurst 2002; Duret and Arndt
2008). Whether this reflects a direct effect of recombination on
mutation or an influence of selective sweeps in reducing diversity
in regions of lower recombination is disputed (e.g., Jensen et al. 2019).
Previous population analyses used linear regression models (Lercher
and Hurst 2002; Duret and Arndt 2008; Mugal and Ellegren 2011) to
measure an association between mutation and recombination rates.
Estimates from these approaches are potentially problematic as the
methods used do not control for spatial auto-correlation of recom-
bination and mutation rates across the genome.

The hypermutability of CpG dinucleotides (and the preponder-
ance of genetic variation within this context) exemplifies the impor-
tant influence of sequence context on the rate of mutation. In
mammals and some other species, the transition mutation C/T,
where the C is part of a CpG dinucleotide, is several times more
common than mutations at other sites (Ehrlich andWang 1981). The
biochemical cause is known to be the spontaneous deamination of the
highly unstable 5-methylcytosine (Coulondre et al. 1978). In mam-
mals, methylation of cytosines is highly context dependent, occurring
almost exclusively at CpG dinucleotides (Ramsahoye et al. 2000).

It has been demonstrated that all point mutations are affected to a
greater or lesser effect by sequence context (Zhu et al. 2017). Using a
log-linear model, Zhu et al. (2017) dissected the influence of nucle-
otide distance and the joint vs. independent influence of multiple
nucleotides. These authors argued that the dominant neighborhood
influences lay within 62 for transition mutations, 63 for trans-
versions. Carlson et al. (2018) also found widespread influence of
context onmutation types while restricting their analysis to extremely
rare variants. Zhu et al. (2017) and Carlson et al. (2018) did not,
however, directly address mutation rate or variance in the sense
described above. An analysis using the R2 metric of a linear model to
measure the contribution of different contexts to variance (Aggarwala
and Voight 2016) argued that nucleotides up to 3 sites distal can have
a major influence onmutation rates. The linear regressionmodel used
by Aggarwala and Voight does not yield the maximum likelihood
estimates of model parameters for this data, due to the binomial
nature of the sampled data and the condition of heteroscedasticity
consequently not being satisfied (Agresti, 2002, p. 120). Previous
approaches also did not address issues of bias arising from neighbor-
hood size. Bias will tend to inflate estimates of variance as a given data
set of mutation counts is further subdivided into “buckets”, the
number of which increases with neighborhood size k at the rate 4k.

One approach to quantifying the relative contributions of differ-
ent factors on mutation is to measure the proportion of variance in
mutation rate explained by them. Conversely, this measurement also
indicates how much variance remains unexplained. Inherent in
discussion of the variability of mutation rate is the assumption that
each site in the genome has a specific mutation rate. Hence, we define
the “total” variance in mutation rate as the conventional statistical

variance of these quantities. This variance has been estimated by
comparing variable positions in orthologous alignments of closely
related species such as humans and chimpanzees (Hodgkinson et al.
2009). The probability of an SNV at a site is assumed to be some
multiple r of the site mutation rate, with r fixed in each population.
(The underlying mutation rates are assumed to be the same in
humans and chimpanzees.) The variance in mutation rate can then
be calculated from the number of SNVs that are observed at orthol-
ogous sites in both sequences. The conclusion from this approach was
that there was substantial variance in the human mutation rate
(�64% of total variance) that was not explained by the interaction
of a base with its immediately adjacent nucleotides (Hodgkinson et al.
2009). These authors minimized the potential role of larger sequence
contexts, a conclusion that was later challenged by the results of other
studies (Aggarwala and Voight 2016; Zhu et al. 2017).

Here we report work quantifying the contribution to the prob-
ability of human genome polymorphism that can be attributed to
recombination and to sequence context at different scales. We use a
Bayesian approach to quantify the uncertainty in our estimates of the
variance and to overcome issues of bias which occur if a conventional
estimator were used instead. Our results produce estimates of re-
combination induced mutation that are consistent with those from de
novo mutation studies. We further establish that when considered
across all point mutations, the influence of sequence neighborhood
is dominated by 5-mer effects reflecting the markedly greater relative
abundance of transition mutations. Finally, we emphasize the com-
plexity in comparing the contributions tomutation of a state (sequence
context) vs. the contribution to mutation of an event (recombination).
Overall, we establish that a substantial proportion of mutation het-
erogeneity remains unaccounted for.

MATERIALS AND METHODS

Data
Data on human variants was sampled from Ensembl release 89 (for
influence of context) and release 92 (for influence of recombination)
variation databases (Cunningham et al. 2015) using the query capa-
bilities of ensembldb3 (Huttley and Ying 2009). Variants were re-
stricted to those identified by the 1000 Genomes (1KG) Project (1000
Genomes Project Consortium et al. 2015), but without restriction by
source population. We did not analyze sex chromosomes, as struc-
tural differences from autosomes in mutation rate, recombination
rate and effective population size mean that results from autosomes
and sex chromosomes cannot meaningfully be aggregated.

deCODE provides estimated recombination rates averaged
over 10-kilobase (kb) blocks. The files female_noncarrier.rmap,
male_noncarrier.rmap and sex-averaged_noncarrier.rmap were
downloaded from https://www.decode.com/addendum/ (Kong et al.
2010). These correspond to female, male and sex-averaged standard-
ized recombination rates respectively. The proportion of the human
genome covered by the deCODE estimates is given at Kong et al. (2010,
Supplementary Table 2). The hg18 genome coordinates were mapped
to GRCh38 using pyliftover, a Python implementation of UCSC
LiftOver (Tretyakov 2013).

Variance in probability of polymorphism due
to recombination
In order to estimate variance in the probability of polymorphism that
can be explained by recombination or by sequence neighborhood, we
employ the SNV density as a surrogate. Counts of SNVs within the
10-kb blocks defined by deCODE were determined from the Ensembl
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variation database records. We excluded blocks where no SNVs were
reported in Ensembl; blocks that were identified by deCODE as
overlapping unsequenced regions; and blocks adjacent to these. The
portions excluded in this way did not exceed 5% of any chromosome.

The relationship between recombination rate and SNV density
may be confounded by spatial auto-correlation of these quantities
along the genome. The impact of auto-correlation on the residuals of
a linear model was confirmed by plotting the covariances of the
residuals for blocks separated by up to 50 blocks using statsmodels
(Seabold and Perktold 2010) (Figure S1). Allowing for auto-
correlation in our model requires maintaining the lags between
the 10-kb blocks and thus it was necessary to adjust regions with
missing data. This was done using the Last Observation Carried
Forward (LOCF) method (Molenberghs et al. 2014, p. 38). That is,
for successive blocks excluded by our missing data criteria, SNV
and recombination data from the immediate 59 neighbor block
were repeated.

Selection of the appropriate time-series model for the residuals
depends on whether their distribution is stationary. The statsmodels
(Seabold and Perktold 2010) implementation of the augmented
Dickey-Fuller test (Mills, 2008, p. 79) was used to demonstrate
stationarity of the residuals. (See also Figure S2.) Stationarity allows
us to apply Wold’s decomposition theorem (Mills, 2008, p. 12) to
conclude that the residuals can be approximated by an auto-regressive
moving average (ARMA)model of some order ðp; qÞ where p and q are
non-negative integers and p. 0. Optimal values of p and qwere chosen
by evaluating models for p# 10 and q# 4 using the statsmodels
(Seabold and Perktold 2010) ARMA implementation to find which
had the lowest value of the Akaike Information Criterion (AIC). (In the
case of chromosome 9, themodel with the second lowest AIC was used,
as the lowest model confounded the subsequent Markov Chain Monte
Carlo step.)

A Bayesian Markov Chain Monte Carlo (MCMC) approach imple-
mented in the software package PyMC3 (Salvatier et al. 2016) was used
to simultaneously estimate the slope, intercept and pþ q ARMA
parameters. This was developed to provide a more robust approach
than iterative adjustment of the parameters (Mizon 1995) as is un-
dertaken with, for example, the Cochrane-Orcutt procedure. The
intercept a obtained from this process represents the model’s pre-
diction of SNV density for genomic segments with a recombination
rate of zero. Therefore, given the average SNV density �m, we can
estimate the proportion of SNVs caused by recombination as r̂ ¼ �m2a

�m .
Under a neutral model, for a realistically small mutation rate, the
probability of an SNV at a site is some fixed multiple of the mutation
rate at the site over the whole genome (Hodgkinson et al. 2009).
Therefore r̂ is also the proportion of mutations caused by recombi-
nation. Then if x is the number of mutations that occur in 1 Mb of
DNA sequence in a specific generation and y is the number of
recombination events occurring in that sequence in the same gener-
ation, r̂x is the expected number of new mutations in that segment
caused by recombination. Since they must be caused by recombination
events occurring in that generation, the expected number of mutation
events per recombination event is r̂xy. Therefore multiplying r̂ by the
ratio of mutations per generation to recombination events per
generation gives the average number of mutations produced by
each recombination event. The estimated variance in SNV density
due to recombination (ŝ2

rec) is calculated as the difference between
the total variance in SNV density and the sum of squares of the
residuals. The ratio of this quantity to total variance in SNV rate
is the proportion of variance in SNV rate attributable to recom-
bination (R2).

Our model does not take account of error in the estimation of
recombination rates in the blocks. To determine the impact of this, we
tried adding a normal perturbation of the recombination rates to
the model. This made little difference to the posterior distribution,
which we hypothesize is due to averaging the recombination rates
over a large number of blocks.

The variance in SNV density conditioned on context
We estimated the probability of polymorphism for all point mutation
directions from all sequence contexts of size k that contained a central
point mutation. Themean and variance can be obtained from these in
a straightforward manner. The variance conditioned on different
central bases or different point mutation directions can be measured
by filtering the appropriate subset of the data. We now expand on our
model and approach to estimation of the variance.

We denote by ℂkð�a�Þ the set of 4k21 sequence contexts with
central base a 2 fA;C;G;Tg. The union, ℂk, of the four such sets
contains the 4k distinct k-mer sequences. As we are concerned with
neighborhoods centered on a mutating base, k is an odd numbered
integer with values of 3, 5, 7 or above.

For a sequence S, our model assigns to each site a fixed probability
m of being polymorphic for an SNV and assumes that the mutation
events for different sites occur independently (see Assumptions
below). It is the variability of m that can be explained by context
that is the object of the analysis.

For a context c, let pc be the proportion of sites in S matching it.
We denote by mc the probability that a randomly selected site
matching the context c will have a SNV at the central base. Then
mc is the average SNV probability over the sites with context c. We
denote by �m the average SNV probability over the entire sequence.
For any k we have:

�m ¼
X

c2ℂk

pcmc

Then the total variance in SNV density accounted for by sequence
neighborhoods of size k is:

s2
k ¼

X

c2ℂk

pc
�
mc2�m

�2

This total variance can be partitioned into components consisting of
variance attributable to each point mutation a/b as

s2
kða/bÞ ¼

X

c2ℂkð�a�Þ
pcðaÞðmc;a/b2�maÞ2 (1)

where pcðaÞ is the proportion of sites with base a whose context
matches c; mc;a/b is the probability of polymorphism arising from
mutation of base a to base b in context c; and �ma is the probability that
a site with base a will have an SNV.

We consider the proportion of contexts pc (and pcðaÞ) as a fixed or
known quantity, as contexts can be counted exactly with reasonable
efficiency. We then estimate the values mc by m̂c, the empirical SNV
density in context c (cf. Aikens et al. 2019). The estimated value of s2

k
is then given by:

ŝ2
k ¼

X

c2ℂk

pcðm̂c2m̂Þ2

where m̂ is the empirical SNV density for the entire sequence. A
similar equation applies if we condition on a specific point mutation
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direction a/b. For instance, we can further condition on C sites with
59 G and G sites with 39 C in order to isolate the CpG effect.

Assumptions: Some of the assumptions made in the above model may
be invalid in practice. We deal with this by filtering these conflicting
cases from the data, as follows.

We have assumed that each site has a fixed probability of being
polymorphic and that the resultant Bernoulli distributions are in-
dependent between sites. These assumptions fail if a site mutates
more than once, since we allow the nucleotide to influence mutation
rate. It similarly fails if a neighboring site mutates, since we allow
context to influence mutation. We therefore only include those SNVs
in our data set which are biallelic, with one allele being the ancestral
allele; and for which there are no variants in the immediate
neighborhood (4 bp on either side). (It is recognized that this does
not eliminate the case in which subsequent mutations have occurred
within the context and achieved fixation).

Bayesian model for estimation of variance due to context: We use
Bayesian conjugate priors to derive a posterior distribution for each
instance of mutation direction within a particular context (e.g.,
ACT/ATT mutation in the case of 3-mers). For each such case
we have a count of k-mers (number of “trials”) and a count of variants
at the central base of the k-mer (number of “successes”). The prob-
ability of polymorphism is given by estimating the probability
parameter of a binomial distribution on these quantities. The con-
jugate prior for the binomial distribution is the beta distribution, so
we use a Beta(1,1) distribution as a prior. We thus derive a posterior
beta distribution for the mutation rate for the cell. We generate
samples of the posterior distribution for the variance due to context
by generating samples for the probability of polymorphism for each
cell from the beta distributions and applying the right hand side of
equation (1) to the samples to generate samples for the weighted
variance.

This method requires that the number of mutation type and
context pairs having no variants in the data are small. For such cells
the posterior distribution on mutation rate would be Beta(1,1), the
uniform distribution on [0, 1] and hence the variance in mutation
rates would be inflated.

Data availability
The authors state that all data necessary for confirming the conclu-
sions presented in the article are represented fully within the article.
Supplementary figures and tables are available at Zenodo https://
zenodo.org/record/3875814. The preprocessed data used in this study
are available at Zenodo https://zenodo.org/record/3874290 under the
Creative Commons Attribution-Share Alike license. Larger data files
are typically gzip compressed. Scripts and Jupyter notebooks
developed specifically to perform the data sampling and analyses
reported in this work were written in Python version $3.5 and are
freely available under the GPL at https://github.com/helmutsimon/
ProbPolymorphism and at https://zenodo.org/record/3875855.

RESULTS
We estimated the contributions of recombination and context to the
variance in SNV density using data from the Ensembl variation
database (Cunningham et al. 2015). The SNV density for a sequence
is defined as the number of qualified SNVs in the sequence divided by
the sequence length. Only 1KG Project (1000 Genomes Project
Consortium et al. 2015) variants were considered in the interests
of consistency in SNV discovery. The point mutation direction from

which a SNV was derived was inferred using the ancestral nucleotide
state as recorded in Ensembl. Counts of filtered variants used by
chromosome are shown at Supplementary Table S5.

Effect of recombination on SNV density
We evaluated the relationship between recombination and SNV
density using linear regression. Our aim was to recover the slope
and intercept parameters from which other quantities of interest can
be inferred. The slope parameter gives us the increase in SNV density
for a given increase in recombination rate. In particular, a positive
slope parameter indicates a positive effect of recombination on SNV
density and hence mutation. The intercept parameter is the value of
SNV density corresponding to a recombination rate of zero under the
model. The estimated variance in SNV density due to recombination,
which we denote by ŝ2

rec, is calculated as the difference between the
total variance in SNV density and the sum of squares of the residuals.
The ratio of this quantity to total variance in SNV rate is the
proportion of variance in SNV rate attributable to recombination.
This ratio is the standard metric R2 (coefficient of determination),
which measures the fit of a linear model in terms of explained
variance in the observed data.

In modeling the influence of recombination, we used a parti-
tioning of the genome into 10-kb segments for which average sex-
averaged recombination rates were available (Kong et al. 2010).
These rates are normalized relative to the average genetic distance
over all of the 10-kb bins of 0.0116 centimorgans. SNV densities
were derived from the number of SNVs in a segment.

We began by fitting an ordinary least squares linear regression
(OLSLR) model to the data. Use of an OLSLR model for inference
requires residuals to be mutually independent, in particular that there
is no correlation between adjacent bins along the genome (spatial
auto-correlation). By analyzing the residuals from an OLSLR model
we identified a high level of auto-correlation (see Supplementary
Figure S1) and determined that they were most appropriately mod-
eled by an ARMAðp; qÞ model, where p and q are non-negative
integers and p. 0 (see Materials and methods). For each chromo-
some, we tested a range of ARMA models to find the one with the
lowest Akaike Information Criterion (AIC) score for the data. The
slope, intercept and ARMA error parameters were simultaneously
estimated using a Bayesian Markov Chain Monte Carlo (MCMC)
approach (see Materials and methods), obviating the need for iter-
ative “adjustment” steps.

The above process was applied to all chromosomes individually.
The estimates for variance in SNV rate due to recombination (ŝ2

rec)
are shown as violin plots in Figure 1. It can be seen that there were
some significant differences in the variance estimates for different
chromosomes. In particular, chromosomes 9, 15, 16, 17 and 22 show
significantly higher levels of variance in SNV density due to re-
combination. There were also significant differences in estimates of
the slope and intercept parameters (see Supplementary Table S1).
These differences between chromosomes precluded estimation of the
influence of recombination across the genome as a whole. Specifically,
using a model which set the slope and intercept parameters to be
common across chromosomes while allowing differing ARMA mod-
els and parameters for each chromosome resulted in a y-intercept that
was larger than the average SNV density, which is inconsistent with
results from individual chromosomes. Modifications of this approach
that used the sex-specific recombination maps did not result in any
substantial differences (results not shown).

Estimates for the slope (change in SNV density per centimorgan)
provided strong evidence for a positive effect of recombination on
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SNV density across all chromosomes. The estimates ranged from
0.0061 for chromosome 4 to 0.0092 for chromosome 14 (see Sup-
plementary Table S1). The corresponding 95% credibility intervals
(hereafter CI) of these estimates were 0.0044-0.0078 and 0.0057-0.010
respectively. For all chromosomes tested, the posterior probabilities
that the slope was # 0 were # 1023 (estimated from the MCMC
variates).

In the linear model, the y-intercept represents the predicted
SNV density for a recombination rate of zero. Estimates for the
y-intercept ranged from 0.0251 (95% CI of 0.0246-0.0255) for
chromosome 1 to 0.0285 (95% CI of 0.0257-0.0313) for chromo-
some 16. The difference between the mean SNV density and the
y-intercept parameter is more significant as it represents the
difference between the average observed SNV density calculated
and the observed data and the SNV density predicted for a
recombination rate of 0. That is, this difference measures the part
of the SNV density that can be attributed to recombination under
the model. Dividing the difference by mean SNV density gives the
proportion of SNVs that can be attributed to recombination (r̂, Materials
and methods). This quantity varied between 0.24% for chromosome
4 and 0.59% for chromosome 8.

We also examined the extent to which the effect of recombination
on SNV density differed for the 12 point mutations directions for
each chromosome. As an example, results for chromosome 1 are
shown in Table 1. We accepted that recombination has had a positive
effect on mutation when the posterior probability that the slope was
less than zero was found to be less than 0.05. On this basis, the
mutations for which recombination influenced mutation in Chro-
mosome 1 comprise all four transitions (C/T, T/C, A/G,
G/A) and the N/S transversions C/G, G/C, T/G and
A/C.

For SNVs derived from transition mutations, evidence for an
association with recombination rate was consistent across all chro-
mosomes (Figure 2 and Supplementary Table S2). This was not the
case for the transversion mutations. For SNVs derived from trans-
versions, evidence of an influence of recombination ranged from
inconsistent to none. For instance, for transversions to G/C, the
posterior probabilities for most chromosomes met our 0.05 threshold.
In contrast, there was no evidence of an influence of recombination
on transversions to A/T for most chromosomes. Additionally, if a
mutation type appears to be influenced by recombination, so does its
strand-symmetric counterpart. However, the values for variance due
to recombination for a mutation and its strand-symmetric counter-
part, while of similar magnitude, do not necessarily coincide, even
using the 95% CI. For all chromosomes the mutations with the

highest variance due to recombination are C/T and G/A, the
same as are subject to the CpG effect.

Variance in SNV density due to context
In our analysis of variance in SNV density due to context, we
restricted ourselves to intronic 1KG Ensembl variants, to reduce
confounding due to selection. All SNVs and contexts were oriented
with respect to the annotated strand of the gene. For consistency with
our assumption that each site has a fixed mutation rate, only biallelic
variants separated by $ 4 nucleotides from another SNV were
considered. Rather than use a conventional sample or plug-in esti-
mator of the average SNV density for each context, we worked with
samples from a posterior (beta) distribution to the binomial likeli-
hood function. This allowed us to sample and graph posterior
distributions for variance due to context, showing the uncertainty
in the parameter estimates (see Materials and methods). It also
allowed us to calculate the (posterior) probabilities of particular
conditions by counting the proportion of MCMC variates satisfying
the condition.

To evaluate the relationship between sequence context and the
probability of a SNV requires further definition of SNV density. For a
specific sequence context of size k (including the middle position),
there are 4k distinct contexts (hereafter k-mers). To illustrate calcu-
lation of SNV density, consider the 3-mer ACA. We estimated the
SNV density for ACA as the number of occurrences of ACA for which
the middle position had an SNV divided by the total number of
occurrences of the k-mer ACA. This can be further partitioned into
the different point mutations from C. The estimated variance attrib-
utable to sequence context of size k, which we denote by ŝ2

k, is thus the
variance computed across all 4k such densities (see Materials and
methods).

The values of ŝ2
k for k ¼ 1, 3, 5 and 7 are shown by the blue bars in

Figure 3 for 1-mers to 7-mers. The case of k ¼ 1 shows variance
conditioned solely on ancestral base. We necessarily observe an
increase in variance with increasing k, but the increments diminish
markedly after 3. It is noteworthy that the variance due to the central
base alone only comprises � 12% of the variance due to 3-mers. The
total variance due to 7-mers is� 35% greater than that due to 3-mers.
Variance in SNV density calculated in this way includes the influence
of the central mutating base itself and the interaction between that
central mutating base and its neighborhood. To investigate the
relative influence of these elements further, we show, using the tan
bars, the values of ŝ2

k marginalised over the central base (Figure 3).
That is, we evaluated the influence of the flanking nucleotides alone,
by pooling counts of variants and k-mers which share the same

Figure 1 Estimated variance in SNV
density attributable to recombination
by chromosome. The variances (s2

rec )
are estimated by fitting a linear model
to each chromosome,with residualsmod-
eled by an ARMA(p,q) model optimized
for each chromosome. The variance due
to recombination is the difference be-
tween total variance and the variance
not explained by the model.
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central base and calculating the variance of the SNV frequencies for
the bins formed in this way. We see that while these values are much
lower than the unmarginalized values, the relative magnitude of the
increments from 3-mer to 5-mer and from 5-mer to 7-mer are larger.
We can conclude that the greater part of the unmarginalized variance
due to 3-mers is explained not by the independent actions either of
the central base or of the flanking bases, but by the interaction of the
central base with its immediately adjacent neighbors. Furthermore,
this interaction between a mutating base and its immediate neighbors
is the largest contribution to variance for all values of k considered. As
would be expected, a large component of this is due to the CpG effect
(including its strand-symmetric counterpart) which we estimated as
0.00028, � 54% of the variance due to 7-mers.

We also analyzed the variance due to context for each of the point
mutations separately. The results are shown in Figure 4 as posterior
distributions for the variance due to context. (Values for the posterior
mean are shown at Supplementary Table S3.) The increment in
variance from 5-mer to 7-mer is greater than or approximately equal
to that from 3-mer to 5-mer for all point mutations, with the
exceptions of T/C / A/G transitions. In the case of transversions,
the variance due to 7-mers is approximately two to three times that
due to 3-mers. The strong relative influence of 7-mers and 5-mers for
transversions may appear to be at odds with the results aggregated
over point mutations (Figure 3). However, since Figure 4 considers
each point mutation separately, the central or ‘from’ base is fixed and
the interaction between the central base and its immediate neighbors
does not make a contribution. Thus the impact of increasing k is more
similar to that of the marginalised quantities (Figure 3).

Examination of Figure 4 suggests that contextual influence does
not always operate in a strand-symmetric manner. We investigated
this further by plotting intronic mutations together with their strand-
complements for the 7-mer case (Figure 5a). This demonstrates evidence
of strand-asymmetry for all mutation types. This was especially marked
for T/C / A/G transitions. Our criterion for rejecting strand-
symmetry was that the 97.5 percentile of one of a pair of strand-
complementary mutations was less than the 2.5 percentile of the other.
As a control, we performed a similar analysis for intergenic regions. The
results (Figure 5b) are generally consistent with the operation of strand-
symmetric processes in intergenic regions. The pair of mutations G/T

and C/A appear to be strand-asymmetric by our criterion and may be
an exception or an artifact.

DISCUSSION
Amultitude of processes contribute to spontaneous mutagenesis. One
approach to establishing the relative importance of these is to use
genomic heterogeneity in SNV density, which under a neutral model
can be presumed to arise from the non-uniform action of factors
contributing to mutation rate. Identifying an association between
candidate factors and SNV density can provide evidence of their effect
on mutation. In this paper we developed an approach of estimating
the variance in SNV density conditioned on either recombination rate
or on sequence context of various sizes. We confirmed an association
between recombination and SNV density. Our analyses of contextual
influences on SNV density demonstrated that the effect of context size
differed between transition and transversion point mutations and did
not always operate in a strand symmetric manner.

n■ Table 1 Analysis of the linear relationship between recombination rates and SNV densities for chromosome
1 disaggregated by mutation direction. ‘SNV Density’ is the SNV density for that mutation direction (conditioned
on ancestral allele); ‘Probability’ is the posterior probability that the slope parameter from the linear regression is less
than zero; ‘ŝ2

rec’ is the estimated variance due to recombination and ‘Lower CL 95%’ and ‘Upper CL 95%’ are the limits of
the 95% credibility interval for ŝ2

rec

Mutation SNV Density Probability ŝ2
rec Lower CL 95% Upper CL 95%

C/T 0.0247 0.0000 3.7e-07 2.9e-07 4.4e-07
G/A 0.0246 0.0000 3.8e-07 3.0e-07 4.4e-07
T/C 0.0124 0.0000 5.0e-08 4.4e-08 5.3e-08
A/G 0.0125 0.0000 8.2e-08 7.1e-08 9.1e-08
C/G 0.0047 0.0004 2.6e-09 1.4e-09 3.1e-09
G/C 0.0047 0.0022 1.0e-09 4.4e-10 1.2e-09
T/G 0.0030 0.0109 9.3e-10 1.9e-10 1.3e-09
A/C 0.0030 0.0168 9.4e-10 9.2e-11 1.4e-09
T/A 0.0029 0.9472 22.8e-10 29.5e-10 1.9e-12
A/T 0.0029 0.3697 9.6e-12 25.6e-10 2.3e-10
C/A 0.0054 0.9140 25.3e-10 22.0e-09 21.3e-12
G/T 0.0054 0.9290 28.9e-10 22.8e-09 6.2e-11

Since the estimated variance in SNV density due to recombination is calculated as the difference between the total variance in SNV density and
the sum of squares of the residuals, it will be negative if the model fit is worse than for a line with zero slope. This is likely to occur when the
‘Probability’ value is significantly greater than zero and we reject the model.

Figure 2 Evidence for the effect of recombination on mutation by
mutation direction and chromosome. ‘Probability’ is the posterior
probability that the slope parameter from the linear regression is less
than zero. A darker shade indicates a high probability that SNV density
has a positive linear relationship with recombination. Cells meeting the
0.05 threshold are in the deepest blue.
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Our conclusions are derived using a model of mutation that is
necessarily a simplification of a complex reality. We have assumed
that each genomic site is associated with a specific mutation rate and
that mutation events at different sites occur independently (e.g.,
Hodgkinson et al. 2009). We stated earlier that achieving consistency
with these assumptions requires some filtering of the data (see
Assumptions in Materials and Methods). It is also known that
mutations at different sites are not always independent due to the
distinct phenomena of ectopic gene conversion (Harpak et al. 2017)
and of “mutation clusters” (Michaelson et al. 2012). The assumption
that each site has a fixed mutation rate is also a simplification as it is
known that such mutation rates are influenced by external factors,
notably parental age (e.g., Francioli et al. 2015).

The influence of recombination on mutation
We investigated the relationship between recombination and SNV
density by testing for an association between the average recombi-
nation rate evident in 10-kb genomic segments and the SNV density
in those segments. Due to substantial auto-correlation of mutation
and recombination rates between neighboring segments (Figure S1),
we derived estimates of the variance using a linear regression model
that was modified to incorporate this auto-correlation. For all chro-
mosomes examined, the posterior probabilities that the slope was # 0
were # 1024. This provides strong evidence of a positive correlation.

Taking the step from inferences about SNV density to inferences
about mutation rate generally relies on an assumption that the ratio of
the mutation rate to the probability of polymorphism is constant over
all sites in a given population of genomes (cf. Hodgkinson et al. 2009).
On this basis, we can apply the ratio of the estimated point mutation
rate in human chromosomes (Jónsson et al. 2017a) to the average
SNV density obtained from our data to express our above estimates
for the slope in terms of the per base pair mutation rate per
centimorgan. These results range from 2:17 · 1029 (chromosome
21) to 4:13 · 1029 (chromosome 17) (Table S1). However, such a
constant relationship between SNV density and mutation rate applies
to a neutral model of evolution that does not take account of at least
two known factors: selective sweeps and GC-biased gene conversion
(gBGC). Both of these factors are themselves influenced by the
recombination rate in a region. Thus a number of factors potentially
contribute to the relationship between recombination and SNV

density. We aim to address the question of the contribution of a
direct mutagenic effect of crossovers relative to other factors in-
cluding selective sweeps and gBGC. Our approach using linear
models incorporating ARMA distributions assists in this by providing
a more accurate quantification of the overall relationship between
recombination rate and SNV density.

We hypothesize that the direct mutagenic effect of recombination
makes a significant contribution relative to the other identified
factors. We compare our results to those of a recent study of de
novo mutations which estimated the probability of a recombination
event (crossover) causing a mutation at r̂=0.29%, with a 95%
confidence interval of 0.17–0.47% (Arbeithuber et al. 2015). Such
direct measurements by estimation of these rates from de novo
mutation studies constitute in principle a “gold standard”, subject
to experimental limits and small sample sizes. If y is the average point
mutation rate of the DNA sequence and x is the average rate of
crossovers, the proportion of the mutation rate that is directly caused
by crossovers is rx

y . Setting y ¼ 1:19 · 1028 (Jónsson et al. 2017b) and
x ¼ 1:16· 1028 (Kong et al. 2010), we estimate the proportion of the
mutation rate directly caused by crossovers at 0.28%. If we ignore the
effect of selective sweeps and gBGC by retaining the simplifying
assumption that SNV density is a fixed multiple of the mutation rate
regardless of location, we would predict that 0.28% of SNVs are also
directly caused by crossovers. Comparing this to the last column of
Supplementary Table S1 we see that this estimate of 0.28% for the
proportion of SNVs caused directly by crossovers accounts for over
50% of the proportion of additional SNVs associated with recombi-
nation rate as derived from our modified linear model. The latter
quantity measures the influence of recombination by all mechanisms,
thus this outcome provides empirical support for the hypothesized
importance of the direct mutagenic effect of recombination.

Our estimates for the slope in terms of the base pair mutation rate
per centimorgan are somewhat greater than the overall figure of
� 1:5 · 1029 obtained in Hellmann (2005). We note that Hellmann
(2005) addressed the issue of spatial auto-correlation by means of the
Cochrane-Orcutt correction (Kutner et al. 2005), which is applicable
to an auto-regressive (AR) model. AR models are nested within
ARMA models as a special case. Our analysis of the residuals (data
not shown) demonstrates that, taking the case of chromosome 1, the
optimal ARMA model has a superior AIC (� 2 184; 554) to the
optimal AR model (� 2 184; 493). On the other hand, our estimate
of the probability that a single recombination event causes a mutation
is very different from the estimate in Hellmann (2005), which was
also based on a population analysis. In contrast to our approach,
which addresses this relationship in terms of the intercept estimated
from the linear model, Hellman’s estimate was based on the slope.
Specifically, the slope of the linear regression was estimated at
� 1:5 · 1029 mutations per base pair per centimorgan, that is,
every 1% increase in the recombination rate in 1 Mb of sequence
generated an additional � 0:0015 mutations per Mb. The number
of mutation events per recombination event is then taken as
0:0015=0:01 ¼ 0:15, which is two orders of magnitude greater
than the empirical estimates of Arbeithuber et al. (2015). This
argument implicitly treats all recombination-induced mutations
as having been caused by recombination events in the most recent
generation. It therefore ignores recombination-induced mutations
caused by recombination events in previous generations.

The use of an ARMA distribution to model the residuals, rather
than fitting a conventional linear regression, made a major difference
to the results. To illustrate this, we repeated the analysis using an
OLSLR model (Supplementary Table S4). Comparing these estimates

Figure 3 The interaction between a mutating base and its neighbor-
hood dominates variance in SNVdensity. The component of ŝ2

k attribut-
able to neighborhood alone (i.e., marginalised over the central base)
is shown in tan. This contrasts with the full value of ŝ2

k (shown in
blue), which includes the interaction between a mutating base and
its neighborhood.
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with those from the ARMA model (Supplementary Table S1) shows
marked differences in all parameter values. In particular, the variance
due to recombination (ŝ2

rec) was some orders of magnitude larger in
the OLSLRmodel. Critically, the intercept parameter was consistently
lower for the OLSLRmodel and as a direct result the estimation of the
number of mutations per recombination event was consistently
greater for the OLSLR model by a factor of around 2. As correlations
are given by the square root of R2 in a linear model, the discrepancies
we identify raise doubts about the accuracy of estimates of correlation
between recombination rates and substitution rates in studies that do
not compensate for spatial auto-correlation (Lercher and Hurst 2002;
Duret and Arndt 2008; Mugal and Ellegren 2011).

Our results indicate the effect of recombination depended on
mutation direction with some mutations exhibiting no association
(e.g., N/W transversions). This dependence on point mutation di-
rection has been noted by other authors and our results are generally

consistent with previous observations derived from substitution data
(Duret and Arndt 2008). In particular, the mutation types seen to be
most influenced by recombination were C/T and G/A, the same
types that are subject to the CpG effect. Arbeithuber et al. (2015)
reported all but one of the 17 de novo mutations found in molecules
with a crossover were of one of these two types (as were the three
mutations found in non-crossover controls). A possible explanation is
that recombination magnifies the CpG effect by effecting a temporary
local strand separation, since the deamination of 5-methylcytosine is
over 60 times more rapid in single-stranded than in double-stranded
DNA (Ehrlich et al. 1986; Zhang and Mathews 1994). The finding that
the relationship between SNP density and recombination rate varied
between mutation directions, including the absence of a correlation for
some mutation directions, has no obvious explanation in terms of
selective sweeps. This provides further support for the relative signif-
icance of the direct mutagenic effect of recombination.

Figure 4 Posterior distributions of the variance of SNV density (x-axis) conditioned on 3-mer, 5-mer and 7-mer contexts for each of 12 mutation
profiles. The Row/Column labels correspond to the from and to nucleotides. Note that the x-axes (ŝ2

kða/bÞ, estimated variance due to context)
and y-axes (probability density) scales vary between plots. In particular the x-axes for C/T and G/A mutations do not include the origin.
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Recombination will only contribute to variance in SNV density
insofar as it occurs heterogeneously along the genome. Neither the
proportion of mutation events occurring in a single generation that
are caused by recombination nor the probability that a recombination
event gives rise to a mutation event (both� 0:004) are affected by the
distribution of recombination rates along the genome. For this
reason, these quantities arguably provide a better measure of the
direct effect of recombination on mutation. A comparative analysis of
ŝ2
rec given in Figure 1 showed some difference between chromosomes,

with chromosomes 9, 15, 16, 17 and 22 having a significantly higher
value of ŝ2

rec than the other chromosomes. One possible explanation
would be that recombination rates are more heterogeneous along
these chromosomes. One measure of heterogeneity is the variance of
the recombination rates, which is shown in Figure 6. We see that
chromosomes 15, 16, 17 and 22 do have relatively high variance, but
not significantly higher than chromosome 13, while the variance for
chromosomes 18, 20 and 21 is greater than for chromosomes 15,
16 and 17. Chromosome 9, on the other hand, does not have a
relatively high variance in recombination rate. Thus while variance in
the recombination rate may contribute to variance in ŝ2

rec, the ex-
planation appears to be more complex. The extent of segmental
duplication in chromosomes may also be a factor, as it correlates
significantly with ŝ2

rec. The autosomes with the highest rate of

segmental duplication are 7, 9, 15, 16, 17 and 22 (Zhang et al.
2004). As regions of segmental duplication are susceptible to ectopic
gene conversion, this process may explain an increase in ŝ2

rec.
Another feature of Figure 1 is that chromosomes 9, 15, 16, 17 and

22 also have greater spread in their posterior distributions. This is
likely to result directly from the fact that the variance due to
recombination (R2) is greater in these cases (Wishart et al. 1931;
Olkin and Finn 1995).

The influence of context on mutation
Our approach to analyzing the influence of context on mutation has
two main features: using a rich database of human variants identified
by the 1KG Project (1000 Genomes Project Consortium et al. 2015)
and applying directly the concept of variance in mutation rate due to
context as described in Materials and methods. This method is
particularly suited to considering the issue of the effect on mutation
of contexts of differing sizes.

A number of authors have variously dismissed (Krawczak et al. 1998;
Hodgkinson et al. 2009) or made strong claims for (Aggarwala and
Voight 2016; Zhu et al. 2017) the influence of contexts beyond 3-mers on
mutation. Figure 3 shows that the increases from ŝ2

3 to ŝ2
5 to ŝ2

7 are
relatively small. This is because the variance due to 3-mers incorporates
the interaction between the central base of the 3-mer and its two flanking

Figure 5 Variance in SNV density for specific mutation directions is strand-asymmetric for intronic regions, but strand-symmetric for intergenic
regions. We show posterior distributions of ŝ2

7 for each of the 12 mutation directions (x-axis), with strand-symmetric pairs shown on the same axes.
The y-axes show probability density. (a) Intronic regions. (b) Intergenic regions.
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bases, which is the largest contributor to variance in SNV rates due to
context. We found that � 54% of ŝ2

7 was due to the CpG effect.
For analysis of an individual point mutation, the central base is

fixed and thus there are no explicit interactions with neighboring
bases. In this case, which we have referred to as fixed marginals
(Figure 4), the additional variance added by 5-mers over 3-mers and,
to an even greater extent, by 7-mers over 5-mers is substantial. These
results may appear to support previous findings that the variance due
to 7-mers is highly significant (Aggarwala and Voight 2016). How-
ever, the methods used in that work differ markedly to ours. When
considering the influence of k-mers on the probability of observing an
SNV, Aggarwala and Voight (2016) fitted a linear model to binomial
data, which will not yield a valid maximum likelihood estimate of the
slope and intercept parameters (Agresti 2002, p. 120). In calculating
the relative influence of 3-mers and 7-mers, they used linear re-
gression to predict the 7-mer SNV densities from the 3-mer SNV
densities and calculated the R2 metric on this regression. This metric
is mathematically the same as the ratio of the following quantities: sum
of squares difference between the 3-mer SNV densities and the overall
mean SNV density; and, the sum of squares difference between the
7-mer SNV densities and the overall mean SNV density. This ratio is in
turn the ratio of variance in 3-mer SNV densities to that of 7-mer SNV
densities (without being weighted by frequency of context.) This
appears to account for some similarity of their results to ours.

In contrast to Aggarwala and Voight (2016), Zhu et al. (2017) used a
log-linear model for estimating the information content of neighboring
bases. This approach is appropriate in modeling binomial data and also
allowed comparison of the effect of different k-mers as measured by
information content rather than traditional sum-of-squares variance.
An advantage is that the joint effect of neighboring nucleotides can be
distinguished from the independent effects of each. That work likewise
identified neighboring nucleotides as distant as 4 bases away (hence k ¼ 9)
as associated with some transversion point mutations (Zhu et al. 2017).

The strong influence of 7-mer contexts apparent when conditioning
on the central mutating base raises the question of whether this is due
to specific hypermutable 7-mer contexts. Our investigation failed to
identify any such 7-mer contexts that were not attributable to CpG
hypermutability. The most mutagenic context was NNACGNN. This
sequence is of course subject to the CpG effect and the 59-A has a
positive association on C/T mutations independent of the 39 base

(see Zhu et al. 2017, Figure 2). The incidence of ACG trinucleotides
was�7% of that expected from the individual nucleotide frequencies.

Figure 5a provides evidence of strand-asymmetry in the variance due
to contextual influence for all 12 point mutation directions. It has been
conjectured that such strand-asymmetry is caused by transcription cou-
pled DNA repair (TCR) (e.g., Hwang and Green 2004). TCR is a strand-
asymmetric process which occurs in actively transcribed genes when an
RNA polymerase (RNAP) translocating along a DNA strand encounters
a distorting lesion or other local factor that retards its forward progress
and may cause it to recruit nucleotide excision repair proteins (Spivak
and Ganesan 2014). Sequence context is known to be involved in factors
that can pause or arrest RNAPs (Spivak and Ganesan 2014). In their
phylogenetic analysis of substitution rates, Hwang and Green (2004)
found that T/C substitution rates were higher than those for A/G
and C/T substitution rates were higher than those for G/A. Our
analysis of SNV data differs from this in showing A/G to have a
significantly higher SNV density than T/C while C/T SNVs had
only marginally greater SNV density compared to G/A (Table S3).
Figure 5a shows the same pattern in variance due to context:
ŝ2
7ðC/TÞ. ŝ2

7ðG/AÞ and ŝ2
7ðA/GÞ. ŝ2

7ðT/CÞ. Hwang and
Green (2004) also showed transcription-associated mutational asym-
metry to be influenced by context for transitions. Our results indicate
that such influence occurs to some significant degree for all mutation
directions. Overall, it appears that a substantial association exists
between TCR and variance in SNV density.

CONCLUSION
We have demonstrated that estimating the variance in SNV density
due to context can discriminate the effect of contexts of different sizes.
This was done from three perspectives: considering the 12 point mu-
tation directions separately; aggregating over these directions while
marginalizing over the central allele; and aggregating over these
directions without marginalizing over the central allele (measured
by ŝ2

k). The perspective adopted has a marked influence on estimates
of relative influence. For example, results aggregated over mutation
direction will be dominated by the more abundant transition muta-
tions and in particular, by the CpG effect. Our approach has clarified
the relationship between results from these different perspectives and,
in particular, has demonstrated the dominant effect of the interaction
between a central allele and its immediate neighbors. The use of

Figure 6 Variance in recombination rate by chromo-
some. The variance in recombination rate is calcu-
lated from average recombination rates for 10-kb
bins, normalized by the mean recombination rate
of the entire genome.Chromosomes with a higher
value of ŝ2

rec are shown in red.
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Bayesian posterior distributions was able to give a high degree of
certainty to conclusions about the strand-asymmetry of contextual
influence in intronic regions. Further, our methods are driven solely
by varying SNV densities between contexts and are not influenced by
the distribution of k-mers within the genome.

We also quantified variance in SNV density due to recombination.
However, a direct comparison of this quantity with the variance in
SNV density due to context has some limitations. We measured
variance in SNV density due to recombination at the scale of 10-kb
DNA blocks. This does not take account of any variance due to
recombination that exists within 10-kb blocks. This limitation is not
easily overcome as there is presently no data for fine scale recom-
bination at the individual base level.

We note that the quantitative impacts of recombination and context
on mutation are conceptually difficult to compare meaningfully, as
context is a state and recombination an event. For this reason, the
proportion of mutation events caused by recombination and the prob-
ability that a recombination event gives rise to a mutation event (both

�0.004) are better measures of the direct impact of recombination on
mutation. Our estimate that recombination only accounts for� 0:4% of
the averagemutation ratemakes recombination appear a relativelyminor
contributor to mutation rate overall. However, recombination is con-
centrated in hotspots, typically 1 - 2 kb in length, in which the recom-
bination rate can commonly be 50 or more times higher than average
(The International HapMap Consortium 2005). In such regions, recom-
bination would account for � 20% or more of the mutation rate.
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