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Purpose: Previous work has shown that combining dynamic

contrast-enhanced (DCE)-MRI and oxygen-enhanced (OE)-MRI

binary enhancement maps can identify tumor hypoxia. The

current work proposes a novel, data-driven method for map-

ping tissue oxygenation and perfusion heterogeneity, based on

clustering DCE/OE-MRI data.
Methods: DCE-MRI and OE-MRI were performed on nine U87 (glio-

blastoma) and seven Calu6 (non-small cell lung cancer) murine xeno-

graft tumors. Area under the curve and principal component analysis

features were calculated and clustered separately using Gaussian

mixture modelling. Evaluation metrics were calculated to determine

the optimum feature set and cluster number. Outputs were quantita-

tively compared with a previous non data-driven approach.
Results: The optimum method located six robustly identifiable

clusters in the data, yielding tumor region maps with spatially con-

tiguous regions in a rim-core structure, suggesting a biological

basis. Mean within-cluster enhancement curves showed physio-

logically distinct, intuitive kinetics of enhancement. Regions of

DCE/OE-MRI enhancement mismatch were located, and voxel

categorization agreed well with the previous non data-driven

approach (Cohen’s kappa¼0.61, proportional agreement¼0.75).

Conclusion: The proposed method locates similar regions to

the previous published method of binarization of DCE/OE-MRI

enhancement, but renders a finer segmentation of intra-

tumoral oxygenation and perfusion. This could aid in under-

standing the tumor microenvironment and its heterogeneity.
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INTRODUCTION

Alongside the biological differences between tumors of dif-
ferent patients and within the same patient, there exists
considerable functional and structural variation within
individual lesions (1). This intra-tumoral heterogeneity has
been shown to be a marker of aggressive disease and poor
patient prognosis (2,3). Furthermore, the presence of cer-
tain phenotypical features in a tumor, such as hypoxia, is
believed to contribute to therapeutic resistance (4,5). Hyp-
oxia can limit radiotherapeutic efficacy by reducing the
radiosensitivity of tumor tissue and has also been shown to
lessen the effect of chemotherapy (6). Drugs are being
developed and tested that target hypoxic regions in tumors
(7) with optimization and monitoring of treatment poten-
tially benefiting from measuring intra-tumoral hypoxia.

Clinically, characterization of the tumor microenviron-
ment is carried out taking into account only limited spatial
information. For hypoxia, voxel-wise heterogeneity imag-
ing is important to allow the detection of hypoxia in a
background of normoxia. Oxygen tension probes (8,9) and
biopsies followed by histological staining (10,11) are often
treated as the “gold standard” for assessing oxygen tension
in tissues. However, the sampled portion of tissue may not
be representative of the entire tumor, biopsies of the same
piece of tumor are non-repeatable, and there may also be
issues with accessing the tumor in some locations, such as
in many lung cancers. These considerations necessitate a
non-invasive method for characterizing the tumor micro-
environment and its heterogeneity, particularly one that is
sensitive to hypoxia and has the potential to reliably pre-
dict and monitor treatment response.

Non-invasive methods currently available for assessing
inter- and intra-tumoral oxygenation are largely positron
emission tomography-based or MRI-based (5,6). Positron
emission tomography has a variety of radiotracers available
such as [18F]MISO (12), [18F]FAZA (13), and [64Cu]ATSM
(14), which have a high specificity for measuring hypoxia
(15), although these more novel radiotracers are restricted
to specialist centers with appropriately equipped
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radiochemistry departments. Clinically available methods
of using MRI to assess tissue oxygenation (5) fall into those
monitoring changes in T�2 relaxation using blood oxygena-
tion level dependent (BOLD) contrast imaging (16) and
those measuring changes in T1 relaxation using tissue oxy-
genation level-dependent/oxygen-enhanced (TOLD/OE)-
MRI (17). Their value in monitoring oxygenation in tumors
has been demonstrated independently and in combination
with each other (18–26). There are also studies that use
dynamic contrast-enhanced (DCE)-MRI derived perfusion
biomarkers, such as Ktrans and AUC90, as surrogate mea-
sures of hypoxia (27–30).

We have previously carried out DCE-MRI (reflecting
tissue perfusion) and OE-MRI (reflecting tissue oxygen
delivery) on tumor xenografts, creating three classes of
tumor sub-regions based on enhancing/non-enhancing
voxels for both imaging techniques (31,32). The class
that enhanced with DCE-MRI but not with OE-MRI was
termed the “perfused Oxy-R fraction” (refractory to an
oxygen challenge) and was postulated to represent hyp-
oxic regions. Important steps have been taken toward
providing biological and technical validation (33) of this
biomarker for assessing the degree of tumor hypoxia.

Other workers have focused on objective, clustering-
based methods for locating distinct tumor (and other tis-
sue) sub-regions in general, without a specific focus on
investigating hypoxia. This has been done in preclinical
tumor models (34–37), healthy kidneys (38), head and
neck cancer (39), cervical cancer (40), bone metastases
(41), and breast cancer (42). These studies demonstrate
the use of data-clustering techniques in segmenting

tumor and healthy tissue, with varying levels of valida-

tion, but none present a systematic optimization of the

parameters used in their methods.
The work we present in this paper investigates the

application and optimization of data clustering methods

such as those described above, but tailored and evaluated

specifically on the combination of imaging data that we

showed previously to map hypoxia: DCE-MRI and OE-

MRI (21,31). We present three ways of evaluating the per-

formance of the clustering method and use these to select

recommended parameters and options for the data sets in

this study. We then compare our results with our previ-

ously published method to assess consistency of results

and potential benefits of automated and objective tissue

segmentation. We move away from a priori assumptions

leading to heuristically chosen thresholds in data and pre-

sent a method for mapping oxygenation and perfusion

heterogeneity that is instead data-driven and demon-

strated to be robustly supported by the available signals.

METHODS

All analyses carried out in this work were carried out in

MATLAB R2014a (MathWorks, Natick, MA), apart from

the calculation of native tissue T1 values, which was car-

ried out using in-house software written in C. Key

MATLAB functions are written in italics (e.g., func-

tion.m). As an overview of the current work, Figure 1

shows graphically the key steps carried out in our analy-

sis stream, organized into the four main sections of

work: (1) data collection and preprocessing, (2) feature

FIG. 1. A flowchart depicting the sequence of acquisition, analysis, and evaluations conducted.
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extraction and cluster analysis, (3) clustering evaluation,
and (4) comparison with previous method.

Data Collection and Preprocessing

Studies were performed in compliance with the National
Cancer Research Institute “Guidelines for the welfare
and use of animals in cancer research” (43) and with
licenses issued under the UK Animals (Scientific Proce-
dures) Act 1986 (PPL 40/3212) following local Ethical
Committee review.

Experiments were carried out in two murine xenograft
models of human cancer, generated by intra-dermal
injection of cells on the midline lower back of nude
mice. Nine U87 glioblastoma multiforme tumor models
were propagated by injecting 0.1 ml of cells (5�106

cells/ml), and seven Calu6 non-small cell lung carci-
noma tumor models were propagated by injecting 0.1 ml
of cells (2� 107 cells/ml). When tumors reached
> 200 mm3 by caliper measurement, mice were anaesthe-
tized using 2% isoflurane carried in medical air (21%
oxygen). Core temperature was controlled at 37�C while
anatomical, OE, and DCE MR imaging was carried out on
a 7T Magnex instrument interfaced to a Bruker Advance
III console and gradient system using a volume trans-
ceiver coil. For each image acquisition, localizer scans
were carried out and imaging volumes selected to posi-
tion tumors centrally within the volume.

Anatomical Imaging

A T2-weighted scan was carried out to enable tumor identi-
fication and localization. 3D rapid acquisition with relaxa-
tion enhancement sequence (44): TR¼2200.00 ms;
TE¼ 32.00 ms; a¼ 135�; matrix¼96�128; field of
view¼ 32 mm� 32 mm; and 16�1 mm thick coronal slices.

OE-MRI

A variable flip angle method was carried out to measure tis-
sue baseline T1 (45) using 3D modified driven equilibrium
Fourier transform sequences (46): TR¼30.00 ms; TE¼1.44
ms; a¼ 5�, 10�, 20�; five averages; matrix¼64�64; field of
view¼ 32 mm� 32 mm; 16�1 mm thick coronal slices.
This was followed by 42 dynamic acquisitions (acquisition
details as above but a¼20� only) at a temporal resolution of
one image volume every 28.80 s. The gas supply to the
mouse was delivered via a nose cone and switched from air
to 100% oxygen at the beginning of the 19th acquisition.
The duration of the entire dynamic series was 20 min 10 s.

DCE-MRI

A variable flip angle method was again carried out to mea-
sure tissue baseline T1 using 3D modified driven equilib-
rium Fourier transform sequences; TR¼ 6.02 ms; TE¼ 1.46
ms; a¼ 2�, 5�, 10�; five averages; matrix¼64� 64; field of
view¼ 32 mm� 32 mm; 16� 1 mm thick coronal slices.
This was followed by 96 dynamic acquisitions (acquisition
details as above but a¼ 10� only) at a temporal resolution
of one image volume every 5.78 s. Gd-DOTA was injected
into a tail vein (0.25 mmol/kg) at the beginning of the 25th
acquisition. The duration of the entire dynamic series was
9 min 15 s.

Processing

Native tissue T1 (T10) values were estimated for both
DCE and OE via fitting the spoiled gradient recalled
echo signal equation to variable flip angle data (47).

Baseline signal drift was observed in OE data, which
was corrected by fitting the spoiled gradient recalled
echo signal equation with an empirically determined
exponentially time-varying flip angle. Supporting Figure
S1 shows an illustration of the fitted baseline signals.

Dynamic MR signals were then converted from raw
signal units to voxel-wise DR1 (R1¼ 1/T1) vectors, by
manipulating the spoiled gradient recalled echo signal
equation (48) and using T10, S0(t), and a(t) values for OE,
and uncorrected T10, S0, and a values for DCE. Support-
ing Figure S2 shows the effect that drift correction of OE
data has on DR1 values.

Regions of interest were drawn around tumor volumes,
and only tumor voxels were used in the following analy-
sis. Erratically enhancing voxels that would impede fea-
ture calculation were present in most data sets. These
existed likely because of movement at a boundary, and
perhaps the inclusion of large vessels, in the region of
interest. The area-under-the-curve (AUC) of the modulus
of each DCE and OE DR1(t) curve was calculated, and
the voxels with the highest 1% from each imaging tech-
nique were removed from the data set to improve the
suitability of the data for feature calculation.

Feature Extraction and Cluster Analysis

Two sets of features were calculated for each tumor
voxel: an AUC feature set and a principal component
analysis (PCA) feature set.

For the AUC feature set, the area under the first 90 s
(post-Gd) of DCE DR1(t) curves and under all post
oxygen-switch time points of OE DR1(t) curves was cal-
culated using trapezoidal integration using cumtrapz.m.

For the PCA feature set, the DCE and OE DR1(t)
enhancement curves were concatenated after scaling the
OE data so that the mean standard deviation across all
voxels for DCE and OE were equal. This created a com-
posite DCE-OE curve for each voxel. The principal com-
ponents that describe the directions of greatest variance
in DCE-OE DR1(t) enhancement curves, together with
voxel weightings for each component, were then calcu-
lated using pca.m.

Gaussian mixture modeling (GMM) was applied to the
two-dimensional AUC feature set and separately to the
four-dimensional PCA feature set, consisting of the first
four principal components, with the number of clusters,
NC, varying from 2 to 25. GMM was implemented using
fitgmdist.m. Each GMM fit was repeated ten times with
randomly initialized cluster locations to avoid local min-
ima. To ensure that clusters in feature space were consis-
tently labeled, every cluster assignment in feature space
was reordered so that clusters 1 to NC increased from
lowest to highest DCE AUC values. For each clustering
result (choice of NC value and choice of feature set),
cluster assignments were transferred into image space,
creating a 3D region map for each tumor. Additionally,
mean within-cluster DCE and OE DR1(t) curves were
calculated.
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Clustering Evaluation

To investigate the suitability of the model fit using GMM

clustering, the Akaike information criterion (AIC) (49)

was used with values derived from the log-likelihood of

GMM fits, for each clustering result.
To assess whether region maps identified connected

regions in tumors, a contiguity metric was created. The

number of connected regions (3� 3�3 voxel connection

kernel) for each tumor region map was calculated for

each clustering result using bwlabeln.m. The null distri-

bution of this metric was created by bootstrap resam-

pling each region map and calculating the contiguity

metric for 100 bootstrap realizations. From these data,

contiguity z-scores were calculated for all tumors for

each clustering result.
To evaluate the stability of cluster locations within fea-

ture space, both feature sets underwent bootstrap resam-

pling over voxels 100 times. GMM for all NC values was

then rerun on every bootstrapped feature set and the

cluster centers saved. The set of cluster centers from

each bootstrap realization were matched to the original

cluster centers using the Hungarian algorithm (50), and

silhouettes (51) were calculated using silhouette.m to

quantitatively assess the dispersion of each cluster center

for each realization of bootstrap resampling.
The three evaluation metrics (AIC, contiguity z-scores,

and stability scores) were compared alongside each other

and used to select (1) the feature set and (2) the NC value

for GMM clustering of this data set. This is the opti-

mized, data-driven (ODD) method we present.

Comparison with Previous Method

Alongside the ODD method, the previously published

threshold-based method (TBM) (31) that defined three

tumor region classes was also applied to these data.

Cluster assignments from ODD methods were compared

with the three TBM classes and subsequently

concatenated into three similar classes to enable a direct

comparison between methods. For each tumor, the pro-

portion of voxels assigned to the same class (w) and

Cohen’s kappa (k) were calculated to quantify the agree-

ment between methods. Bland-Altman plots of the num-

ber of voxels in each of the three classes were also

created as a method of assessing methodological

agreement.

RESULTS

Feature Extraction and Cluster Analysis

Supporting Figure S3 shows T2-weighted images of four

representative tumors. Figure 2 shows results from PCA

applied to all voxels’ DCE-OE DR1(t) time series. Figure

2a shows the cumulative variance explained with

increasing number of principal components (PCs). The

shoulder at 40–45 PCs most likely reflects the different

noise levels within the OE and DCE measurements, as

there are 42 OE time points. There is an initial shoulder

in the curve at two to five PCs, at which point �90% of

the variance in the data set is explained (Fig. 2a, inset).

The first four PCs were chosen to create the PCA feature

set based on the location of this shoulder and visual

interpretation of the PCs. Figure 2b shows these first

four PCs, with the first part of the curves representing

the DCE and the later part the OE DR1(t) signal changes.

Smooth temporal changes that might be expected

because of the administered Gd and oxygen are

observed.
Figure 3 shows feature maps for the central slice of the

same tumor in Supporting Figure S3b. AUC maps show

a strong rim-core structure for both features, and regions

of high AUCDCE with low or negative AUCOE are

observed (see arrows). PC1 and PC2 feature maps show

structures with similarity to those of the AUCDCE and

AUCOE features, respectively, whereas PC3 and PC4 fea-

ture maps appear to show spatial structure distinct from

FIG. 2. Results from principal component analysis of combined DCE-OE data (OE DR1(t) curves were scaled and concatenated with

DCE DR1(t) curves). (a) Cumulative variance explained with increasing number of principal components, with the arrow and inset
highlighting the first shoulder in the curve (�2–5 components). (b) The first four principal components, showing distinct kinetics of com-
bined DCE-MRI and OE-MRI enhancement.
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that of PC1 and PC2. Feature maps for all tumors are

shown in Supporting Figures S4–S6.
Supporting Figure S7 shows two-dimensional histo-

grams of the AUC and PCA feature sets.

Clustering Evaluation

Figure 4 shows AIC values (Figs. 4a, b), contiguity z-

scores (Figs. 4c, d), and stability scores (Figs. 4e, f) from

GMM fits with varying NC for the AUC and PCA feature

sets. For AIC values (Figs. 4a, b), neither feature set

shows a clear minimum (optimal) value, but both show a

steep decrease in AIC up to NC¼ 6. After this point,

there is a much shallower decrease in AIC with increas-

ing NC, suggesting that only modest improvement in

describing the feature set distribution is achieved with

more than six clusters, particularly for the AUC feature

set. For contiguity z-scores (Figs. 4c, d), most values are

greater than three for all NC, indicating a probability of

<0.3% that the contiguity of regions located in tumor

region maps is because of chance. For both feature sets,

there is a general trend of increasing contiguity z-scores

in tumors with increasing NC. For stability scores (Figs.

4e, f), values ofþ 1 indicate perfect stability of cluster

results. Clustering using the AUC feature set results in

highly stable cluster centers when NC�4, whereas when

using the PCA feature set the cluster centers remain

highly stable when NC� 6, although less stable cluster

centers are observed when NC¼3. When NC> 6, a steady

deterioration in stability is seen for both feature sets.

ODD Method

AIC values suggest that NC> 6 gives only marginal
increases in GMM fit quality (for both feature sets), and
stability scores remain high when NC�6 for the PCA fea-
ture set, whereas for the AUC feature set stability only
remains high when NC� 4. The optimized feature set
and number of clusters for this data set was therefore
determined to be clustering the PCA feature set with
NC¼ 6.

Results from the ODD method are shown in Figures 5
and 6 and Supporting Figures S8 and S9.

Figure 5 shows tumor region maps from the ODD
method for the same four representative tumors shown
in Supporting Figure S3. Contiguous regions are located,
with the exception of a few voxels on the tumor periph-
ery, and tumors show a rough rim-core structure. Hetero-
geneous structures are located in approximately half of
the tumors, exemplified by Figures 5b, c. Region maps
have different cluster compositions depending on tumor
line: voxels in clusters 1 and 2 predominantly belong to
Calu6 tumors (694 U87 voxels, 8050 Calu6 voxels, 1:11.6
ratio) whereas voxels in clusters 4 and 6 are predomi-
nantly in U87 tumors (7180 U87 voxels, 1467 Calu6 vox-
els, 4.89:1 ratio).

Figure 6 shows mean within-cluster DCE and OE
DR1(t) enhancement curves defined using the ODD
method, with error bars of the standard error of the mean
plotted. Curves show distinct kinetics of enhancement
following Gd administration (Fig. 6a) and the oxygen-
switch (Fig. 6b). Cluster 1 enhances in neither DCE nor

FIG. 3. Feature maps for the representa-

tive U87 tumor shown in Supporting Figure
S3b. (a and b) Feature maps for the AUC

feature set. (c–f) Feature maps of PCA
weightings for the first four principal com-
ponents. Arrows highlight regions of

AUCDCE/AUCOE mismatch. There is struc-
tural similarity of (a) and (b) with (c) and

(d), respectively.
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OE, clusters 2 and 3 enhance only modestly in DCE, and

clusters 4–6 enhance strongly in both DCE and OE.

Regions with these characteristics have been previously

shown to correspond to necrotic, hypoxic, and well-per-

fused/well-oxygenated tumor tissue, respectively, in

multiple xenograft models (31). For our work, correlative

histology was not available, and caution must be taken

in assigning biological interpretations to clusters.

Comparison with Previous Method

Supporting Figure S10 shows assignment grids showing
how tumor voxels are classified using the ODD method
and TBM. Inspection of mean enhancement curves pro-
vided justification for concatenating clusters 2 and 3 into
a single group, and 4, 5, and 6 into another group. This
enabled further comparison of ODD methods with TBM.
Supporting Figure S11 shows a side-by-side comparison

FIG. 4. Evaluation metrics from GMM fits of the AUC and PCA feature sets with varying number of clusters (NC). (a and b) Akaike infor-

mation criterion (AIC). Neither curve shows a clear minimum, with lower values observed for higher numbers of clusters. (c and d) Conti-
guity z-scores. There are 16 z-scores for each NC value, one for each tumor. Most values lie above 3, indicating statistically significantly
greater contiguity in region maps than what would appear because of chance. (e and f) Stability scores. Each box contains NC times

100 cluster centers with a silhouette value calculated for each cluster center. Cluster center locations remain stable (located in similar
areas of the feature space with stability scores of close to þ1) for up to 4 clusters for AUC, and for up to 6 clusters for PCA.
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of tumor region maps created using both methods. The

majority of tumors show a strong visual concordance

between methods. Supporting Figure S12 shows propor-

tional agreement (w) and Cohen’s kappa (k) statistics,

quantifying the agreement between methods of categoriz-

ing tumor voxels. Looking at the group values in Sup-

porting Figure S12, both statistics show good agreement

between methods: w¼ 0.75 and k¼0.61. The low values

in tumors 3, 5, 14, and 15 correspond to cases where the

majority of voxels are classified into a single class using

one of the methods and so k gives artificially low values.

Supporting Figure S13 shows Bland-Altman plots for the

number of voxels in each of the three categories deter-

mined by both methods.

DISCUSSION

The current work presents a thorough investigation into

the application of data-led clustering methods to MRI

data designed to identify putatively hypoxic tumor tis-
sue, putting forward a combination of evaluation metrics
that enable objective methodological optimization. Our
results agree well with the previously published work
(31,32), however we demonstrate the ability of the data
to robustly support more than the three tissue classes
previously located, indicating that there may be further
information to exploit in the combination of DCE and
OE data if methods such as those we present here are
adopted.

Soft clustering methods (where clusters may overlap)

generally perform more robustly than hard clustering
methods (where clusters cannot overlap) under high lev-
els of noise and when data distributions are smoothly
varying. GMM was chosen as it is a well-known soft
clustering technique that gives a probabilistic assignment
of each voxel to each cluster, though the most probable
cluster for each voxel was used as a hard classification.
In this way, the final output is clear-cut and can be

FIG. 5. Results from the ODD method.

Tumor region maps for the two represen-
tative U87 tumors and two representative
Calu6 tumors shown in Supporting Figure

S3. Largely contiguous regions are
located, with rim-core structures present

in most tumors.

FIG. 6. Results from the ODD method. Mean within-cluster DR1(t) enhancement curves for DCE-MRI (a) and OE-MRI (b). Error bars

show standard error of the mean. Curves show distinct, intuitive kinetics of enhancement, with lack of overlap in the post-contrast
regions. Clusters 2 and 3 (light blue and green) show DCE-MRI enhancement with no OE-MRI enhancement, possibly linked with

hypoxia.
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easily associated with a physiological interpretation.
However, this can lead to classification errors in border-
line data lying between two clusters, but maintaining
high cluster assignment robustness is intrinsic to the
ODD method and should mitigate errors of this sort. The
probabilistic cluster assignment from GMM could be
maintained or an alternative soft clustering method (e.g.,
fuzzy c-means) used, which would avoid these errors.
This might provide insight into the overlap, or lack
thereof, of biological habitats in tumors, or at least allow
the identification of regions with poorly categorized
features.

It is far from trivial to select the most appropriate clus-
tering method, lending importance to our combination of
evaluation metrics. Contiguity z-scores (Figs. 4c, d)
inform us that transferring cluster assignments into
image space gives genuine structure, as opposed to the
random categorization of voxels. This suggests that
located tumor regions are based on biology, but does not
provide a strong basis for selecting the most appropriate
feature set or number of clusters. The absence of clear
minima in AIC values (Figs. 4a, b) is likely because of
the lack of distinct voxel groupings in feature space.
However, the shoulders in AIC curves suggest that we do
need at least six clusters to adequately fit the data. The
stability analysis (Figs. 4e, f) provides an objective mea-
sure of the number of clusters that can be reliably sup-
ported by these data. From these metrics, running GMM
clustering on the AUC feature set with four or fewer
clusters and the PCA feature set with six or fewer clus-
ters appeared to be optimal. Based on this, we selected
the PCA feature set with the most clusters that the data
could robustly support (and therefore more tissue clas-
ses), potentially providing more insight into the tumor
microenvironment and its heterogeneity. PCA also has
the advantage of requiring fewer a priori assumptions in
the analysis. We desire a high number of clusters to
identify features of potential importance and adequately
characterize tumor heterogeneity, while simultaneously
desiring high repeatability and reliability of our results,
which typically deteriorates as the number of clusters
increases. If greater than the optimum number of clusters
is used, the clustering is increasingly subject to random
errors in the data, and if fewer are used, the clustering
fails to account for potentially important information
contained in the data. The combination of evaluation
methods used in this study provides an objective mea-
sure of where to place this trade-off—selecting the high-
est number of stable clusters the data can support and
ensuring that significant regional contiguity exists in
tumor region maps.

A potential validation of this work that was not carried
out was a comparison of region maps with histologically
stained tumor sections. The tumors investigated were part
of a separate longitudinal radiotherapy study; all imaging
data in the current study is from the baseline, pre-
radiotherapy visit. Histological staining was acquired, but
treatment effects and significant tumor growth before exci-
sion (up to 14 days later) prevent any valid comparisons
being made with the imaging data used in the current
study. However, TBM has itself been histologically vali-
dated (pimonidazole staining correlating strongly with

perfused Oxy-R fraction (31)), and we demonstrate strong
agreement between the ODD method and TBM, cross-

validating both techniques. ODD results were necessarily
simplified (six classes combined into three) to enable
comparisons with TBM. A significant strength of this

work therefore lies in the finer distinction the ODD
method makes between tissue classes, but, in the absence
of ground truth histological data, we are unable to defini-

tively interpret the biological relevance of this distinction.

CONCLUSIONS

The development of a non-invasive, objective, and robust

tool for characterizing the tumor microenvironment is
necessitated by the heterogeneous nature of tumor tissue
and the push toward personalized medicine. Here, we

present a data-led methodology for classifying multi-
spectral tumor imaging data, alongside methods for opti-
mizing parameter choices. We apply our methods to a

cohort of DCE-MRI and OE-MRI preclinical tumor data,
demonstrating the ability of our methods to extract phys-
iologically distinct regions within tumors. Oxygenation

and perfusion related characteristics are successfully
spatially mapped in the tumors studied, with varying
degrees of intra-tumoral heterogeneity across the cohort.

We show that our methodology agrees well with a previ-
ously published method for locating hypoxia in tumors,
itself validated with correlative histology, and our meth-

ods identify a greater number of distinct tumor regions
than the previous method. Further work is required to
ascertain the biological significance of this result, and

future work will include the application of our methods
in human tumors, assessing the potential of combined
DCE/OE-MRI clustering in a clinical setting.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Fig. S1. Mean OE-MRI signal values from each tumor (blue circles), with
the fit of an exponentially time-varying baseline to pre-oxygen enhance-
ment time points shown, and extrapolated to the post contrast time points
(pink line).
Fig. S2. Mean OE-MRI DR1(t) values for each tumor, calculated without any
form of drift correction (blue circles) and with our drift correction (pink
circles).
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Fig. S3. Representative T2-weighted images of central slices through two
U87 tumors (a and b) and two Calu6 tumors (c and d), demonstrating
tumor anatomy and acquisition field-of-view. (a) An irregularly shaped
tumor with a hyper-intense region, possibly corresponding to edema. (c) A
tumor with an even more irregular, bi-lobular shape, but with comparatively
homogeneous signal intensities. (b) A largely homogeneous tumor with a
circular cross-section. (d) A tumor with a similar level of homogeneity but
with an elliptical cross-section.
Fig. S4. AUCDCE and PC1 (first principal component) feature maps for a
central slice through all 16 tumors. Note the similarity in structure in most
tumors between AUCDCE and PC1.
Fig. S5. AUCOE and PC2 (second principal component) feature maps for a
central slice through all 16 tumors. Note the similarity in structure in most
tumors between AUCOE and PC2.
Fig. S6. PC3 and PC4 (third and fourth principal component) feature maps
for a central slice through all 16 tumors.
Fig. S7. Two-dimensional histograms of the AUC and PCA feature sets
alongside Spearman’s q values, with the four-dimensional PCA feature set
split into its two-dimensional projections. The AUC feature set shows mod-
erate correlation between the inputs, whereas the PCA feature set shows
no strong correlation, indicating good separation of information between
the four components. Neither feature set shows clear, distinct separations
between voxel groupings, but we observe smooth changes in density of
the feature space distributions. All plots show a dense occupation of fea-
ture space around the origin (yellow histogram bins).
Fig. S8. Results from the ODD method. Cluster assignments in feature
space. Plots show two-dimensional projections of the PCA feature set, with

color-coded cluster assignments to voxels. Clusters 1 and 2 (dark and light
blue) show a large overlap, which describes the dense region around the
origin in feature space, with clusters 3, 4, and 6 (green, yellow, and brown)
showing much less overlap and characterizing the less dense regions of
feature space. Cluster 5 (red) represents a large, diffuse Gaussian distribu-
tion of voxels that do not appear to belong to any of the other clusters.
Fig. S9. Results from the ODD method. Tumor region maps for central sli-
ces of all tumors, with color-coded cluster assignments to voxels. Rough
rim-core structures are present in most tumors.
Fig. S10. Assignments grids showing how the previously published TBM
and our ODD method compare at assigning voxels to categories (top row).
After concatenating the six categories from ODD into three classes, the
bottom row shows assignment grids of TBM versus ODD (cat), with propor-
tional agreement (u) and Cohen’s kappa (j) statistics calculated.
Fig. S11. Side-by-side comparison of region maps from the previously
published TBM and from the optimized, data-driven method concatenated
into three classes (ODD [cat]).
Fig. S12. Proportional agreement (u) and Cohen’s kappa (j), calculated to
rate agreement between the previously published, TBM and the ODD
method. Values were calculated for individual tumors, the minimum,
median, and max value highlighted, and group statistics were calculated
for each tumor line and for the whole cohort.
Fig. S13. Bland-Altman plots for the number of voxels in each of the three
categories determined using the previously published TBM and using the
ODD method. For categories 1, 2, and 3, the bias in voxel categorization
(ODD 2 TBM) is 219.7, 1 115.6, and 295.9 voxels, corresponding to
(2)1.4%, 8.1%, and (2)6.8% of the mean tumor size (1419.2 voxels).
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