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The circadian
stimulus-oscillator model:
Improvements to Kronauer’s
model of the human circadian
pacemaker
Mark S. Rea*, Rohan Nagare, Andrew Bierman and
Mariana G. Figueiro

Light and Health Research Center, Department of Population Health Science and Policy, Icahn
School of Medicine at Mount Sinai, New York, NY, United States

Modeling how patterns of light and dark affect circadian phase is important

clinically and organizationally (e.g., the military) because circadian disruption

can compromise health and performance. Limit-cycle oscillator models in

various forms have been used to characterize phase changes to a limited

set of light interventions. We approached the analysis of the van der Pol

oscillator-based model proposed by Kronauer and colleagues in 1999 and

2000 (Kronauer99) using a well-established framework from experimental

psychology whereby the stimulus (S) acts on the organism (O) to produce a

response (R). Within that framework, using four independent data sets utilizing

calibrated personal light measurements, we conducted a serial analysis of

the factors in the Kronauer99 model that could affect prediction accuracy

characterized by changes in dim-light melatonin onset. Prediction uncertainty

was slightly greater than 1 h for the new data sets using the original

Kronauer99 model. The revised model described here reduced prediction

uncertainty for these same data sets by roughly half.
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Introduction

The timing of our behavior and physiology is regulated by internal clock
mechanisms. These various rhythmic behavioral (e.g., sleep) and physiological (e.g.,
cortisol) responses will cycle at approximately 24 h and are known as circadian
(approximately daily) rhythms. These rhythms are, in part, regulated by different
peripheral clocks in various organs or neural structures. These peripheral clocks each
have a different intrinsic period and would be, therefore, asynchronous without a master
clock that orchestrates them all so that our behavior and physiology work in concert.
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Indeed, the master clock located in the suprachiasmatic nuclei
(SCN) sends neural signals to many of these peripheral clocks
which in turn initiate their own neural or hormonal signals that
are received by other organs or neural structures (Heyde and
Oster, 2019).

For instance, the phase changes in the core body
temperature (CBT) are likely modulated by a rhythmic input
from the SCN acting upon the thermoregulatory centers within
the hypothalamus, in turn modulating the set point and altering
the thresholds for sweating and cutaneous vasodilatation
(Krauchi, 2002). In humans, a circadian rhythm of heat loss
from the distal limbs is evident, wherein the daily profiles of
skin temperature and blood flow in these regions peak in the
late evening before gradually declining to reach minima in the
morning (Figure 1; Aschoff et al., 1972; Krauchi and Wirz-
Justice, 1994). Similarly, the SCN closely regulates melatonin
synthesis by the pineal gland (Arendt, 1995). Melatonin levels
are high during the night and low during the day in both
nocturnal and diurnal animals (see Figure 1). Melatonin down-
regulation acts as an extension of the master clock, signaling
circadian phase (Lewy, 1999b; Lewy et al., 1999).

This orchestration of peripheral clocks by the SCN enables
us to perform complicated functions at the correct, coordinated
times. Indeed, these clocks are necessary for survival. However,
without some consistent, repetitive external timing stimulus, or
zeitgeber, the SCN would “free run” and every person in society
would perform their behavioral and physiological functions at
different times. Prey and predators would be unpredictably
available, as would reproductive partners. Indeed, without
synchronized master clocks, it would be difficult for us to survive
as a species. The primary zeitgeber for all terrestrial species is
sunrise and sunset, that is, the natural 24-h light-dark cycle.

The intrinsic period of the SCN varies across individuals
(Duffy et al., 2011). For humans spending most of their
time outdoors, these various intrinsic periods will be naturally
synchronized by the 24-h light-dark cycle entering the eyes.
Indeed, a robust, 24-h light-dark cycle is the primary zeitgeber
for human master clocks (Czeisler and Klerman, 1999). For
humans who do not spend most of their time outdoors—that is,
for nearly 90% of us (Klepeis et al., 2001)—light-dark exposure
patterns can vary considerably, thus leading to disrupted
behavior and physiology that can be asynchronous with other
people in the same location. Modeling how light and dark affect
circadian timing, particularly irregular or aperiodic patterns of
light and dark, is important clinically and organizationally (e.g.,
the military) because “circadian disruption” can compromise
health and performance.

To model changes in circadian phase, it is necessary to
quantitatively address three domains. First, the light stimulus
(S) for regulating the timing, or phase of the master clock
must be defined. The master clock in humans, itself, does not
receive direct light stimulation. The actual neural stimulus to
the master clock must be processed by the retinae, converting

photons into neural signals that are then conducted to the
SCN via the retinohypothalamic tract (RHT). The retina is a
complicated structure, combining photoreceptor responses into
different neural pathways, one of which reaches the SCN. Thus,
a model of retinal phototransduction will aid in a more accurate
model of the stimulus (S) as it affects the master clock.

Second, it is important that the phase response (R) of
the SCN to the light stimulus is measured. Since, however, it
is not possible to record the human SCN responses in situ,
we must rely on downstream measures of circadian phase,
such as changes in dim light melatonin onset (1 DLMO) or
changes in minimum core body temperature (1CBTmin) (Duffy
et al., 1999; Benloucif et al., 2005). To have a more accurate
estimate of the SCN phase response, other collateral inputs to
these downstream measures must be considered. Ideally, these
collateral inputs can be controlled or eliminated experimentally,
but this is not always possible, particularly if light on the retina
affects the phase response through a channel distinct from that
which stimulates the master clock.

Between the stimulus and response is the organism’s (O)
clock mechanism, which is the central focus of the present
modeling exercise. Specifically, we have examined how different
models of O affect the predicted relationship between S and R.
Parsimony was one of our guiding principles in developing a
model of O, eschewing “curve-fitting” parameters that might
be used to produce incrementally better predictions. Another
principle is convergence with known neurophysiology wherever
possible, again eschewing “curve-fitting” parameters that cannot
be linked to a known mechanism or neural structure. Naturally
too, the uncertainties, both random and systematic, associated
with measurements of both the S and the R in the various studies
need to be considered when modeling the clock mechanism.

Characterizing the stimulus

For an empirical assessment of predicted phase changes by
the different models of the master clock, it is necessary to define
the spectral and absolute sensitivities of the human retina to
light as it signals photic information to the SCN. Surprisingly,
however, little attention has been given to these critical stimulus
aspects when evaluating the predictive capabilities of phase
response models. A valuable characterization of the spectral
and absolute sensitivities of the circadian phototransduction
circuit in the human retina as it stimulates the SCN, both
mathematically (Rea et al., 2021a) and neurophysiologically
(Rea et al., 2021b), is provided by Rea et al.

In terms of spectral sensitivity, it has been shown that the
photopic luminous efficiency function [V(λ)] used to define
“light” in commercial lighting is inappropriate for characterizing
“light” for the circadian system (Tekieh et al., 2020). V(λ)
represents the combined action spectrum of the middle-
wavelength (M) cone sensitivity and the long-wavelength (L)
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FIGURE 1

Biomarker 24 h profiles (normalized) for melatonin, cortisol, and alpha amylase as measured by Figueiro and Rea (2010) under constant dark
conditions. The biomarker profile for core body temperature (CBT) adapted from Rüger et al. (2005). CBTmin = minimum core body
temperature; DLMO = dim light melatonin onset.

cone sensitivity of the human macula, peaking at 555 nm.
Brainard et al. (2001) and Thapan et al. (2001) independently
showed that the peak spectral sensitivity of the circadian system,
as measured by acute melatonin suppression is at or near
460 nm. There is no single photoreceptor that peaks at 460 nm
as shown, with V(λ), in Figure 2A. Of particular note in
this regard, the intrinsically photosensitive retinal ganglion
cells (ipRGCs; Berson et al., 2002), the axons which form the
RHT connecting the retina to the SCN, cannot account for
the peak spectral sensitivity at 460 nm because the in vivo
ipRGC photopigment, melanopsin (Provencio et al., 1998),
exhibits an action spectrum peaking at or near 490 nm (after
being filtered by the crystalline lens). Rea et al. (2021a,b)
utilized all five retinal photoreceptors, together with a neural
circuit consistent with orthodox retinal neurophysiology, to
provide an more accurate, but non-linear characterization of
the spectral sensitivity of the circadian system. Importantly, the
non-linear aspects of the model requires different responses
by the circadian phototransduction circuit in the retina for
polychromatic sources than for narrowband light sources, like
those employed by Brainard et al. (2001) and Thapan et al.
(2001). Model predictions of spectral sensitivity at one scotopic
(rod spectral sensitivity) light level for both narrowband and
polychromatic sources are shown in Figure 2A.

Several other aspects of the modeled spectral sensitivity
are worth noting. First, the blue versus yellow (b-y) spectral
opponent mechanism, underlying one channel of human color
vision, is also an important element of the modeled retinal
circadian phototransduction circuit. This spectral opponent
mechanism results in a two-state model, one state for “cool”
sources where the spectral power distribution of the source
results in a channel response of b> y, and the other for “warm”
sources where the same channel response is b ≤ y. Thus, there
are two spectral sensitivity functions for polychromatic sources
shown in Figure 2A. Second, subadditivity is a characteristic
of the circadian phototransduction circuit for “cool” sources
as illustrated by the negative lobe in Figure 2A. For example,
the response of the circuit to a narrowband light source of
460 nm will be reduced if a 530 nm narrowband light source
is added to the photic stimulus. Subadditivity, which has been
shown in several studies (Figueiro et al., 2004, 2005, 2008;
Lee et al., 2017) is a direct consequence of the response by
the b-y spectral opponent mechanism where adding a “yellow”
light to a “blue” light can make the light visually appear less
bright and achromatic (neither blue nor yellow). Equation A1.1
from Supplementary Appendix 1 mathematically describes
circadian-effective light (CLA 2.0) based upon the modeled
spectral sensitivity of the human circadian phototransduction
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FIGURE 2

(A) The relative sensitivity of different narrowband light sources for suppressing nocturnal melatonin from Brainard et al. (2001) and
Thapan et al. (2001). Also shown are the predictions from the two-state circadian phototransduction model (Eq. A1.1 from
Supplementary Appendix 1), at 300 scotopic lux on the retina (Rea et al., 2021a,b). (B) The absolute sensitivity for the human circadian
system as characterized by light-induced nocturnal melatonin suppression.

circuit, which includes the b-y spectral opponent mechanism
shared with the visual system.

In terms of absolute sensitivity, humans have a higher
threshold for photic stimulus activating the SCN than nocturnal
mammals. To model this behavior, Rea et al. (2021a,b)
incorporated a known retinal mechanism called shunting
inhibition (Paulus and Rothwell, 2016). The high threshold
results from rod activation of a specific type of amacrine cell.
The modeled electrical shunt limits direct depolarization of the
ipRGC in response to photon absorption and, thereby, from
sending any neural signals to the SCN. In contrast, rods provide
direct input to the ipRGC in nocturnal rodents, resulting in
high sensitivity to light of the circadian phototransduction
circuit (Bullough et al., 2005). Another feature of the model
is the compression of neural response to light at high levels.
Figure 2B shows the model predictions for different light levels,
ranging from outdoors at night, to residential interiors, to
commercial interiors, to outdoors during the day as a function
of optical radiation spectrally weighted by CLA 2.0. Equation
A1.2 in Supplementary Appendix 1 mathematically describes
the circadian stimulus (CS) to the human SCN.

Most pacemaker models use photopic illuminance (lux)
as input (S). In experiments where only one light source
is used, inaccurate characterization of spectral sensitivity is
not important because the relative effectiveness of different
light sources is irrelevant. Thus, only the amount of light
needed to stimulate the pacemaker is relevant, irrespective of
the units used to characterize the photic stimulus. Even for
those experiments that used different “white” polychromatic
lights generated by commercial light sources, the error in
characterizing the stimulus introduced by V(λ) is small,
particularly when the amount of light is quite large with respect
to dim baseline conditions. In other words, where “white” lights

are used differences in their relative spectral power distribution
are less important than differences in their absolute spectral
power distribution. Where narrowband light sources are used,
however, erroneous characterization of the spectral sensitivity
of the system can lead to larger errors. For example, the efficacy
of a “blue” light for stimulating the SCN can be several orders
of magnitude greater than that of a “red” light of the same
photopic illuminance at the eye. For the present discussion
of different pacemaker models, a direct comparison is made
between spectrally weighting the photic stimuli in terms of CLA

2.0, the spectral sensitivity of the circadian phototransduction
mechanism in the eye, and in terms of V(λ), the combined
spectral sensitivity of the M- and L-cones.

Nearly all pacemaker models have found it necessary
to introduce a function that compresses the raw spectrally
weighted irradiance, usually photopic illuminance, as the S
input. As shown in Figure 2B, CS is a biophysically grounded
compressive function of spectrally weighted irradiance, CLA 2.0.
Thus, a separate, arbitrary compressive function of spectrally
weighted irradiance [e.g., V(λ) or CLA] is obviated. Because
CLA 2.0 and CS are grounded in the neurophysiology of the
retina, these characterizations of the photic stimulus (S) to the
pacemaker (O) are inherently better than a pacemaker model
that utilizes an arbitrary compressive function for photopic
illuminance or even for irradiance spectrally weighted by a
different function such as CLA.

Characterizing the response

The daily rhythm of melatonin concentration is currently
the most acceptable marker of circadian phase and is widely
used because it can be reliably assayed in blood, saliva, or
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urine (Refinetti, 2016). Dim light melatonin onset (DLMO)
usually gets precedence over other circadian phase markers
because it exhibits relatively greater robustness in the wake
of various external influences (Lewy, 1999a). For instance, too
much carbohydrate intake can significantly affect CBT and heart
rate rhythms (Krauchi et al., 2002). Inherent changes to CBT
are further essential to trigger master clock mediated immune
response to any external threats that may compromise immune
health (Coiffard et al., 2021). Cortisol and CBT parameters can
also be masked by sleep, stress, and activity (Lewy et al., 1999).
On the other hand, melatonin concentration and secretion
remain relatively uninfluenced by these factors (Mirick and
Davis, 2008). This also accords greater reliability for melatonin,
over other circadian markers, to track circadian phase position.

Characterizing the master clock

Preliminary comments
A major goal of any model is to predict data that are

not part of the model development. However, the accuracy
of model predictions is not isolated to the master clock (O)
alone. Since all the pacemaker models in the literature have
used photopic illuminance as the photic stimulus (S), there is
likely some inherent error in the prediction accuracy. Similarly,
there are several phase markers to characterize the response
(R) of the master clock. Some are more fraught with sources
of error (e.g., minimum core body temperature [CBTmin]) than
others (DLMO), but no single, downstream outcome measure is
without uncertainty. Therefore, to compare model predictions,
it is necessary to rely on accuracy metrics that reflect not just the
error associated with the model (O), but with the stimulus (S)
and the response (R) as well.

A variety of metrics can be used to assess the accuracy of
S-O-R model predictions, but two of particular importance,
and utilized here, when possible, are (1) mean absolute error
(MAE), which characterizes the variance in the actual values
with respect to the modeled values and (2) the amount of data
within an accuracy criterion. Regarding the latter metric, an
accuracy criterion of 1 h was chosen, reflecting the current state
of model development; no model to date has been able to predict
all data within an accuracy criterion of 30 min, and all models
have shown to predict all data within an accuracy criterion of 3 h.

Mathematical models to predict circadian
phase from personal light exposure

Limit-cycle oscillator models of O in various forms have
been used to characterize phase changes to a limited set of light
interventions. As detailed in Supplementary Appendix 2, the
pioneering work from Harvard University toward the end of
the last century examining the effects of amount, timing, and
duration of light exposure on both phase and amplitude of
the circadian clock laid the foundation for predicting circadian

phase using a van der Pol oscillator with higher order non-
linearities (Jewett et al., 1999; Kronauer et al., 1999, 2000).
The initial direct-drive pacemaker models (Jewett and Kronauer,
1998), wherein the S exerts a direct influence on the state
variables of the oscillator, could only accurately describe the
response of the human circadian system to extended (4–8 h)
bright (∼10,000 lux) light stimuli. Kronauer et al. (1999, 2000)
revised their original van der Pol oscillator (Kronauer, 1990)
with the introduction of a dynamic stimulus processor (Process
L) that intervenes between the S and its effect on the self-
sustaining limit-cycle oscillator (Process P), to allow predictions
of R without limiting predictions to the lighting conditions from
the original experiments by Jewett et al. (1994, 1997), Boivin
et al. (1996), Klerman et al. (1996), and Jewett and Kronauer
(1998). Their model, first published in 1999 and supplemented
in 2000, will be subsequently referred to as Kronauer99.

A simpler cubic model with the van der Pol oscillator was
alternatively proposed by Forger et al. (1999) (Forger99). The
Forger99 framework included the Process L from Kronauer99,
and also the sensitivity modulator within the pacemaker
framework, to characterize how the current phase of the
circadian oscillator could affect its sensitivity to the photic drive
emanating from Process L. Photopic illuminance was used to
characterize the photic stimulus (S). Experimental data from the
human phase response curve (PRC) experiment by Khalsa et al.
(1997) involving 21 healthy adult subjects were used to assess
the prediction accuracy of the Forger99 model. Briefly, Khalsa
et al. (1997) assessed change in phase, pre- and post-stimulus,
of the plasma melatonin rhythm (onset, offset, and mid-point)
in healthy entrained adults over the course of two 27- to
65-h constant-routine (CR) dim-light protocols. Pre-stimulus
CR protocol was followed by exposure to the experimental
photic stimulus (three ∼5,000–10,000 lx bright white light
pulses delivered via fluorescent lamps) over the course of three
successive days, centered (length ∼ 6 h) around the CBTmin.
While predicting the circadian phase changes for Khalsa et al.
(1997) data, the original Kronauer99 model and the Forger99
model reported an MAE of 0.67 and 0.77 h, respectively.

Prediction accuracy for the Forger99 model and the
Kronauer99 model has also been compared using independent
data sets. Recently, for an independent data set involving 7 days
of ambulatory light data collected in 27 shift workers with high
levels of circadian disruption, Huang et al. (2021) compared
and reported similar prediction accuracy (MAE ≈ 1 h) for both
the Kronauer99 model (error < 1 h in 60% subjects) and the
Forger99 model (error < 1 h in 50% subjects). It is, however,
important to note that the light sensing device in Huang
et al. (2021) study was first, located on the wrist, which has
been shown to be a less accurate representation of the corneal
stimuli (Figueiro et al., 2013), and second, the light sensing
devices lacked unique calibration for each device, leading to
poor inter-device consistency of measurement. Figueiro et al.
(2013) reported as much as 20% measurement variability for
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six commercially available devices (Actiwatch Spectrum). Using
three independent data sets utilizing calibrated circadian light
sensing devices (see section “S and R” for details), we also
compared the accuracy in predicting circadian phase for the
two models (Supplementary Appendix 3). It was found that
the average MAE of 1.07 h in predicting 1 DLMO using the
original Kronauer99 model was quite comparable to the average
MAE of 1.03 h for the Forger99 model. The modeling exercise
further revealed that the percentage of subjects with error< 1 h
was 53 and 54% for the Kronauer99 and Forger99 model,
respectively. Thus, it can be argued that the Forger99 model did
not yield substantial improvements in prediction accuracy over
the Kronauer99 model.

In 2007, based upon circadian phase change data (1DLMO)
from studies involving subjects investigated in environments
free of time cues and with scheduled bedrest/activity patterns
(enforced rest to activity ratio of 1:2), St Hilaire et al.
(2007) proposed another version of the Kronauer99 model,
having added an independent, non-photic (sleep/wake drive
and associated behaviors) to the pacemaker. The experimental
data sets used to develop and validate the St Hilaire model
involved circadian phase predictions for a blind person (no
visual perception but stable entrainment to scheduled 24-h
sleep-wake cycle), CR protocols, forced desynchrony protocols
(e.g., day length ∼ 20 h or 28 h), and exposures to bright
light (5,000–10,000 lx) as well as dim light (1.5 lx). Like the
photic drive from Process L, the non-photic sleep/wake state
drive is modulated by a separate sensitivity modulator within
Process P, which characterizes how the current phase of the
circadian oscillator could affect its sensitivity to the sleep/wake
state drive (Process N). Experimental data from the human
phase response curve (PRC) experiment by Khalsa et al. (1997)
(described above) were used to assess the prediction accuracy,
wherein a decrease in the prediction accuracy was reported for
the St Hilaire model (mean square error, MSE = 4.08; MAE
not reported) as compared to the original Kronauer99 model
(MSE = 3.82; MAE not reported).

Experimental circadian phase shifting data collected under
dim-light protocol, as reported by Wright et al. (2001) was
also used to assess the prediction accuracy of St Hilaire model.
Briefly, Wright et al., conducted a study to determine whether
a weak synchronizing stimulus (1.5 lx while awake, 0 lx while
asleep) would entrain a subject experiencing an imposed daily
cycle of 23.5, 24, or 24.6 h (total cycles ∼ 18–25). DLMO
was tracked over the course of 40-h CR protocols, pre- and
post-stimulus. A marginal increase in the prediction accuracy
was reported for the St Hilaire model (mean square error,
MSE = 0.91; MAE not reported) as compared to the original
Kronauer99 model (MSE = 0.97; MAE not reported). More
recently, for an independent data set involving up to 7 days
of ambulatory measurements of light and activity recorded
using wrist actigraphs, Stone et al. (2019a) reported a poorer
accuracy for the original Kronauer99 model, as compared to

the St Hilaire model, to predict circadian phase change (1
DLMO) in day-shift working and night-shift working nurses.
For the Kronauer99 model, Stone et al. (2019a) reported MAE
of 0.65 ± 0.53 h (all ± represent standard deviation) on the
diurnal schedule (error< 1 h in 64% subjects), and 1.19 ± 1.11 h
on the night schedule (error < 1 h in 56% subjects). For the St
Hilaire model comprising of both photic and non-photic (rest-
activity pattern) inputs, Stone et al. (2019a) reported MAE of
0.69 ± 0.69 h on the day schedule (error< 1 h in 80% subjects),
and 0.95 ± 0.77 h on the night schedule (error < 1 h in 68%
subjects). However, an improved fit for the St Hilaire model
was not evident for the Huang et al. (2021) data set mentioned
above. In day-shift workers, Huang et al. (2021) reported MAE
of 1.06 ± 0.95 h for the original Kronauer99 model (60%
within ± 1 h), and 1.04 ± 0.78 h for the St Hilaire model
(60% within ± 1 h). In night-shift workers, Huang et al. (2021)
reported MAE of 3.72 ± 2.44 h for the original Kronauer99
model (15% within ± 1 h), and 3.70 ± 2.11 h for the St Hilaire
model (7% within ± 1 h). Taken together, it can be concluded
that the prediction accuracy is quite similar for the original
Kronauer99 model and for the St Hilaire model across the two
data sets. This suggests that non-photic input to O has little, if
any, effect on accuracy of phase change predictions for those
individuals with intact and functioning retinae.

The initial mathematical models developed and tested
by independent research groups to predict circadian phase
in humans have largely involved light-dark patterns as the
primary zeitgeber input (Forger et al., 1999; Jewett et al.,
1999). As discussed above, the comparisons pertaining to the
St Hilaire et al. (2007) limit-cycle oscillator model suggests
that non-photic components by themselves provide a much
weaker entraining stimulus as compared to the light-dark
patterns. However, some statistical models involved non-photic
predictors such as sleep timing (Burgess et al., 2003), skin
temperature (Kolodyazhniy et al., 2011), heart rate variability
(Gil et al., 2013), and heart rate interbeat intervals (Gil et al.,
2014). These additional predictors, however, are downstream
responses (R) associated with circadian phase and not entraining
stimuli (S) to the oscillator. In other words, these statistical
models are essentially curve fits that do not adhere to the S-O-R
paradigm proposed here. More importantly, they are unable to
predict new data. Therefore, post hoc statistical models are not
discussed further.

Worth mentioning, however, are the statistical modeling
approaches involving supervised machine learning practices
using a “black box” of artificial neural networks (ANNs)
(Kolodyazhniy et al., 2012; Stone et al., 2019b). ANN models are
inherently designed to learn complex, non-linear relationships
between input (S) and output (R) data through curve fitting
exercises utilizing a sigmoid function to characterize biophysical
threshold and saturation values (DeLean et al., 1978). Studies by
Kolodyazhniy et al. (2012) and Stone et al. (2019b), employed
similar experimental protocols for day-shift workers, wherein
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7 days of continuous ambulatory data were recorded with
salivary DLMO tracked before and after the ambulatory wrist
measurements in healthy adults. Using ANN models with the
ambient blue light irradiance and skin temperature as the
predictive inputs, the average MAE reported across the different
diurnal data sets examined by Kolodyazhniy et al. (2012) and
Stone et al. (2019b), was 1.11 ± 1.15 h, with the reported
error < 1 h for about 68% of the population, which is
comparable to the performance of the Kronauer99 model as
reported in other data sets with similar demographics (Phillips
et al., 2017; Woelders et al., 2017; Stone et al., 2019a).

A direct comparison of the circadian phase prediction
accuracy of the original Kronauer99 model and a prominent
ANN model (Hannay et al., 2019), which has evolved from the
Forger99 model, was performed by Huang et al. (2021) using
independent data collected in an ambulatory setting (7 days of
light exposure and activity measurements in shift workers using
wrist-worn devices). In day-shift workers, Huang et al. (2021)
reported MAE of 1.06 ± 0.95 h for the original Kronauer99
model (60% within ± 1 h), and 1.49 ± 0.85 h for the ANN model
(30% within ± 1 h). In night-shift workers, Huang et al. (2021)
reported MAE of 3.72 ± 2.44 h for the original Kronauer99
model (15% within ± 1 h), and 3.81 ± 2.44 h for the ANN model
(22% within ± 1 h). Overall, there is not enough evidence to date
that the ANN modeling approach improves prediction accuracy
over the original Kronauer99 model. It is also important to note
that even though ANN models can be used to predict new data,
they are not inherently grounded in circadian neurophysiology.

In summary, given the range of conditions under which
pacemaker models have been tested, and the consistency in its
predictive ability across populations either stably entrained or
with circadian misalignment, the oldest, Kronauer99 oscillator
model remains as good as any. For these reasons, the prediction
accuracy of the Kronauer99 model was used as the benchmark
for subsequent modeling exercises, as has been done by
most studies before. A major advantage of the modeling
exercise performed and reported below is the stimulus (S)
and the response (R) used. The variable CLA/CS, grounded in
retinal neurophysiology and neuroanatomy, is used to provide
input to the SCN and 1 DLMO is used as a marker of
circadian phase.

Revised predictions of circadian
phase

Evaluating pacemaker model
predictions using four independent
data sets

The data sets listed in Table 1 have some advantages for
evaluating pacemaker (O) model predictions of circadian phase

change (R) due to light stimulation (S). First, and foremost,
a useful pacemaker model should be able to predict data
that were not used in model development. All four studies
introduced here measured phase changes resulting from photic
stimulation and have not been used in any pacemaker model
development. Second, there are four independent data sets, not
just one. So, pacemaker model predictions can be independently
tested and compared, thus avoiding the possibility of “getting
lucky” in predicting just one data set. Third, all four data sets
were obtained under field conditions, not under controlled
experiments. As such, these data should be inherently more
variable than laboratory data because light exposures, as well
as other potential influences on circadian phase, were not
controlled. If pacemaker models can predict phase changes for
ambulatory data, they should also be able to predict phase
changes in controlled laboratory experiments. Therefore, these
four data sets represent a “worst-case” test of pacemaker models.
Fourth, the proper specification of S and R is critical in testing
pacemaker models. Without confidence in S and R, model
prediction will be compromised. These four data sets are unique
in this regard because the personal light sensors have been
calibrated in terms of CLA, not photopic illuminance, and
because assessments of the phase maker, DLMO, were obtained
by a known, carefully supervised bioassay laboratory. Finally, we
are intimately familiar with the design and execution of these
experiments so are confident that we have good measures of the
S and R data.

S and R

All four ambulatory experiments utilized in-house,
calibrated personal light sensors – Daysimeters, to quantify S
(Rea et al., 2008, 2011; Figueiro and Rea, 2010; Miller et al., 2010;
Sharkey et al., 2011) and in-house, well-controlled bioassay
assessments of light-induced DLMO changes to quantify R.
There are different versions of the light sensor (Daysimeter) as
described in detail in Figueiro et al. (2013). These Daysimeters
have been used to study circadian phase disruption in several
sample populations: (1) nurses (Rea et al., 2008; Miller et al.,
2010), (2) school children (Figueiro and Rea, 2010), (3) school
teachers (Rea et al., 2011), (4) young adults (Sharkey et al.,
2011), and (5) older adults Figueiro et al. (2013). Broadly,
a Daysimeter contains a red-green-blue (RGB), solid-state
photosensor package, with an infrared (IR) filter. The R, G,
and B reading from a calibrated light source enable software
to compute a variety of spectrally weighted irradiance values
such as photopic illuminance (lux), CLA. and CS. These sensors
also contain a three-axis, solid-state accelerometer package to
measure a behavioral response (R) influenced by the circadian
system, called Activity Index (AI), simultaneous with the
light stimulus (S) (Bierman et al., 2005). Sampling rates were
once every second, while storage rates (average values) varied
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between once every 30 s to once every 180 s (depending upon
the study). The lab maintains a calibration file for each of
the units developed. Importantly, not all photosensors used
in other experiments are known to have been calibrated, and
those that have been calibrated do not necessarily provide
circadian-relevant values of light, like CLA or CS. Again, this
failure to calibrate light sensors for the purposes of assessing
pacemaker models will reduce accuracy of estimates.

In terms of R, 1 DLMO is a considered to be the
best measure of circadian phase change (Lewy, 1999a).
A trained nurse collected and stored all samples for biomarker
assessments. Table 1 summarizes the four data sets used in our
assessments of model prediction accuracy.

Two points should be noted regarding the light
measurements in these four studies. First, the Daysimeter
devices used to record circadian light exposures (CLA/CS)
across the four datasets from Table 1 were calibrated based
upon the original Rea et al. model of human circadian
phototransduction (Rea et al., 2005, 2012), and not based upon
the most recent revision to the model characterizing circadian
light exposure in units of CLA 2.0/CS (Rea et al., 2021a,b).
Second, for the Appleman et al. (2013) dataset, only circadian
light exposures (CLA) were recorded, and hence, any prediction
accuracies using photopic light exposures as light stimuli could
not be reported.

Assessing prediction accuracy

We used a six-step, serial approach, outlined below, to
evaluate model prediction accuracy.

Step 1: Determine whether predictions are better with or
without Process L for the original limit-cycle oscillator model.

Step 2: Determine whether CLA is better than photopic
illuminance for prediction accuracy.

Step 3: Determine whether CS as photic input
obviates Process L.

Step 4: Determine whether considering only the morning
light exposure period can improve prediction accuracy.

Step 5: Determine the importance of the sensitivity
modulator and the initial estimate of the clock time for
the CBTmin.

Step 6: Determine if the original Kronauer99 model
parameters still hold given the change in the characterization of
the light stimulus input.

It should be noted that1DLMO was used in all four studies,
so it was not possible to assess how other downstream outcome
measures, R, might contribute to prediction accuracy.

Model evaluation
The Kronauer99 model was numerically solved and

propagated in time using the parameter values published in

TABLE 1 An overview of the studies that provided the data sets for modeling.

Data set Sample characteristics
/Position of light sensor

Protocol

Appleman et al., 2013 n = 21 adults
age = 22.5 ± 3.9 years
11 females
Device: Daysimeter-D
Position of Daysimeter device: Wrist

DLMO assessed on the last night of the 5-day baseline period and on the last night of the
intervention week. For the intervention, subjects were either assigned to an advance group
receiving 2 h of LED blue light (λmax ≈ 476 nm) exposure in the morning and 3 h of
orange-filtered light (λ < 525 nm = 0) in the evening, or a delay group receiving the blue light
for 3 h in the evening and 2 h of orange-filtered light in the morning. Subjects were required
to follow a 90-min advanced sleep schedule while wearing a calibrated wrist-worn Daysimeter.

Sharkey et al., 2011 n = 25 adults with delayed sleep
age = 21.8 ± 3.0 years
13 females
Device: Daysimeter-S
Position of Daysimeter device: Headset (at
eye level)

Examined the effects of an advanced sleep/wake schedule and morning blue light on circadian
phase in adults with late sleep schedules and subclinical features of delayed sleep phase
syndrome (DSPD). Subjects were required to follow a fixed, individualized, advanced
(1–2.5 h) sleep/wake schedule that included 7.5 h of time in bed per night. DLMO assessed on
the last night of the baseline week and on the last night of the intervention week. Following
baseline, subjects were assigned to either receive LED blue light (λmax ≈ 470, ∼225 lux,
n = 12) or “dim” (<1 lux, n = 13) light for 1 h after waking each day. Light exposures were
tracked from wake to sleep using head-worn Daysimeters.

Rea et al., 2016 n = 11 adults
Age = 25.4 ± 6.9 years
7 females
Device: Daysimeter-S
Position of Daysimeter device: Attached
to collar

DLMO was assessed on the last night of the 2-week baseline collection period and again on
the last night of the 2-week intervention collection period. Active light intervention
comprised of LED blue light goggles (CS = 0.5) worn every morning for a minimum of 2 h or
a maximum of 4 h depending upon previous light exposure. Orange-filtered glasses
(λ < 525 nm = 0) were worn during the evening hours from 5:00 pm to bedtime. Daysimeters
as well as wrist-worn actigraphs were continuously worn all 4 weeks.

Figueiro et al., 2014 n = 23 regular adults
Age = 31.1 ± 11.1 years
17 females
Device: Daysimeter-D
Position of Daysimeter device: Wrist

All the subjects experienced an advance protocol (receiving 2 h of blue light exposure in the
morning and 3 h of orange-filtered light in the evening), as well as a delay protocol (blue light
for 3 h in the evening and 2 h of orange-filtered light in the morning), in a counter-balanced
order. Subjects were required to follow a 90-min advanced sleep schedule (except for the
baseline period) while wearing a calibrated wrist-worn Daysimeter. For both sessions, DLMO
assessed on the last night of the 5-day baseline period and on the last night of the intervention
week.
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TABLE 2 Published parameter values from Kronauer et al. (2000) and
the range of parameter values over which prediction accuracy of the
modified model with CLA and CS as inputs was re-evaluated.

Parameters Published values Range

α0 (Process L) 0.05 0.01–0.19

β (Process L) 0.0075 0.0025–0.0200

G (Process L) 33.75 NA

p (Process L) 0.6* 0.1–1.0

I0 (Process L) 9500 NA

µ(Process P) 0.13 0.01–0.30

q(Process P) 0.33 0.15–1.00

k(Process P) 0.55 0.15–0.95

*It should be noted that we have used the Kronauer et al. (1999) value of p = 0.6; p = 0.5
in Kronauer et al. (2000).

Kronauer et al. (2000) and as reported below in Table 2
(column 2). Since the outcome measure for the Kronauer99
model consists of CBTmin and not DLMO, prior biomarker
data from our lab (Figure 1) were used to establish the
relationship between CBTmin and DLMO (DLMO = CBTmin –
7 h). Constant routine (CR) estimates of initial circadian
phase were not available for any of the four field studies.
Even though the model at baseline was initialized assuming
a CBTmin of 0400 across the groups, a systematic analysis
was later performed by varying and optimizing the initial
CBTmin at baseline from 0300 to 0900 in increments of
1 h. Predicted CBTmin at the end of the baseline period

was used as the initial CBTmin for analyzing phase changes
following the intervention period for each participant. For
the analyses reported below, calibrated and personalized light-
exposure data recorded for each individual participant across
four field studies (Table 1) were used as the photic input
to predict changes in circadian phase and validated against
the proxy for 1 CBTmin (1 DLMO). Error in prediction
accuracy, calculated at an individual level, was subsequently
averaged across individuals within the group and these
values are reported in Tables 3–7, for each of the four
datasets.

All analysis was undertaken using MATLAB software
(MathWorks, Natick, MA, United States), wherein the
MATLAB R© numerical solver, ode45, was primarily used to
solve the mathematical differential equations. (Reasonable
requests to the corresponding author for additional
information about the computations or individual data
will be fulfilled.)

Step 1: Determine whether predictions are better with
or without Process L for the original limit-cycle
oscillator model

We investigated the impact of prior light exposures
by including and excluding Process L in the working
model framework for each of the data sets. For this
analysis we simply bypassed Process L, inputting the light
data into Process P directly. The light data from the
Daysimeter has a relatively high temporal bandwidth being

TABLE 3 Summary of model predictions with and without Process L for the Kronauer99 model.

Model Data set R2 Mean absolute error (MAE) in h Subjects with error < 1.0 h (%)

Kronauer99
without Process L

Rea et al., 2016
Figueiro et al., 2014
Sharkey et al., 2011

Average

0.07
0.11
0.11
0.10

1.48
1.16
1.58
1.41

45
60
32
46

Kronauer99
with Process L

Rea et al., 2016
Figueiro et al., 2014
Sharkey et al., 2011

Average

0.11
0.42
0.21
0.25

0.91
0.86
1.43
1.07

55
67
36
53

Note that the data from Appleman et al. (2013) could not be used for this analysis.

TABLE 4 Summary of model predictions with and without Process L for the Kronauer99 model using CLA as the photic stimulus.

Model Data set R2 Mean absolute error (MAE) in h Subjects with error < 1 h (%)

CLA

without Process L
I0 = 9500

Rea et al., 2016
Figueiro et al., 2014
Sharkey et al., 2011

Appleman et al., 2013
Average

0.04
0.31
0.00
0.35
0.18

1.15
1.04
1.57
1.2
1.24

55
62
27
48
48

CLA

with Process L
I0 = 9500

Rea et al., 2016
Figueiro et al., 2014
Sharkey et al., 2011

Appleman et al., 2013
Average

0.18
0.69
0.01
0.77
0.41

0.57
0.76
1.54
0.82
0.92

91
71
27
67
64
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TABLE 5 Summary of model predictions for the Kronauer99 model using CS as photic input (CS-oscillator model).

Model Data set R2 Mean absolute error (MAE) in h Subjects with error < 1 h (%)

CS without Process L
I0 = 0.7

Rea et al., 2016
Figueiro et al., 2014
Sharkey et al., 2011

Appleman et al., 2013
Average

0.34
0.73
0.16
0.77
0.50

0.92
1.20
0.94
1.22
1.07

64
49
59
38
52

CS with Process L
I0 = 0.7

Rea et al., 2016
Figueiro et al., 2014
Sharkey et al., 2011

Appleman et al., 2013
Average

0.49
0.72
0.17
0.80
0.55

0.66
0.66
1.21
0.63
0.79

91
80
41
86
75

TABLE 6 Summary of model predictions for the CS-oscillator model with light exposures from only 0600 to 1000 considered.

Model Data set R2 Mean absolute error (MAE) in h Subjects with error < 1 h (%)

Morning CS
(0600 – 1000)

Rea et al., 2016
Figueiro et al., 2014
Sharkey et al., 2011

Appleman et al., 2013
Average

0.29
0.31
0.01
0.06
0.17

1.76
1.31
1.93
1.56
1.64

27
42
18
48
34

All CS
(24 h)

Rea et al., 2016
Figueiro et al., 2014
Sharkey et al., 2011

Appleman et al., 2013
Average

0.49
0.72
0.17
0.80
0.55

0.66
0.66
1.21
0.63
0.79

91
80
41
86
75

TABLE 7 Summarizing the effect of changing CBTmin on prediction accuracy for the CS-oscillator model across the four data sets.

Data set CBTmin
(time)

R2 Mean absolute error (MAE) in h Subjects with error < 1 h (%)

Prediction accuracy with base case CBTmin

Rea et al., 2016 0400 0.49 0.66 91

Figueiro et al., 2014 0400 0.72 0.66 80

Sharkey et al., 2011 0400 0.17 1.21 41

Appleman et al., 2013 0400 0.80 0.63 86

Average — 0.55 0.79 75

Prediction accuracy with optimum CBTmin*

Rea et al., 2016 0300 0.52 0.60 91

Figueiro et al., 2014 0500 0.73 0.60 82

Sharkey et al., 2011 0900 0.27 0.59 91

Appleman et al., 2013 0400 0.80 0.63 86

Average — 0.58 0.61 88

*Primary consideration while determining the optimum CBTmin was % subjects with Error< 1 h.

sampled at 3-min intervals or less. The importance of the
high frequency content for accurate predictions helped us
determine the importance of the temporal dynamics of
Process L and values of the involved time constants in
a subsequent analysis. For example, Process L does not
treat each light stimulus to the pacemaker independently.
Rather, the magnitude of the effect from a given light
stimulus, depends upon the magnitude of the effect caused by
previous light stimuli.

As is evident from Table 3, the exclusion of Process L
from the original Kronauer99 model substantially increases the
MAE from 1.07 to 1.41 h and the percentage of subjects with
error< 1 h drops from 53 to 46%. Thus, Process L improves the
circadian phase prediction accuracy. This means, in effect, that
light exposures are not independent when driving the SCN and
sampling intervals should be short (<180 s). Rather, one must
know with relatively high precision the previous light exposure
before the impact of the next light exposure can be predicted.
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Step 2: Determine whether CLA is better than photopic
illuminance for prediction accuracy

For this step, CLA replaced photopic illuminance as the
input light parameter “I” as specified in the Kronauer99
framework (Eq. 6 in Supplementary Appendix 1). The rest of
the model parameters were maintained. Comparing the results
from Tables 3, 4, using CLA as input to Process L improves the
MAE from 1.07 h (original Kronauer99 model) to 0.92 h and
the percentage of subjects with error < 1 h increases from 53
to 64%. Thus, prediction accuracy improves by adjusting the
spectral sensitivity of the retinal mechanisms providing input
to the Kronauer99 model (i.e., substituting CLA for photopic
illuminance).

Step 3: Determine whether circadian stimulus as photic
input obviates Process L

For this step, CS replaced photopic illuminance as the input
light parameter “I” as specified in the Kronauer99 framework
(Eq. 6 in Supplementary Appendix 1). The value of I0 (Eq. 6
in Supplementary Appendix 1) was set to 0.7, which is
the mathematical asymptote for CS as defined by Rea and
colleagues (Rea et al., 2005, 2012, 2021a,b). CS is a sigmoid
function, inherently rendering every weak light stimulus equal
(below threshold) and every strong light stimulus equal (above
saturation). If, for example, the light stimuli were always
either above saturation or below threshold, characterizing light
exposures in units of CS would reduce the significance of Process
L for model predictions. Indeed, there is no difference between
the original Kronauer99 model with photopic illuminance as
the photic input to Process L (Table 3, MAE = 1.07 and a 1-
h accuracy criterion = 53%) and using CS without Process L
(Table 5, MAE = 1.07 and a 1-h accuracy criterion = 52%).

However, there is significant improvement when CS is used
as photic input to Process L (Table 5), MAE = 0.79 and a
1-h accuracy criterion = 75%). Thus, correctly characterizing

the photic input, in terms of both spectral (CLA) and absolute
(CS) sensitivity over the full operating range of the retinal
phototransduction mechanisms, to Process L improves model
prediction accuracy.

Step 4: Determine whether considering only the
morning light exposure period can improve prediction
accuracy

Diurnal species, including humans, typically exhibit
intrinsic periods slightly longer than 24 h. To entrain to local
time, morning light exposure is particularly important because
it will advance the clock phase and the majority of humans
free run with a period slightly longer than 24 h. We examined
whether measuring morning light exposure alone would
accurately predict phase changes. Several permutations of using
only the selective portions of the daily light-dark patterns to the
predictive models were performed. As compared to continuous
measurements of light exposure throughout the wake period
as the predictive input, selective light pulse input models fared
poorly. MAE and percent subjects with error < 1 h values for
one such scenario wherein only the light-dark patterns from
0600 to 1000 were considered as the predictive inputs, are
shown in Table 6. Adjusting the start (0600) and end times
(1000), or splitting the exposure window (for e.g., 0600–0800
and 1800–2000), did not improve the prediction accuracy (data
not reported).

Step 5: Determine the importance of the sensitivity
modulator and the initial estimate of the CBTmin

The Kronauer99 model included a sensitivity modulator
between Process L and Process P which controls the relative
effectiveness of photic exposures depending upon the circadian
phase of the pacemaker at the time of exposure (Jewett et al.,
1999). For example, a light exposure in the early morning should
be more effective for inducing a phase change than that very
same light exposure mid-day. Values generated by the sensitivity

FIGURE 3

Mean absolute error (MAE) across the four data sets with (blue bars) and without (orange bars) the modulator (A); Percent subjects with
error < 1 h across the four data sets with (blue bars) and without (orange bars) the modulator (B). MAE = mean absolute error. CS = circadian
stimulus.
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modulator depend upon the value of the circadian phase marker,
CBTmin. The circadian phase marker was initially estimated to
occur at 0400 to depict a “typical” CBTmin for people entrained
to the solar day; that is, 4 h after midnight. Importantly, this
assumed value of 0400 also sets the values for the light drive
terms, x and xc, quite apart from the sensitivity modulator
(Supplementary Appendix 2).

Our systematic review of Kronauer99 model components
also included an examination of the role of the initial estimate
of the CBTmin in prediction accuracy. Theoretically, a large
enough baseline data, consisting of light exposure history
and biomarker assessment, should obviate the initial CBTmin

estimate, as subsequent predictions of post-intervention phase
will utilize the CBTmin at the end of the baseline period as
the initial phase. Figure 3 shows the results of including or
excluding the sensitivity modulator with CBTmin = 0400 when
using CS as the photic input (S) to Process L for the four data
sets (see Table 5). Of note, it will be recalled that the four data
sets employed DLMO as the phase marker, but the analysis is
based upon light-induced changes in DLMO (i.e., 1DLMO).
Thus, the absolute values of DLMO are unimportant, and all
phase changes are evaluated relative to the phase determined
at the end of the baseline period. On average, MAE across the
four data sets dropped from 0.79 to 0.75 h with exclusion of
the sensitivity modulator. However, the percentage of subjects
with error < 1 h decreased from 75 to 71%. A closer look
at these two metrics for the individual data sets shows that
including the sensitivity modulator improved both MAE and the
percentage of subjects with error < 1 h for three of the four
data sets. Indeed, the Sharkey data were significantly worse when
the sensitivity modulator was included. These results suggested
that the sensitivity modulator could not be examined alone,
but rather that there was an interaction between the assumed
CBTmin value and the sensitivity modulator in determining
predictive accuracy of the model.

The Sharkey data set involved young adult subjects with
delayed sleep. This would suggest a priori that the CBTmin

would be much later than the 0400 value estimated originally by
Kronauer99. Whereas no other set of subjects would have been
as phase delayed, it was deemed necessary to determine how the
assumed value of CBTmin affected prediction accuracy. Given
the absence of CR protocol estimated initial circadian phase,
Figure 4 shows the prediction accuracy values where CBTmin

was systematically varied between 0300 and 0900 for the four
data sets. The checkered bars in Figure 4 depict the assumptions
in the original Kronauer99 model with the sensitivity modulator
and an initial CBTmin = 0400.

The prediction accuracy values in the upper half of Table 7
are the same as those in the lower half of Table 6 where the
CBTmin = 0400 and the sensitivity modulator is included in
the model. The lower half of Table 7 summarizes the findings
from interaction plots in Figure 4. Specifically, inclusion of
the sensitivity modulator with the optimum time of the initial

circadian phase marker (i.e., the value of CBTmin) always led
to the greatest prediction accuracy. For each of the four data
sets, the prediction accuracy values, MAE and percent subjects
with error < 1 h, are shown with the optimum CBTmin with
the sensitivity modulator. Assuming baseline CBTmin = 0400
was only accurate for one of the four data sets (Appleman
et al., 2013) and as expected, the discrepancy between optimum
CBTmin value and CBTmin = 0400 was greatest for the Sharkey
data. Table 7 shows the importance of setting an optimum value
for CBTmin; MAE decreased from 0.79 to 0.61 and the percent
of subjects with error< 1 h increased from 75 to 88%.

These results demonstrate that chronotype is important for
accurately predicting light-induced phase changes, particularly
for more extreme chronotypes like those in the Sharkey study.
It will be recalled that Figueiro et al. (2014) employed both
phase-advanced and phase-delayed chronotypes in their study.
As might be expected, the optimum CBTmin for the delayed
group (owls) was later than that for the advanced group (larks).
Consistent with an initial estimate, CBTmin = 0400 was optimum
for the larks, with a MAE of 0.72 h and 83% subjects with
error < 1 h. The optimum CBTmin for the owls was 0500, with
a MAE of 0.75 h and 86% subjects with error < 1 h. Despite
their designated chronotype, the difference in CBTmin for the
two groups was quite small, likely because all the people in this
study worked during the day.

Broadly speaking, this serial analysis demonstrates that
prediction accuracy can vary quite considerably depending
upon the explicit or implicit assumptions about the light
stimulus (S) and the study cohort (O). Therefore, the CS-
oscillator model developed here and derived from the original
framework of the Kronauer99 model is an improvement in
prediction accuracy.

Step 6: Validate the original Kronauer99 model
parameters given the change in characterization of the
light stimulus input

Since the light stimulus (S) to the model developed here
is different than that used by Kronauer99, it was necessary to
examine how well their original model parameters (equations
B2.1–B2.8, Supplementary Appendix 2) affected prediction
accuracy. Their published values of their model parameters are
shown in Table 2.

All model parameter values were systematically varied over
a range as shown in Table 2 to determine how they might affect
prediction accuracy from the model developed here for the four
data sets. G is inherently derived from α0 and β, and hence was
excluded from this parameter-validation analysis. The originally
published I0 value of 9500 was preserved when the light stimulus
was changed from photopic illuminance to CLA. However, when
the light stimulus input was changed from CLA to CS, the default
value of I0 had to be changed to 0.7, which is the mathematical
asymptote for CS as defined by Rea et al., 2005, 2012, 2021a,b.
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FIGURE 4

Effect of changing CBTmin on prediction accuracy across the four datasets. The checkered bars depict the assumptions in the original Kronauer
model with the sensitivity modulator and an initial typical CBTmin = 0400. CBTmin = minimum core body temperature; MAE = mean absolute
error.
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Being an asymptote, I0 optimization was also excluded from the
parameter-validation analysis.

Following Kronauer99, the association between the light
exposures recorded and the modeled time constants – α0 and
β, from Process L, is governed by the parameter “p,” or the
light exponent. Contour plots, as reported in Supplementary
Appendices 4, 5, demonstrate how the changes in values of α0

and β affect the MAE and percent subjects with error < 1 h,
respectively. A change in prediction accuracy as a function of
changing p, the light exponent, is also reported. This analysis
revealed that, with a few exceptions in the Sharkey et al.
(2011) data set, the prediction accuracy for base case scenario
(α0 = 0.05; β = 0.0075; p = 0.06) was always within ± 10%
of the best achievable accuracy over the entire range of the
parameters deployed across the data sets. In other words, there
was no evidence that prediction accuracy could be substantially
improved by changing the parameter values published in
Kronauer99 and used in our analyses. Therefore, the model
developed here retained those originally published for Process L.

Similarly, Supplementary Appendices 6, 7 examined the
prediction accuracy for changes to the published Process P
parameter values (µ = 0.13; k = 0.55; q = 0.33). Again, with a
few exceptions in the Sharkey et al. (2011) data set, the original
values were always within ± 10% of the best achievable accuracy
over the entire range of the parameter values evaluated across
the data sets. Since there was no evidence to support changing
the original Process P parameter values, they were retained in
the present model.

A note on the phase response curve
characteristics

Earlier versions of the limit-cycle oscillator models also
reported the human PRC characteristics and how well the

respective models predicted PRC data as published in Khalsa
et al. (1997). Their analysis of the shift in the melatonin
midpoint revealed a characteristic type 1 PRC with a significant
peak-to-trough amplitude of 5.02 h.

Naturally, we wanted to investigate whether in trying to
achieve the highest accuracy for predicting phase change for
the four data sets, there was no inadvertent compromise to the
accuracy of predicting the PRC.

Our analysis revealed that a re-characterization of the light
stimulus input from lux to CLA (and then CS), without changing
other parameters of the Kronauer99 framework, had no bearing
on the PRC characteristics (see identical plots in Figure 5). This
was expected, as the PRC predictions use a constant spectrum,
intensity, and duration pulse of light for which only the time-of-
day of exposure changes.

Discussion

A model for predicting light-induced circadian phase
changes can aid in the adjustment of circadian phase to support
re-entrainment for shift work, military operations, and air travel.
In this regard, a breakthrough was the van der Pol oscillator
model developed by Kronauer et al. (1999, 2000). As we have
shown in the present contribution, to date, no other model
has made substantive improvements to its prediction accuracy.
The present systematic examination of the Kronauer99 model
showed that it remains as good as any in terms of prediction
uncertainty, which is limited to about 1 h.

We approached the analysis of the Kronauer99 model using
a well-established framework from experimental psychology
whereby the stimulus (S) acts on the organism (O) to produce
a response (R). Within that framework, using four independent

FIGURE 5

(A) Phase response curve for the Kronauer model with photopic illuminance as light stimulus input; (B) Phase response curve using CS as light
stimulus input. CS = circadian stimulus.
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data sets, we conducted a serial analysis of the factors in the
Kronauer99 model that could affect prediction accuracy. This
analysis led to several conclusions.

First, it has already been established that light processed
by the retina is the most important phase-shifting stimulus
(S) to the master clock in the SCN. However, the definition
of light for stimulating the master clock in the Kronauer99
model relies upon photopic illuminance where the spectral
weighting function is the photopic luminous efficiency function
[V(λ)]. From a wealth of research conducted over the last
20 years, V(λ) is incorrect for characterizing the spectral
sensitivity of the circadian system. Recent modeling efforts
of circadian phototransduction (Rea et al., 2005, 2012,
2021a,b) have quantified the non-linear spectral sensitivity of
circadian-effective light (CLA). Replacing photopic illuminance
with irradiance at the cornea weighted by CLA improved
prediction accuracy.

Conclusion: The spectral sensitivity of the
system is important.

Second, for satisfactory predictions, Kronauer99 introduced
a compressive function of the raw photopic illuminance via
Process L. This function has no link to retinal neurophysiology
but was simply a convenient and necessary transformation
needed to increase prediction accuracy. In addition to defining
the spectral sensitivity, the functional relationship between
optical irradiance incident on the cornea and the response
of these retinal mechanisms has been quantified in terms of
circadian stimulus (CS) from threshold to saturation (Rea and
Figueiro, 2018; Rea et al., 2021a,b). CS represents an inherently
compressive function of circadian-effective light based upon
the neurophysiology of the retina. Therefore, the neural signal
reaching the SCN defined in terms of CS is quantified in terms
of both its spectral sensitivity and its operating characteristic.
The CS transformation obviated arbitrary compression of the
light input via I0 and improved the prediction accuracy. Derived
from the Kronauer99 framework with revised characterization
of the input photic stimulus in units of CS, the revised
pacemaker model has been referred to as the CS-oscillator
model.

Conclusion: The operating characteristic of retinal
mechanisms providing input to the system is important.

Third, Kronauer99 introduced Process L to account for
hysteresis by the circadian-phototransduction mechanisms.
In effect, this means that the effectiveness of a given
light pulse is not independent of the effectiveness of the

previous light pulse. All neural systems, including those in
the retina, adapt to repeated stimulation. Although the tie
to retinal neurophysiology is weaker than that for spectral
and absolute sensitivity to light (above), this non-linear
response of the retina to light was shown to be critical for
prediction accuracy.

Conclusion: The system adapts to successive light exposures.
Fourth, diurnal humans, on average, have an intrinsic

period of slightly longer than 24 h. Thus, morning light will,
in principle, advance the clock to keep entrainment. For the
CS-oscillator model, we examined whether measuring morning
light exposure alone would accurately predict phase changes.
It was quite clear that it was necessary to collect all light data
throughout the day to accurately predict phase changes.

Conclusion: Every photon counts.
Fifth, the time of light exposure is important. Even though a

typical CBTmin value of 0400 appears to be a good estimate of the
circadian phase marker for most people, individual differences
are important. Most notably, the cohort from Sharkey et al.
(2011) was a group of phase-delayed adolescents and young
adults and a sensitivity modulator term of 0800 for CBTmin

produced the most accurate predictions for that cohort.
Conclusion: An individual’s chronotype plays an important

role in model predictions.
Sixth, after integrating these five conclusions into the CS-

oscillator model, we examined the utility of the free-parameter
coefficients in the original Kronauer99 formulation. We could
find no compelling reason to adjust the original coefficients.

Conclusion: The original model by Kronauer99 and
colleagues represents the best framework for predicting phase
shifting following light exposure.

Table 8 shows how accurate the original Kronauer99 model
was in predicting the four independent data sets used in
the present analysis along with the improvements introduced
here. In sum, the CS-oscillator model developed here provides
improved prediction accuracy.

These predictions are still not as good as one might
hope. A new look at the phase predictions within the S-O-
R framework is worthwhile. It is important to emphasize
that models of the organism’s pacemaker (O) will not be
successful without also including an understanding of the light
stimulus (S) and the down-stream response (R). Ideally too,
it would be important to tie any model developments to
the neurophysiological and endocrinological mechanisms being
modeled. This convergence of a mathematical model with the

TABLE 8 Overall improvement in the prediction accuracy.

Model Data set R2 Mean absolute error (MAE) in h Subjects with error < 1.0 h (%)

Original Kronauer99 Average (3 studies) 0.25 1.07 53

CS-Oscillator* Average (4 studies) 0.58 0.61 88

Note that the Appleman et al. (2013) data could not be used with the Kronauer99 model predictions.
*CS-Oscillator model assumes the optimum CBTmin as reported in Table 7.
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underlying biophysics would provide a much higher level of
confidence in the model itself.

Future research

The primary value of any model is to make quantitative
predictions. The model developed here, based upon the earlier
Kronauer99 model, provides the foundation for future steps and
focused hypotheses for empirical testing related to the stimulus
(S), response (R), and organism (O).

Stimulus

A good understanding of the circadian phototransduction
mechanisms in the retina providing the neural stimulus to
the SCN has been proposed. This understanding led to CLA

and CS metrics which provided better prediction accuracy
for the Kronauer99 model than photopic illuminance and
I0. Light sensors based upon that understanding should be
further developed. Ideally, small sensors mounted near the
user’s corneas should provide excellent characterization of
the light stimulus. A previous field study undertaken by
our lab involving light measurements over five consecutive
days from 12 healthy participants (>65 years) compared
the performance characteristics of the Daysimeters worn at
four different locations (wrist, spectacle/headset, pendant,
pin on torso). That study revealed that light measurements
from pendant and pin on torso locations closely matched
those from the spectacle/headset location (1 < 5%), and
that the light measurements from wrist location were
consistently lower compared (1∼20%) to those from the
spectacle/headset location (Figueiro et al., 2013). Finally,
sampling rates with these sensor systems should be high
due to hysteresis by the neural mechanisms governing
circadian phase.

Response

Relying on a single downstream measure of circadian
phase seems risky. DLMO may be the best outcome measure
we have, but more unconfounded downstream measures
of circadian phase will reduce that risk if they provide
consistent results. Little is known, however, about the temporal
consistency in the changes of different circadian phase
markers in response to light exposure. The amplitude of
a circadian rhythm, like melatonin concentration, may also
be important for health outcomes. Shift workers, who are
at greater risk for diseases like Type II diabetes (Knutsson
and Kempe, 2014), usually exhibit their highest melatonin
concentrations during the night, but the amplitude of their

rhythms is much curtailed. Perhaps response measures of
both phase and amplitude would enable more accurate
predictions.

Organism

The van der Pol oscillator appears to be a very good
model for the behavior of the SCN. However, the Kronauer99
conceptualization of the oscillator may be incomplete. Perhaps
the core and the shell of the SCN have different oscillators
and are subject to different stimuli and different feedback
mechanisms. Further, there are many peripheral clocks within
the body (e.g., the retina or the liver). Little is known,
however, about the governing principles for synchronizing the
central and the peripheral clocks or how important feedback
from peripheral clocks is to the central clock phase. Daan
and Pittendrigh (1976) proposed a pacemaker framework
comprising of two coupled, evening (E) and morning (M),
oscillators. Flores and Oda (2020) investigated the effects of
photoperiod on the E-M model using two coupled non-linear
limit-cycle oscillators, governed by the Pittendrigh-Pavlidis
equations. The framework for this dual-oscillator model,
pertaining to organization of light input for the SCN, is however,
a work in progress and not ready for field validation. Relatedly,
and as shown here, individual chronotypes affect the sensitivity
modulator, so measuring circadian phase on a subject-by-
subject or patient-by-patient basis before and following a light
intervention appears to be critical for predicting light-induced
phase changes. Assuming a “typical” baseline CBTmin time for
all individuals will lead to poor predictions, particularly for those
of extreme chronotype.
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