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Abstract: The photoelectrochemical properties of three metallofullerene-[12]cycloparaphenylene ([12]CPP)
supramolecular complexes of Sc3N@C78⊂[12]CPP, Sc3N@C80⊂[12]CPP, and Sc2C2@C82⊂[12]CPP were
studied. It was revealed that the photocurrent responses of these supramolecular complexes show
enhancement compared with those of pristine metallofullerenes, indicating the efficient photocurrent
generation and promoted charge carrier transport caused by the supramolecular interaction. The
results show that Sc2C2@C82 and Sc2C2@C82⊂[12]CPP have the strongest photocurrents. Then,
by comparing the photocurrent intensities of the metallofullerene-biphenyl derivates mixture and
the metallofullerene⊂[12]CPP complexes, it was demonstrated that the host–guest interaction is
the key factor promoting photocurrent enhancement. At the same time, by observing the micro-
scopic morphologies of pristine fullerenes and supramolecular complexes, it was found that the
construction of supramolecules helps to improve the morphology of metallofullerenes on FTO glass.
Additionally, their electrical conductivity in optoelectronic devices was tested, respectively, indicat-
ing that the construction of supramolecules facilitates the transport of charge carriers. This work
discloses the potential application of metallofullerene supramolecular complexes as photodetector
and photoelectronic materials.

Keywords: metallofullerene; cycloparaphenylene; supramolecular; photoelectrochemical; photocurrent

1. Introduction

Endohedral metallofullerenes have attracted great interest from scientists due to their
special applications in semiconductors and electronic devices with respect to their combin-
ing characters from fullerene cage and internal metal cluster [1,2]. Because of the electron
transfer from endohedral metal atoms to outer fullerene cage, the electronic properties of
metallofullerenes are changed drastically from those of empty fullerenes [3,4]. Metallo-
fullerenes have varied HOMO–LUMO gaps and unique photochemical properties [5,6];
therefore, metallofullerenes are potential nanomaterials with wide application in field-effect
transistors [7], photodetectors [8], photovoltaic devices [9], etc. For example, Kobayashi et al.
reported bimetal endohedral fullerene La2@C80 thin film as n-type field effect transistor [10].
Moreover, in 2017, Lu’s group discovered that Lu2@C82 nanorods have enhanced photo-
luminescence and optoelectronic properties [11]. It should be noted that the electronic
properties of metallofullerenes need to be improved due to the spherical form, which would
influence carrier mobility.
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Host–guest supramolecular construction is an effective method for modulating the
state and properties of metallofullerenes, as there are strong π–π interaction between
them [12]. For host molecules, functional macrocyclic molecules have always played a
very important role in the field of supramolecular chemistry [13]. Compared with other
host molecules, the cycloparaphenylene (CPP) carbon nanorings are very suitable for met-
allofullerenes, as their supramolecular structures have high stability [14]. For example,
our group has studied the paramagnetic properties of C80-based metallofullerenes within
[12]CPP, revealing the confinement effect on the metallofullerene spin modulation [15].
In 2019, Delius et al. successfully carried out the synthesis of a porphyrin–[10]CPP con-
jugate and studied its strong association with a range of fullerenes and demonstrated
that [10]CPP as a supramolecular junction enables efficient charge transport between a
porphyrin electron donor and unmodified fullerene electron acceptors [16]. These re-
sults, together with Yamago’s recent report on the thin-film conductivity of [10]CPP
and its alkoxy derivatives [17], imply that supramolecular complexes of [10]CPP and
fullerenes may be a useful addition to the toolbox of organic electronics. In addition,
Yang et al. studied present syntheses and characterizations of two novels CPP-like curved
nanographene that strongly bind with fullerene C60 to form photoconductive hetero-
junctions [18]. The results indicate that there is a fast photoinduced electron transfer
process in the supramolecular heterojunction. Recently, Zhao et al. constructed a double-
walled carbon nanoring supramolecular [6]CPP-[12]CPP by self-assembly and found that
[6]CPP⊂[12]CPP shows highly enhanced photoconductivity and photocurrent under light
irradiation compared with those of pristine monomers [19]. However, the optoelectronic
property of metallofullerenes within the [12]CPP supramolecular complex has not been
studied. Considering that the type of supramolecular system may change the molecular
energy levels [20], control the metallofullerene assembly [17], and consequently influence
the carrier mobility [8,18], therefore, it is significant to explore the optoelectronic property
of this new kind of supramolecular complex.

In this paper, Sc3N@C78, Sc3N@C80, and Sc2C2@C82 were selected to study the photo-
electrochemical property of their metallofullerene-[12]CPP supramolecular complexes. The
metallofullerene-[12]CPP film was prepared by spin coating on fluorine-doped tin dioxide
(FTO) glass as the working electrode, and the photoconductive measurement was per-
formed on an electrochemical system. The photocurrent responses of these supramolecular
complexes were compared.

2. Materials and Methods

Metallofullerene Sc3N@C78, Sc3N@C80 were synthesized by arc-discharge method.
First, the graphite powder and graphite rod were vacuum-dried at 100 ◦C for 12 h, and then
the graphite powder and Sc/Ni alloy were mixed uniformly in a mass ratio of 1:3 and filled
into hollow graphite rods. The graphite rods were then placed in a VD-250 vacuum arc
furnace and energized by arc discharge under a pressure of 180 Torr He and 20 Torr N2. The
ashes obtained after cooling were Soxhlet extracted with toluene solvent for 24 h to obtain
a toluene solution of fullerenes. The synthesis method of Sc2C2@C82 is similar to that of
Sc3N@C78 and Sc3N@C80; the difference is that 200 torr He needs to be added when adding
gas, and N2 is not required. Then, pure metallofullerenes were isolated and purified by
high performance liquid chromatography (HPLC). The [12]CPP, biphenyl, p−terphenyl,
and p−quaterphenyl was purchased from J&K.

Metallofullerene solution with a concentration of 4 × 10−5 M was prepared in o-DCB
solution. The complexes of Sc3N@C78, Sc3N@C80, and Sc2C2@C82 with [12]CPP were mixed
with a 1:1 mole ratio. For the film preparation of metallofullerene complex, 10 µL sample
was dropped to the FTO glass, and the spin-coating was carried out with a spin-speed of
1800 rpm for 50 s.

UV–vis absorption spectra were acquired from a HITACHI UV/VIS/NIR Spectrometer UH4150.
Fluorescence quenching experiments were recorded on a fluorescence spectrometer

(F-7100, HITACHI) with excitation at 350 nm in toluene solution. Method: To toluene
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solution of (4.0 × 10−7 M, 2 mL) [12]CPP was added 20 µL of metallofullerene samples
(4.0 × 10−5 M).

AFM experiments were performed using a Multimode VIII atomic force microscopy
(Bruker Inc., Billerica, MA, USA). SEM is a module that comes with the AFM device. The
measurements are under room temperature and atmospheric pressure.

We prepared 100 µL (4 × 10−3 M) samples of Sc2C2@C82 and Sc2C2@C82⊂[12]CPP,
respectively. FTO substrates were cleaned ultrasonically several times in sequence baths
of acetone, ethyl alcohol, and deionized water for 20 min. The solution was quickly
spin-coated on an FTO glass electrode (100 µL, 1800 rpm min−1) and aged for 50 s at the
temperature of 80 ◦C. The model of the spin coater is WS-650MZ-23NPPB, manufactured by
Laurell Technologies. The photocurrent measurement was carried out using the CHI650E
electrochemical workstation. The device of FTO Sc2C2@C82 and Sc2C2@C82⊂[12]CPP was
conducted to measure the I–V curve by the ORIEL IQE-200 system with an AM 1.5 solar
spectrum filter and a Keithley 2420 source meter.

Geometry optimization and excitation states were all calculated at the level of B3LYP/6-
31G* and realized by DFT. The Gaussian 16 (A.03) program package was employed for all
quantum chemistry calculations.

3. Results and Discussion

Firstly, we synthesized Sc3N@C78-D5h, Sc3N@C80-Ih, and Sc2C2@C82-Cs synthesized by
the arc-discharge method and isolated by HPLC. Metallofullerene and [12]CPP mildly were
mixed with 1:1 mole ratio at room temperature to obtain the supramolecular complexes
of Sc3N@C78⊂[12]CPP, Sc3N@C80⊂[12]CPP, and Sc2C2@C82⊂[12]CPP. Figure 1 shows the
theoretically optimized structure of these complexes. MALDI-TOF mass spectrometry
demonstrated stable formation of the three complexes [21–23]. In Figure S1a, the mass
peak of 1998 represents the molecular ion peak of Sc3N@C78⊂[12]CPP, and the mass
peak of 1085 corresponds to the fragments of Sc3N@C78. In Figure S1b, the mass peak
of 2022 represents the molecular ion peak of Sc3N@C80⊂[12]CPP, and the mass peak of
1109 corresponds to the fragments of Sc3N@C80. In addition, in Figure S1c, the mass peak
of 2011 represents the molecular ion peak of Sc2C2@C82⊂[12]CPP, and the mass peak of
1098 corresponds to the fragments of Sc2C2@C82. Subsequently, we performed UV-near
infrared visible (UV-Vis) characterization of Sc3N@C78, Sc3N@C80, and Sc2C2@C82 and
their respective complexes with [12]CPP (Figure S2).
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Figure 1. Optimized structures of (a) Sc3N@C78⊂[12]CPP, (b) Sc3N@C80⊂[12]CPP, and
(c) Sc2C2@C82⊂[12]CPP, respectively.

The film was firstly prepared by spin coating on FTO glass as the working elec-
trode (Scheme 1), then the photoelectrochemical experiments of the three pristine metallo-
fullerenes were carried out.
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Scheme 1. Schematic diagram of supramolecular thin-film preparation and photocurrent measurement.

It can be seen from Figure 2a that the metallofullerenes with the same molar concentra-
tion were irradiated by natural light for 20 s every 20 s by the 1 V bias voltage, and it was
found that the corresponding responses were generated. It can be clearly seen that immedi-
ately after irradiation, a stable anode photocurrent was generated and decreased without
irradiation. These processes can be repeated reversibly multiple times, which indicate that
surface active film is sufficiently stable during light exposure. The light response intensity
of Sc2C2@C82 was the highest at about 0.2 µA (Figure 2b), and those of Sc3N@C78 and
Sc3N@C80 were around 0.1 µA, see Figure 2a, revealing the metallofullerene-dependent
photoconductive property [3,24]. These results show the high light absorption ability of
Sc2C2@C82, as revealed in its absorption of the UV-Vis-NIR spectrum (Figure S3). It can be
seen that Sc2C2@C82 still has an absorption peak at a wavelength of 1200 nm, indicating
that Sc2C2@C82 can produce energy-level transitions under low-energy illumination.
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Figure 2. (a) Photocurrent responses of spin coating films of Sc3N@C78, Sc3N@C80, and Sc2C2@C82.
(b) Photocurrent responses of spin coating films of Sc3N@C78⊂[12]CPP, Sc3N@C80⊂[12]CPP, and
Sc2C2@C82⊂[12]CPP. Conditions: 0.5 M Na2SO4 electrolyte solution under 1 V bias voltage.

Then, the photoelectrochemical experiments of three metallofullerenes-[12]CPP com-
plexes were studied, as shown in Figure 2b. The results show that the photocurrent
responses of the metallofullerenes-[12]CPP complexes show an enhancement as compared
with pristine metallofullerenes, indicating the efficient photocurrent generation and pro-
moted charge carrier transport processes caused by the host–guest interaction. Notably, the
Sc2C2@C82⊂[12]CPP still had the strongest light response intensity (0.32 µA) compared to
those of Sc3N@C78⊂[12]CPP and Sc3N@C80⊂[12]CPP. Different fullerenes and CPPs have
different host–guest interactions, which may be one of the reasons for this difference [20].

The HOMO–LUMO energy gaps of metallofullerene Sc3N@C78 (2.269 eV), Sc3N@C80
(2.529 eV), Sc2C2@C82 (1.394 eV) (Figure 3a) and complex Sc3N@C78⊂[12]CPP (2.273 eV),



Nanomaterials 2022, 12, 1408 5 of 10

Sc3N@C80⊂[12]CPP (2.538 eV), and Sc2C2@C82⊂[12]CPP (1.406 eV) (Figure 3b) were
calculated from the edges of their absorption bands (Figure 3). The HOMO–LUMO energy
gap is often used to predict the electrical conductivity of a molecule [25]. It is generally
considered that the smaller the HOMO–LUMO gap, the better the electrical conductivity.
It can be seen that the pristine Sc2C2@C82 and complex Sc2C2@C82⊂[12]CPP have the
smallest gap, respectively, indicating that they have the best electrical conductivity and
thus the strongest photocurrent. Additionally, we note that the difference in the gap
between fullerenes and complexes is not significant. The molecular orbitals were little
affected for metallofullerene and CPP upon complexation. The calculation results indicate
that no significant orbital interactions took place between fullerene and [12]CPP.
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Figure 3. Molecular orbital diagrams for (a) Sc3N@C78, Sc3N@C80 and Sc2C2@C82;
(b) Sc3N@C78⊂[12]CPP, Sc3N@C80⊂[12]CPP, and Sc2C2@C82⊂[12]CPP calculated at the
B3LYP/6−31G* level of theory.

It is worth noting that our previous study found that the host–guest interactions
between different carbon cages and CPP were different [19]. It was found by calculation that
the binding energy of Sc2C2@C82⊂[12]CPP was the strongest at about –48.37 Kcal·mol−1

(Table S1). Therefore, we have reason to believe that the difference in this interaction is one
of the factors affecting the photocurrent signal.

[12]CPP has excellent fluorescence properties, and fullerenes with different sizes have
different quenching abilities than [12]CPP [23]. We used these three metallofullerenes
with the same concentration to quench the fluorescence of [12]CPP and obtained different
fluorescence quenching efficiencies; see Figure 4. After comparison, it can be seen that
Sc2C2@C82 has the best quenching effect on [12]CPP—about 57.7%. Combined with the
conclusions given in the literature [23], it shows that Sc2C2@C82 has stronger host–guest
interaction with [12]CPP and that this π-conjugated host–guest interaction enhanced action
helps to facilitate charge carrier transfer, resulting in improved photocurrent signal [18].
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In addition, we compared the photoconductive properties of Sc3N@C78, Sc3N@C80,
and Sc2C2@C82 complexed with biphenyl, p−terphenyl, p−quaterphenyl, and [12]CPP to
further disclose the effect of the host–guest interaction on the photocurrent response, as
shown in Figure 5. The metallofullerenes maintain the same molar concentration for all of
the photoelectrochemical experiments. The small aromatic molecules were mixed with three
metallofullerene solutions at certain concentration to ensure that they had the same number
of benzene rings with [12]CPP. Firstly, the photoconductive properties of the pristine
biphenyl, p−terphenyl, and p−quaterphenyl were measured (Figure S5). The photocurrent
responses of the three small aromatic molecules were similar. Subsequently, after comparing
the metallofullerenes complexed with three small aromatic molecules and [12]CPP, it was
found that the small aromatic molecules did not increase the photocurrent intensity of
metallofullerenes, but the photocurrent responses of the supramolecular complexes with
[12]CPP became stronger. At the same time, we characterized the UV-Vis of these biphenyls
molecules and metallofullerene mixtures, and it can also be seen that the simple mixture
of biphenyls and metallofullerene had not conjugated each other, as shown in Figure S6.
These results further reveal that biphenyl derivatives have little effect on the photocurrent
of fullerenes and that the host–guest interaction after the recombination of fullerenes and
[12]CPP is the main factor for the improvement in the photocurrent response of fullerenes.
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In the above experiments, the light was switched on and off six times for about 240 s,
and the photocurrent was tested. It can be seen that the photocurrent signal was stable, so
the FTO film had sufficient stability [19]. In detail, the surface of the metallofullerene com-
plex films were characterized by SEM and AFM. Figure 6 shows that the film depth values
of Sc3N@C78⊂[12]CPP, Sc3N@C80⊂[12]CPP and Sc2C2@C82⊂[12]CPP were about −79 to
62.3 nm, −80.1 to 62.3 nm, and −81.3 to 62.8 nm, respectively. The three supramolecular
complex films exhibited uniform and flat surfaces. It should be noted that the surfaces of
the pristine metallofullerenes have obvious aggregation (Figure S4). Therefore, the host
of [12]CPP can improve the metallofullerene assembly on the FTO glass surface, and then
enhance the carrier mobility of supramolecular complexes. In recent years, Wan’s team has
achieved microscale superlubricity of fullerene derivatives by constructing regular host–
guest assembly structures, proving that the construction of host–guests can help reduce the
friction coefficient of fullerenes and improve the nanomolecular planar morphology [26].
Similar results were also reported in the STM images of Y3N@C80⊂[12]CPP on Au(111)
surface, in which the Y3N@C80⊂[12]CPP randomly absorb on the surface without aggrega-
tion, as the [12]CPP nanoring can change the weak van der Waals forces and influence the
self-assembly character of Y3N@C80 [15].
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Figure 6. SEM images of (a) Sc3N@C78⊂[12]CPP, (b) Sc3N@C80⊂[12]CPP, and
(c) Sc2C2@C82⊂[12]CPP complexes after spin coating on FTO glass, respectively. AFM im-
ages of (d) Sc3N@C78⊂[12]CPP, (e) Sc3N@C80⊂[12]CPP, and (f) Sc2C2@C82⊂[12]CPP complexes after
spin coating on FTO glass, respectively.
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The supramolecular formation will change the metallofullerene assembly on the FTO
glass surface, and then enhance the carrier mobility of supramolecular complexes. The I–V
measurements for Sc2C2@C80, Sc2C2@C80@[12]CPP, and Sc2C2@C80-biphenyl derivatives
mixture were then conducted. A device with a structure of FTO/samples/Ag was designed
to measure the I–V curves with a standard xenon-lamp-based solar simulator [19]. As
shown in Figure 7, a strong linear relationship between the current and the applied voltage
ranging from −1 V to 1 V was recorded, indicating an ohmic behavior of the electrical
conduction. By comparing the line slopes, it can be seen that the Sc2C2@C82⊂[12]CPP
has a greater conductivity than the pristine Sc2C2@C82 and Sc2C2@C82-biphenyl deriva-
tives mixtures. The shape and functional group complementarity between two electronic
components form a robust host–guest complex that can be readily processed to generate
a superior electronic material. This indicates that electronic communication between aro-
matic surfaces is particularly strong due to their tight supramolecular assembly [27]. There
are many reports in the literature on the enhancement of the photocurrent performance
of materials by improving the structure of thin films. Suppressing the impurity scattering
associated with the structural disorder therefore increased the carrier mobility, which led
to the significant increase in photocurrent observed in the photodetector [28–30]. Therefore,
it is plausible that this improved the planar self-assembly behavior of the material by
constructing supramolecules to influence the photocurrent of the material. This suggests
their potential application in the field of photodetectors and optoelectronic devices.
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4. Conclusions

In conclusion, the photoelectrochemical property of three metallofullerene⊂[12]CPP
supramolecular complexes of Sc3N@C78⊂[12]CPP, Sc3N@C80⊂[12]CPP, and Sc2C2@C82⊂[12]CPP
were studied. The results show that the photocurrent responses of the metallofullerenes-
[12]CPP complexes show an enhancement as compared with pristine metallofullerenes
due to the supramolecular interaction. In addition, the metallofullerene and benzene
series mixtures were also comparatively investigated to illustrate the promoting effect
of host–guest interaction on the photocurrent generation in metallofullerene. Through a
micro-morphological characterization, it can be seen that the formation of supramolecules
on the FTO glass improves the assembly morphology of the fullerene and that the I–V curve
test proves that the composite has stronger electrical conductivity. These results indicate the
efficient photocurrent generation and promoted charge carrier transport processes by the
supramolecular structure. Consequently, this host–guest effect promotes the photocurrent



Nanomaterials 2022, 12, 1408 9 of 10

responses of the metallofullerenes supramolecular complexes, illustrating their potential
application in photodetector and photoelectronic devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12091408/s1, Figure S1: Corresponding MALDI-TOF mass
spectra of prepared (a) Sc3N@C78@[12]CPP, (b) Sc3N@C80@[12]CPP, and (c) Sc2C2@C82@[12]CPP,
respectively, Figure S2: UV-Vis-NIR absorption spectra of (a) Sc3N@C78 and Sc3N@C78⊂[12]CPP,
(b) Sc3N@C80 and Sc3N@C80⊂[12]CPP, and (c) Sc2C2@C82 and Sc2C2@C82⊂[12]CPP, respectively,
Figure S3: UV-vis-NIR absorption spectra of (a) Sc3N@C78, (b) Sc3N@C80, and (c) Sc2C2@C82, re-
spectively. The insets show the enlarged spectra around onset wavelength, Figure S4: SEM image
of Sc2C2@C82, Figure S5: Photocurrent response intensity of metallofullerenes, biphenyl, p−terphenyl,
p−quaterphenyl, and [12]CPP on FTO glass, Figure S6: UV-Vis-NIR spectra of (a)Sc3N@C78, (b) Sc3N@C80,
and (c) Sc2C2@C82 with biphenyl, p−terphenyl, p−quaterphenyl, and [12]CPP, respectively, Table S1:
The optimized energies of complex EMFs⊂[12]CPP, EMFs, and [12]CPP. Reference [31] is cited in the
supplementary materials.
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