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Background: A large number of studies related to ultrasound-based radiomics have been published 
in recent years; however, a systematic bibliometric analysis of this topic has not yet been conducted. In 
this study, we attempted to identify the hotspots and frontiers in ultrasound-based radiomics through 
bibliometrics and to systematically characterize the overall framework and characteristics of studies through 
mapping and visualization.
Methods: A literature search was carried out in Web of Science Core Collection (WoSCC) database from 
January 2016 to December 2023 according to a predetermined search formula. Bibliometric analysis and 
visualization of the results were performed using CiteSpace, VOSviewer, R, and other platforms.
Results: Ultimately, 466 eligible papers were included in the study. Publication trend analysis showed that 
the annual publication trend of journals in ultrasound-based radiomics could be divided into three phases: 
there were no more than five documents published in this field in any year before 2018, a small yearly 
increase in the number of annual publications occurred between 2018 and 2022, and a high, stable number 
of publications appeared after 2022. In the analysis of publication sources, China was found to be the main 
contributor, with a much higher number of publications than other countries, and was followed by the 
United States and Italy. Frontiers in Oncology was the journal with the highest number of papers in this field, 
publishing 60 articles. Among the academic institutions, Fudan University, Sun Yat-sen University, and the 
Chinese Academy of Sciences ranked as the top three in terms of the number of documents. In the analysis of 
authors and cocited authors, the author with the most publications was Yuanyuan Wang, who has published 
19 articles in 8 years, while Philippe Lambin was the most cited author, with 233 citations. Visualization 
of the results from the cocitation analysis of the literature revealed a strong centrality of the subject terms 
papillary thyroid cancer, biological behavior, potential biomarkers, and comparative assessment, which may 
be the main focal points of research in this subject. Based on the findings of the keyword analysis and cluster 
analysis, the keywords can be categorized into two major groups: (I) technological innovations that enable 
the construction of radiomics models such as machine learning and deep learning and (II) applications of 
predictive models to support clinical decision-making in certain diseases, such as papillary thyroid cancer, 
hepatocellular carcinoma (HCC), and breast cancer.
Conclusions: Ultrasound-based radiomics has received widespread attention in the medical field and 
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Introduction

The importance of medical imaging in clinical practice 
has increased significantly by virtue of its noninvasive 
ability to provide reproducible information pertaining 
to disease processes, Among the traditional medical 
imaging modalities, ultrasound has the advantages of 
being economical, radiation-free, and widely used and has 
a diversity of imaging modalities and the ability to realize 
real-time image visualization and acquisition. However, 
the diagnostic results of ultrasound are highly reliant on 
the expertise of the operator, may be highly subjective, and 
lacks a quantitative analysis of the features contained in the 
image data (1). However, to overcome these uncertainties in 
diagnostic accuracy, quantitative analysis of the features of 
the imaging is necessary.

The concept of radiomics was first introduced in 2012 
and can be defined as the high-throughput extraction of 
imaging features from radiographic images (2). These 
data consist of microscopic features that may be difficult 
to discern by the naked eye but which can be recognized 
and quantitatively analyzed by computers to construct 
diagnostic models (3). 

Ultrasound-based radiomics, also known as ultrasomics, 
is a rapidly growing field, but due to limitations of image 
instability, the inability to show more than a single section 
of a lesion, inconsistency in equipment and parameters, 
and operator dependence, the emergence of ultrasomics 
has been relatively subdued compared to that other 
imaging techniques (4). Innovations in medical devices, 
imaging agents, and imaging analysis and the development 
of standardized protocols that allow for quantitative 
imaging have made it possible to obtain genomic and 
proteomic information from a variety of medical images (2).  
The combination of ultrasound and radiomics has been 

investigated in the fields of thyroid (5), breast (6), liver (7), 
prostate (8), and lung (9) cancer. The addition of multimodal 
ultrasound, deep learning, and migration learning has further 
improved the diagnostic efficiency of ultrasonic predictive 
modeling. The achievements of ultrasomics have inspired 
further research into this modality, with the number of 
publications rapidly growing in recent years.

Bibliometrics is an analytic technique that applies 
commonly used quantitative assessment methods (10), such as 
mathematics and statistics, to investigate patterns in literature 
distribution and quantitative relationships. More specifically, 
bibliometrics collects data on publication counts, citation 
analysis, citation metrics (e.g., h-index and g-index) etc., 
which are then examined via publication analysis, collaborative 
networks, cocitation analysis, keyword analysis, etc. This study 
relied on CiteSpace (version 6.2) (11), VOSviewer (version 
1.6.20) (12), and the “bibliometrix” package in R for the 
optimization of literature analytics. 

The research into ultrasomics is accelerating and 
diversifying, with this proliferation into specialized fields 
yielding a boom in the number of publications; therefore, it 
may be difficult for researchers to stay abreast of the latest 
advancements in the field and to select research topics of 
interest, and thus a comprehensive review of the current 
outlook and trends in this field may be highly beneficial. 
Bibliometrics, as an emerging tool for publishing analytics, 
can allow scholars to quickly understand the nuances 
and emerging trends in a particular area via quantitative 
analysis and visualization (13). We thus used bibliometric 
methods to analyze the published literature on ultrasomics, 
including information on publication, author, country, 
institution, keywords, and references. These data were then 
visualized so as to provide a convenient summary, and the 
development process, trends, hotspots, and frontiers of the 
research in this field were defined, providing a reference 

has been gradually been applied in clinical research. Radiomics, a relatively late development in medical 
technology, has made substantial contributions to the diagnosis, prediction, and prognostic evaluation of 
diseases. Additionally, the coupling of artificial intelligence techniques with ultrasound imaging has yielded 
a number of promising tools that facilitate clinical decision-making and enable the practice of precision 
medicine. Finally, the development of ultrasound-based radiomics requires multidisciplinary cooperation and 
joint efforts from the field biomedicine, information technology, statistics, and clinical medicine.
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Records identified from: 

Web of Science Database 
(n=616)

Records removed before screening:
• Duplicate records (n=0)
• Meeting Abstract (n=12)
• Editorial Material (n=5)
• Correction (n=2)
• Letter (n=2)

Records screened by title
(n=595)

Titles clearly unrelated to 
ultrasound-based radiomics 

excluded (n=95)

Reports excluded:
• Studies not related to ultrasound-

based radiomics (n=8)

Reports sought for abstract screening
(n=500)

Articles that did not include
“ultrasound” or “Radiomics”

in the abstract excluded
(n=26)

Articles assessed via full-text review 
(n=474)

Total articles included in study 
(n=466)

Figure 1 Flowchart of literature screening and article summary. The PRISMA guidelines for inclusion and exclusion of literature were 
strictly followed to reduce subjectivity in the literature screening process. PRISMA, Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses.

basis for orienting future work in ultrasomics. 

Methods

Strategies for literature retrieval

The Web of Science Core Collection (WoSCC) is one 
of the most comprehensive and authoritative academic 
information database platforms in the world (14,15) and 
is thus widely used in bibliometric research (16,17). In 
addition, the data on WoSCC can be read directly by the 
bibliometric software CiteSpace and VOSviewer without 
the need for tedious format conversion. 

Literature retrieval in this study was carried out in the 
WoSCC database with a time span of publication dates 
from 2016 to 2023. The search formula was as follows: 
TS = (ultrasound OR ultrasonographic OR ultrasonic OR 
echotomography OR ultrasomics) AND TS = (radiomic*) 
AND PY = (2016–2023). The criteria for literature inclusion 
were as follows: (I) ultrasomics as the topic of study, (II) 

articles and reviews, and (III) English-language literature. 
Meanwhile, the exclusion criteria were as follows: (I) 
conference abstracts, correction, letters, early-access papers, 
and proceedings papers; (II) literature not published between 
January 2016 and November 2023; and (III) a subject other 
than ultrasomics. The literature search was undertaken by 
two individuals concurrently, and all publications retrieved 
were assessed and filtered. A third researcher was invited 
to discuss and arrive at a consensus in case of disagreement 
between the two researchers in terms of literature screening, 
data extraction, and quality evaluation. The flowchart of 
literature selection and analysis is shown in Figure 1.

Data analysis

All the data collected from WoSCC were converted 
into text containing information on authors, research 
institutions, topics, years, keywords, abstracts, journals, 
volumes, page numbers, etc. Excel (Microsoft Corp., 
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Redmon, WA, USA) was used to organize the data and 
generate graphs on publication trends. The “ggplot2” and 
“bibliometrix” packages in R and Scimago Graphica were 
used to visualize and analyze the source journals, countries, 
and institutions of publications. 

CiteSpace (version 6.2) and VOSviewer (version 1.6.2) 
were applied for bibliometric and visualization analysis 
of the included literature. In bibliometric mapping, each 
node (or vertices) represents an individual object (18), such 
as a country, an organization, an author, or a keyword, 
while node size reflects the frequency of occurrence, with 
larger nodes indicating a greater frequency. Edges between 
the nodes represent the collaboration or co-occurrence 
relationships (18). CiteSpace was originally developed by 
professor Chaomei Chen and has unique advantages for 
bibliometric analysis. In CiteSpace, betweenness centrality 
is a significant parameter and refers to the number of times 
a node acts as the shortest bridge between two other nodes. 
The more times a node acts as an “intermediary”, the 
greater its intermediary centrality, which is an indicator of 
the importance or influence of a node in the network (19). 
It is commonly considered that a centrality ≥0.1 indicates an 
important node and that it is acting as a bridge in network 
structure; this node type of node is marked by a purple 
circle in the visualization map. In addition, CiteSpace 
was used to provide characterization and visualization 
support for keyword and reference burst analysis for trend 
identification in this study. VOSviewer is another popular 
software tool used for mapping bibliometric networks. It 
has a more user-friendly interface than does CiteSpace, but 
it does not have the advantage of clustering and analyzing 
the literature, nor does it have the same level of operability. 
Therefore, we combined several different analytical tools; 
VOSviewer was mainly used for the analysis of publication 
sources, institutions and countries, authors, and references; 
CiteSpace was primarily used for the clustering analysis of 
keywords and references; and other graphing tools were 
employed to refine the content in order to achieve the best 
presentation of the visualization results.

Data processing

For the analysis of keywords, we imported the data into 
VOSviewer and then exported the table of keywords from 
to R software for subsequent visualization and analysis. In 
managing the data, we manually merged the synonyms to 
ensure the accuracy of the keyword occurrence frequency. 
We also noticed that in traditional bibliometric studies, 

authors’ names in databases or often misspelled, and so we 
applied a manual review to identify and correct possible 
spelling errors to ensure the accuracy of the results.

Results

Publishing trends

A total of 617 documents related to ultrasomics published 
from January 2016 to November 2023 were searched in 
WoSCC; of these, 595 were retained according to the search 
criteria, and then 129 were discarded due to not being 
relevant to the research content according to the screening of 
titles, abstracts, and keywords. Ultimately, 466 publications 
were obtained that met the requirements, of which 85 were 
articles and 381 were reviews. Figure 2A shows the curve of 
the number of publications, including the annual number and 
the cumulative number of documents. The whole publication 
period could be divided into three parts: The first phase was 
2016–2017, during which the annual publications were less 
than 5 per year, with radiomics still being exploratory stage 
and yet to be refined. The second phase was 2018–2021, 
during which the number of annual publications increased 
slightly but still did not surpass 100, with research in the field 
gradually transitioning from theory to practical application. 
The third phase was after 2022, when the number of 
publications exceeded 100, representing a rapid acceleration 
in growth compared with previous stages; the average annual 
number of publications at this stage increased by more 
than 281% compared with the same period of the previous 
stage and maintained a high level, suggesting the gradual 
maturity of the research technology and the emergence of 
the first high production phase. We also regressed the annual 
cumulative number of publications to discern the pattern of 
change over time, and the results showed a growth trend of 
multiplicative power, suggesting that ultrasomics is an area of 
intense research interest.

Productive journals

The journals of the publications were visualized using the 
“bibliometrix” package in R (version 4.1.3). All the articles 
included in this review were published across 176 journals, 
of which 9 had more than 10 articles. The most prolific 
journal was Frontiers in Oncology (60 articles), followed by 
Cancers (26 articles) and European Radiology (26 articles). 
Table 1 displays the academic journals that ranked in the 
top 10 in terms of number of publications, with the highest 
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ranking in terms of impact factor being European Radiology 
(5.9), followed by Frontiers in Endocrinology (5.2). Figure 2B 
describes the network of cocited journals’ connections; out 
of 2,825 cocited journals, the most cited is Radiology (1,069), 
followed by European Radiology (1,013) and European Journal 
of Radiology (475). Moreover, we drew dual-visualizations 
maps to clarify the association between studies and 
disciplines. The citation relationship between journals and 
cocited journals is shown in Figure 2C, with clusters of 
citing journals on the left and groups of cited journals on 
the right. The map identifies two main links, with the green 
path being the main citation path, which can be interpreted 
as indicating that literature categorized as molecular, 
biology, genetics and health, nursing, and surgery are 
the primary references for the literature categorized as 

Table 1 Top 10 most productive journals in the field of ultrasomics 

Rank Journal Articles, n

1 Frontiers in Oncology 60

2 Cancers 26

3 European Radiology 26

4 Diagnostics 19

5 Journal of Ultrasound in Medicine 16

6 European Journal of Radiology 12

7 Scientific Reports 12

8 Frontiers in Endocrinology 11

9 BMC Medical Imaging 10

10 Abdominal Radiology 9
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Figure 2 Visualization of publication trends. (A) The annual number of relevant publications and the annual cumulative number of articles 
published from January 2016 to December 2023; the Y-axis represents the number of publications. (B) Visual association mapping of the co-
cited journals; the colors of the vertices represent different clusters, and journals with the same color indicate that these tired journals often 
cite each other and are closely related. (C) Visual mapping of the citation relationship between journals and cocited journals.
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medicine, medical, and clinical.

Distribution of country/region and institution

A total of 43 countries/regions and institutions participated 
in the publication of ultrasomics papers. The nodes in 
the visualization map represent the countries/regions 
or institutions, and the connecting lines represent the 
cooperation between them; the size of the nodes is positively 
correlated with the number of publications, whereas the 
thickness of the connecting lines represents the closeness of 
the cooperation relationship between the countries/regions 
or institutions. By visualizing the number of publications 
and analyzing the number of citations, it is possible to 
ascertain the countries/regions and the institutions that 
have a significant advantage in this domain in order to 
understand the popularity of this topic on a world-wide 
scale. This can help to identify researchers or institutions 
with similar interests or expertise and to highlight potential 
collaborators or research partners (12).

Countries

We first obtained the converted data in VOSviewer, using 
Scimago Graphica to draw the country/region cooperation 
network diagram (Figure 3A). A total of 43 nodes are in the 
graph. The larger the node indicates that the country has 
a greater number of papers published; the greater number 
of linked lines indicates a greater number of internationally 
collaborative studies performed by the country, and the 
width of the line represents the closeness of the intercountry 
collaboration. As seen in the graph in Figure 3, China 
published the largest volume of literature, followed by the 
United States and Italy. The countries with the highest 
number of articles published are shown in Table 2. The 
results suggest that ultrasomics is a popular theme globally, 
with significant literature output in various regions around 
the globe. In terms of citation analysis by country/region, 
the top three countries/regions in the list of cited counts 
are China (n=3,273), the United States (n=1,386), and Italy 
(n=756), respectively, among which China occupies the most 
important position in the national collaborative network 
and has close collaborative relationships with neighboring 
countries.

Institutions

A total of 696 institutions were identified in the survey, 

and the top five most productive institutions were Fudan 
University, Sun Yat-sen University, the Chinese Academy 
of Sciences, Zhejiang University, and Shanghai Jiao Tong 
University. Fudan University, which had the highest 
productivity, published 41 documents. We also conducted 
h-index analysis of the institutions, and the results showed 
that Sun Yat-sen University had the highest h-index (18), 
followed by Fudan University (17). Among the top 10 
institutions in h-index, the institution with the highest 
average number of citations was Institute of Automation, 
Chinese Academy of Sciences (28.54). The institutional 
cooperation network diagram (Figure 3B) was obtained by 
using VOSviewer. It demonstrated that the cooperation 
between different institutions within China was intense, 
among which Fudan University, with the highest number of 
publications, established close cooperation with Sun Yat-sen 
University, Zhejiang University, and Shanghai Jiao Tong 
University, among others, whereas the cooperation with 
institutions abroad was relatively lower; therefore, there 
are development opportunities for greater cooperation 
between institutions across different regions. Over time, 
newly established laboratories have emerged, indicating that 
ultrasomics has broad prospects for development.

Authors and cocited authors

A total of 2,726 authors were included in the survey for 
the statistical investigation. We constructed a collaborative 
network, as shown in Figure 4A, based on the authors 
who published more than or equal to 3 articles, where the 
authors’ publications are represented as nodes of different 
sizes on the graph, and the connecting lines indicate the 
collaborative relationship between the authors, with the 
thicker connecting lines indicating a closer coordination 
between the two authors. Among the top 20 authors, none 
published fewer than 10 articles, with the most prolific 
author being Yuanyuan Wang, who published 19 papers 
over an 8-year span, followed by Wei Wang, has published 
16 papers. This shows that these researchers produced 
significant achievements in this domain; in addition, we also 
conducted an author cocitation analysis, filtering authors 
with a minimum repeat count of 15 to draw an author 
cocitation network diagram (Figure 4B), with 141 authors 
with more than 15 cocitations. The connecting lines of 
different widths in the graph represent the cocitation 
relationship between authors, and the most cocited author 
is Lambin P (n=233), followed by Gillies RJ (n=187) and 
van Griethuysen JJM (n=80), suggesting that these articles 
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Figure 3 Network of countries/regions and institutions of the publications. (A) Visual mapping of the collaborative relationships between 
the countries/regions of publications. (B) Visual mapping of the collaborative publication relationships between related institutions.

are a solid theoretical foundation for further investigation.

Reference cocitation analysis

There were 15,692 references included in the cocitation 

analysis, which is commonly used to identify research 
priorities. In addition, reference burst analysis allows 
readers to understand the literature in the area of interest 
for a given period of time. It can provide the researcher 
with a body of the relevant work in a field and be used to 
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determine the future orientation of research. 

Cocitation

Out of the 15,692 cocited documents found, the top 10 most 
frequently cited papers are shown in Table 3. Gillies RJ’s 
“Radiomics: images are more than pictures, they are data” 
published in Radiology was the most frequently cited article 
with 175 citations, followed by Lambin P’s “Radiomics: 
extracting more information from medical images using 
advanced feature analysis”, with 119 citations. In addition, 
we also performed a cluster analysis of the reference 
cocitation network diagram, and all nodes could be classified 
into 12 major clusters, as seen in Figure 5A, the references 
of which are detailed in Table S1. The clusters were as 
follows: #0, papillary thyroid cancer; #1 breast cancer; #2, 
hepatocellular carcinoma (HCC); #3, artificial intelligence; 
#4, potential biomarkers; #5, biological behavior; #6, 
comparative assessment; #7, neoadjuvant chemotherapy; 
#8, head and neck squamous carcinoma; #9, probing; 
#10, urology; and #11, ultrasound. The clusters with the 
stronger centrality were papillary thyroid cancer, biological 
behavior, potential biomarkers, and comparative assessment, 
suggesting that the studies in these areas serve a bridging 
role between newer and older research. According to the 
timeline, it can be speculated that the current frontiers of 
the field are breast, thyroid, and hepatocellular cancers, as 
well as their associated neoadjuvant chemotherapies, with 
the research focus gradually shifting from technology and 
algorithms to specific clinical applications.

Reference burst

In addition, we identified the top 25 papers in terms of 
strongest citation explosion based on the citation explosion 
value (Figure 5B, with references in Table S2). The first 
citation burst began in 2016, and the strength of the citation 
bursts of the top 25 papers ranged from 1.87 to 23.09. The 
strongest and longest-lasting citation burst was from an 
article published by Gillies et al. (20) in the journal Radiology, 
entitled “Radiomics: images are more than pictures, they are 
data”. This paper explains the concept of radiomics, the basic 
process of performing radiomics, the key points of each step, 
and the continuing difficulties faced, aiming to encourage 
more radiologists to engage in radiomic studies and to create 
more high-quality clinical decision support tools. Finally, the 
authors summarize the current status of the development in 
radiomics and their outlook on the future of the discipline, 
suggesting that radiomics is an approach that holds great 
promises but needs further validation in a multicenter setting 
and in laboratory studies (2).

Keyword analysis

Keywords are those words or phrases chosen for the purpose 
of literature citation and retrieval to reflect the topic of the 
essay, representing a highly condensed expression of the 
study subject. By analyzing the keywords, we can discern the 
core components and research hotspots of a given field, and 
by clustering, we can highlight the key nodes and important 
connections; overall, keyword analysis can reveal the major 
themes in a given field and track its evolution.

Co-occurrence

Keyword cooccurrence identifies recurring themes, topics, 
and subject areas in the literature; maps knowledge networks; 
aids researchers in identifying emerging trends; and facilitates 
collaboration. Meanwhile, co-occurrence analysis provides 
a systematic approach to identifying relevant literature and 
key concepts in a given field of study, which helps in the 
writing of a literature review (29,30). Figure 6A shows the 20 
most frequently occurring keywords, from which the overall 
research in ultrasomics can be classified the into two general 
areas. One is the study of the technical operations, and 
includes keywords such as machine learning, deep learning, 
artificial intelligence, features, texture features, classifiers, 
and nomograms. The other is the study of the clinical 
applications of ulstrasomics models and includes keywords 

Table 2 Top 10 most productive countries in the field of 
ultrasomics 

Rank Country Documents, n Citations, n

1 China 298 3,273

2 USA 57 1,386

3 Italy 44 756

4 The Netherlands 15 356

5 Canada 19 310

6 South Korea 17 250

7 United Kingdom 16 245

8 Switzerland 13 199

9 Germany 17 195

10 Malaysia 5 121

https://cdn.amegroups.cn/static/public/QIMS-23-1867-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1867-Supplementary.pdf
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Figure 4 Network diagram of authors and authors’ cocitations. (A) Visual mapping of the collaborative network of authors. (B) Visualization 
of cocited authors; the colors of vertices represent different clusters, and the nodes with the same color indicate mutual citations between 
authors and a greater tendency to cite the same reference.
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Table 3 The top 10 most frequently cited papers in the field of ultrasomics 

Rank Title Author Citations, n

1 Radiomics: images are more than pictures, they are data 
(doi: 10.1148/radiol.2015151169) 

Robert J. Gillies et al. (20) 175

2 Radiomics: extracting more information from medical images using advanced feature 
analysis (doi: 10.1016/j.ejca.2011.11.036)

Philippe Lambin et al. (2) 119

3 Radiomics: the bridge between medical imaging and personalized medicine (doi: 
10.1038/nrclinonc.2017.141)

Philippe Lambin et al. (21) 110

4 Computational radiomics system to decode the radiographic phenotype (doi: 
10.1158/0008-5472.CAN-17-0339)

Joost J. M. van Griethuysen  
et al. (22)

80

5 Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics 
approach (doi: 10.1038/ncomms5006)

Hugo J. W. L. Aerts et al. (23) 57

6 Radiomics analysis on ultrasound for prediction of biologic behavior in breast invasive 
ductal carcinoma (doi: 10.1016/j.clbc.2017.08.002)

Yi Guo et al. (24) 48

7 Development and validation of a radiomics nomogram for preoperative prediction of 
lymph node metastasis in colorectal cancer (doi: 10.1200/jco.2015.65.9128)

Yan-Qi Huang et al. (25) 47

8 Radiomics: the process and the challenges (doi: 10.1016/j.mri.2012.06.010) Virendra Kumar et al. (26) 43

9 Ultrasound-based radiomics score: a potential biomarker for the prediction of 
microvascular invasion in hepatocellular carcinoma (doi: 10.1007/s00330-018-5797-0)

Hang-Tong Hu et al. (27) 43

10 2015 American Thyroid Association Management Guidelines for Adult Patients with 
Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association 
Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer (doi: 
10.1089/thy.2015.0020)

Bryan R. Haugen et al. (28) 42

such as diagnostic, predictive, managerial, recurrence, 
neoplastic, nodal, and benign. In addition, we used the 
“ggplot2” software package in R to produce heat maps of the 
top 20 keywords with the highest frequency of occurrence 
in different time periods (Figure 6B), which were normalized 
to the frequency of occurrence and displayed as a tube chart 
with different colors. In Figure 6, the brighter the grid color 
is, the higher the frequency of the keyword in that year, and 
it can be seen that a greater number of keywords appears 
as the time passes, which indicates that the field of research 
has gradually broadened and become multidirectional. 
Around 2016, ultrasomics was in its infancy, and the related 
research mainly concerned texture analysis, the theory of 
radiomics, and prostate cancer; in 2020, with the greater 
depth of theoretical research and the increasing maturity of 
practical technology, the keywords changed, and the amount 
of literature related to joint diagnosis of ultrasound imaging 
and radiomics proliferated, with the main keywords being 
diagnosis, lymph node, and thyroid; after 2020, the evolution 
of new algorithms and the upgrading of equipment provided 
a solid foundation for the development of ultrasomics, and 
the research focus broadened and diversified. 

Keyword clusters

According to the cluster analysis of the keywords, a 
visualization network of keyword clustering was constructed, 
as shown in Figure 6C. The keywords could be approximately 
divided into 8 categories: #0, machine learning; #1, 
hepatocellular carcinoma; #2, adenocarcinoma; #3, breast 
cancer; #4, papillary thyroid cancer; #5, nomograms for 
radiomics; #6, automated breast volume scanner; and 
#7, prostate cancer. The keyword with the earliest time 
of emergence was machine learning, which is a feature 
extraction algorithm based on radiomics and served as the 
theoretical foundation for the early development of radiomics 
and commonly used algorithmic models. The research areas 
that are increasing in popularity continue to be diagnosis, 
prognosis, and evaluation of the efficacy of diseases such as 
thyroid cancer, prostate cancer, and HCC.

Discussion

The results of the bibliometrics analysis suggest that 
radiomics has been developing rapidly in recent years, with 
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Top 25 References with the Strongest Citation BurstsB

A

Figure 5 Visualization of the bibliometric analysis of references. (A) Timeline view of keyword clustering analysis of all references related 
to ultrasomics studies; the red dots indicate strong centrality. (B) Top 25 references in terms of strongest citation bursts in the field of 
ultrasomics; the red bar indicates a high number of citations in the year.

a surge in the number of articles and citations to related 
journals. Among them, Frontiers in Oncology is the journal 
with the highest number of publications. Moreover, China 
was the most prolific country in this regard, followed by the 
United States and Italy. The leading three institutions in 
terms of published papers were Fudan University, Sun Yat-
sen University, and the Chinese Academy of Sciences, all of 
which are Chinese science institutions, reflecting China’s 
leading role in this study area. Yuanyuan Wang was found to 
be the author with the highest number of publications, with 
a total of 19 articles published over 8 years, and Philippe 
Lambin was the most cited author with 233 citations. 

Visualization of the cocitation analysis of the literature 
showed that the current foci in this field are papillary 
thyroid carcinoma (PTC), biological behavior, potential 
biomarkers, and comparative assessment, among others. 
The co-occurrence analysis of the keywords allowed us to 
summarize the core theme of our study—ultrasomics—into 
two general categories. We could clearly summarize the 
entire research content of ultrasound-based radiomics into 
two aspects: one is the study the of the technical imaging, 
including image acquisition and segmentation, feature 
extraction and screening, and artificial intelligence model 
construction; the second is the exploration of typical clinical 
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Figure 6 Visualization of the results from the keyword co-occurrence and keyword clustering analyses. (A) Bubble diagram of keyword 
co-occurrence, with the top 20 keywords ranked in descending order of frequency of occurrence; the diameter of the circle represents the 
strength of the linkage, and keywords are represented by different colored circles. (B) Heatmap of the top 20 most common keywords over 
time. (C) The network of keyword clustering. 

applications of ultrasomics models in tumor diagnosis, 
efficacy evaluation, prognosis, and survival prediction. The 
detailed findings are discussed in the subsequent sections.

Preparation of radiomics models

Radiomics is the practice in which images are transformed 
into data that can be mined and subsequently analyzed for 
decision support (20). These data are often combined with 
other patient information, such as genomics, proteomics, 
and other clinical biochemical metrics, to develop models 
that may improve diagnostic, prognostic, and predictive 
accuracy. Ultrasomics is a branch of radiomics, which 
can extract a large number of quantitative features from 

ultrasonic images, including texture, shape, intensity, 
trend, and wavelet features, etc., which represent different 
pathological types of diseases, and provide clinicians with 
comprehensive quantitative phenotypes to help clinical 
decision-making (26). The application of ultrasomics has 
been gradually broadened by the updating of ultrasonic 
technology and the swift development of computerized 
algorithms, with studies now being conducted in the areas 
of thyroid (5), breast (31), liver (32), prostate (33), and head 
and neck tumors (34). 

The process of radiomics mainly includes image 
acquisition and reconstruction, image preprocessing, region 
of interest (ROI) identification, feature extraction, and 
quantization, feature filtering, and prediction modeling (20).
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Image acquisition and segmentation
Images are the base of ultrasomics, from which all radiomic 
features are extracted. The collection of image samples can 
be prospective or retrospective. While prospective collection 
maximizes image consistency, multicenter prospective 
studies require clear agreements between participating 
institutions and standardized practices. Retrospectively 
collected data must be reconstructed due to the lack 
of standardization prior to collection (35). Moreover, 
ultrasound has multiple imaging modalities, and multimodal 
ultrasomics should be able to solve the problem of matching 
the pixel points in different imaging modalities (33).  
Machine learning algorithms require labeling of ROIs, and 
the current approaches to ROI segmentation can be broadly 
characterized into three types: automatic segmentation, 
semiautomatic segmentation, and manual segmentation. 
The common segmentation algorithms include region 
growing, level setting, image cutting, active contour (snake) 
algorithms, semiautomatic segmentation, and livewire 
methods (35). The method of segmentation and location of 
ROIs are not fixed but are ultimately determined according 
to the purpose of the study and the reliability of the results, 
which can be the tumor, tumor subregions, metastases, 
paracancerous tissues, or even normal tissues (4). The 
image quality of ultrasound imaging for feature extraction 
is highly reliant on the operator, the performance of the 
equipment, and the accuracy of the delineation of the ROI, 
however, it is still a great challenge to unifying the image 
acquisition standard and the parameters of the equipment 
and eliminate the differences in the results caused by the 
manual delineation; therefore, the establishment of a 
unified and standardized image acquisition standard and the 
development of semiautomatic ROI delineation tools is a 
hotspot of ultrasomics research.

Feature extraction and filtering
At the nucleus of radiomics is the extraction of high-
dimensional feature data used to quantitatively characterize 
the values of the properties of the volume of interest (20),  
which can be broadly classified into shape, first-order 
grayscale histogram, second-order and higher-order 
texture features, and other features based on filtering 
and transformations (4). Form-based features, known as 
semantic features, include summary statistics describing 
the volume or size of the region (35). First-order features 
are summary statistics of the histogram of grayscale signal 
intensity values obtained from an image within a given 
region and thus are also known as histogram features (36). 

Second-order features are also often described as texture 
features, and they describe statistical interrelationships 
between voxels with similar (or different) contrast  
values (20). Texture-feature extraction methods often used 
in medical ultrasound image analyzation include gray-
level co-occurrence matrix (GLCM), histogram of oriented 
gradients (HOG), and local binary pattern (LBP), among 
others (37). Higher-order features include filters and 
higher-order images to describe metrics (35). It has been 
argued that higher-order features and second-order texture 
features can, to some extent, provide useful information 
about the heterogeneity within a tumor, thereby improving 
the efficiency of tumor diagnosis and prediction of 
treatment response (38). Ultrasound images contain a 
massive number of features, and establishing a link between 
the extracted second-order and higher-order features and 
tumor heterogeneity for better diagnosis and assessment of 
tumor characteristics is a future line of investigation.

Building artificial intelligence models
Artificial intelligence has shown strong productivity in other 
disciplines (39) and is gaining ground in studies related to 
ultrasomics (40). Marya et al. used deep learning algorithms 
to develop a model that can accurately differentiate 
autoimmune pancreat i t i s  f rom pancreat ic  ducta l 
adenocarcinoma on endoscopic ultrasound images (41).  
Azizi et al. used a deep learning approach to capture 
advanced potential features of temporal-enhanced 
ultrasound for the early detection of prostate cancer (42). 
In addition, artificial intelligence has achieved satisfactory 
outcomes in the segmentation of medical images (43) and 
reconstruction of sonograms (44). The current learning 
algorithms of artificial intelligence used for model 
development in ultrasomics include traditional machine 
learning, deep learning, and transfer learning (4). Machine 
learning involves using algorithms that learn from and 
make forecasts about data (45) and includes supervised (46),  
semisupervised (47), and unsupervised (48) learning. 
Machine learning solves problems in classification, 
regression, clustering, and network analysis. The algorithms 
commonly used in machine learning include k-nearest 
neighbor, decision tree, random forest, support vector 
machine (SVM), logistic regression, linear discriminant 
analysis, multilayer perceptron, and Bayesian models (49). 
Deep learning is an algorithm in machine learning based 
on representation learning (50), which uses a variety of 
nonlinear ways to represent the observed object as a vector 
of intensity values per pixel or more abstractly as a series of 
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edges, a region of a particular shape, etc. Neural networks 
(51,52) are a commonly used method in ultrasomics (53). 
The benefit of deep learning over machine learning is the 
use of unsupervised or semisupervised methods to extract 
efficient algorithms to replace the manual acquisition of 
features, which reduces the uncertainty of manual input 
and greatly compensates for the shortcomings of the poor 
robustness of ultrasound images (4). Deep learning’s mode of 
learning dictates the need for larger input data than that of 
traditional machine learning. Transfer learning and domain 
adaptation are processes in which the model learning in one 
task environment is used to enhance the generalization of 
models in another task environment (50). This allows for 
the acceleration and optimization the learning efficiency of 
the model without the need to start from scratch— as most 
networks do—and the circumvention of the overfitting 
problem caused by insufficient training data in traditional 
machine learning (4). Correctly selecting algorithms 
that match the size of the data and the characteristics of 
the disease being studied, constructing classifier models 
for several different algorithms, and selecting the model 
with the best classification are currently popular topics in 
radiologic research. 

Applications of radiomics models

Medical imaging, which provides information about 
pathologic characteristics in a noninvasive, reproducible 
manner, has grown significantly in importance in clinical 
decision-making, evolving from a purely diagnostic tool 
to an essential facilitator of early screening, diagnosis, 
treatment planning, and disease surveillance (54). 
Depending on the department in which the predictive 
model is clinically applied, the application of the model can 
be described in two aspects: diagnosis and prediction.

Differential diagnosis
Ultrasomics models greatly improve the efficiency and 
accuracy of tumor diagnosis, which helps clinicians make 
personalized medical management plans, contributes to the 
early treatment of tumor patients, and improves the prognosis 
of patients. In their study, Căleanu et al. (7) extracted the 
time-intensity curves (TICs) of arterial and portal phases 
in contrast-enhanced ultrasound (CEUS) images for data 
mining and model development, using deep neural networks 
to diagnose liver lesions, which showed a high accuracy 
rate of 83.36% for benign-malignant differential diagnosis. 
Fujioka et al. (55) collected 480 images of 96 benign breast 

masses and 467 images of 144 malignant breast masses as 
training data. A deep learning model was constructed using 
the convolutional neural network (CNN) architecture 
GoogLeNet, and the results indicated that the model had 
the same or even better diagnostic performance than did 
that of a radiologist. Moreover, Wu et al. (56) simulated the 
typical diagnostic workflow used by radiologists to develop 
a user-friendly framework for the automated diagnosis of 
thyroid nodules in ultrasound videos. Most of the work in 
ultrasomics research is still limited to the manual selection of 
features from stationary images or dynamic videos or through 
selecting poorly interpretable algorithmic models; thus, in 
the future, the development of multitask learning frameworks 
and the enhanced interpretability of the models may emerge 
as key research objectives.

Disease classification and typing
Correct disease typing can inform the selection of 
clinical treatment options, and artificial intelligence-
assisted ultrasound image analysis can discern the subtle 
differences between different types of disease and assist 
clinicians in clarifying the phenotype of the condition. 
Wang et al. (5) recruited 75 patients with no mutation in 
the BRAFV600E gene series and 63 patients with mutation 
in the BRAFV600E gene series and randomized them into 
a training group (n=96) and a test group (n=42). Based 
on gray-scale and elastic ultrasound images, 13 radiomics 
features were extracted, and the model had a superior 
predictive value for BRAFV600E gene mutations in 
patients with PTC. Jiang et al. (57) used a dataset of 4,828 
ultrasound images from 1,275 patients with primary breast 
cancer as training samples to predict the four St. Gallen 
molecular subtypes using deep CNN and, secondarily, to 
identify luminal disease from nonluminal disease based 
on the ground truth of the immunohistochemical analysis 
of the whole tumor surgical specimen, both of which 
demonstrated excellent diagnostic performance. Different 
tumor subtypes vary greatly in presentation, treatment 
response, and survival outcomes, and since most of the 
recent studies on predictive phenotypes are retrospective, 
further prospective studies with large samples are still 
needed to demonstrate the reliability of the models.

Prediction of survival
The noninvasive prediction of patient prognosis can guide 
the modification of clinical management strategies. Liu  
et al. (58) constructed a radiofrequency ablation (RFA) and 
surgical resection (SR) nomogram by combining radiomic 
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features and significant clinical variables for individualized 
2-year progression-free survival (PFS) prediction, 
subsequently applying the radiomics model and the 
nomogram to each enrolled patient to investigate whether 
there was a possibility for therapeutic optimization and the 
magnitude of the expected prognostic improvement. The 
nomogram showed good predictive accuracy and ultimately 
benefited patients by changing treatment regimens based 
on predicted outcomes. Yao et al. (59) enrolled 111 patients 
with ovarian epithelial cancer (OEC) who underwent 
preoperative transvaginal ultrasound and were randomly 
divided into a training set and a test set. The ROI of the 
tumor was defined by manually drawing the tumor contour, 
and the results showed that patients with OEC had a good 
prognosis based on the radiomics features, which helped to 
establish a significant clinical variable for prediction of PFS 
at 5 years. Ultrasomics can more accurately predict PFS 
after clinical interventions, allowing clinicians to develop 
personalized treatment plans according to histological 
features from images. Presently, the bulk of images are 
single slices that best represent the nature of the tumor but 
cannot reflect the entire lesion and may overlook certain 
details; therefore, radiomics based on three-dimensional 
ultrasound may become an attractive area of research in  
the future.

Prediction of lymph node metastasis
Lymph node invasion is an important reference for the 
grading and staging of malignant tumors, and preoperative 
prediction of lymph node metastasis can affect the choice of 
surgical plan. An increasing number of studies have shown 
that ultrasomics modeling can noninvasively and accurately 
predict lymph node status. Chang et al. (60) recruited  
3,359 patients with PTC who had undergone total 
thyroidectomy or thyroid lobectomy at two medical centers 
and used multivariate logistic regression to construct a 
comprehensive nomogram combining deep learning, 
clinical features, and ultrasound features to predict 
central lymph node metastasis (CLNM) in patients with 
PTC. The nomogram showed good predictive value and 
could help surgeons make appropriate surgical decisions 
in the treatment of PTC. Jiang et al. (61) extracted and 
selected relevant radiomic features for axillary lymph 
node (ALN) from shear wave elastography (SWE) and 
corresponding B-mode ultrasound (BMUS) images, 
performed proportional ratio sequential logistic regression 
using radiomics features and clinical data, and subsequently 
developed an ordinal nomogram for preoperative assessment 

load in early breast cancer, which provided incremental 
information for risk stratification that allowed for the more 
precise treatment based on a mold. Elastography has good 
predictive value in the diagnosis of solid tumors, and the 
combination of elastography with gray-scale ultrasound, 
CEUS, and clinical factors in constructing radiomics 
models may be promising avenue of research. 

Prediction of recurrence
Ultrasomics models can provide clinicians with an easy-
to-use, visual, and personalized tool that helps to predict 
tumor recurrence at an early stage and to act accordingly, 
which is important for obtaining good patient outcomes. 
Zhang et al.’s (62) retrospective study included 172 patients 
with HCC who underwent hepatic resection with at least 
1 year of follow-up and partitioned the dataset. Based 
on CEUS, a hybrid model was constructed using the 
residual net 50 (ResNet-50) architecture and incorporating 
clinicopathologic features to predict early recurrence of 
HCC after hepatic resection, which was diagnostically more 
efficient than was the single-feature model. In another 
report, Wang et al. (63) retrospectively analyzed the clinical 
imaging data of 159 patients with pathologically confirmed 
prostate cancer who underwent radical prostatectomy and 
divided the patients into a biochemical recurrence (BCR) 
group (n=59) and a control group (n=100). They then 
established radiomics modeling based on CEUS, magnetic 
resonance imaging (MRI), and CEUS-combined with MRI, 
respectively, with the combined model demonstrating the 
best performance. These deep learning-based radiomics 
models have good performance in clinical practice, 
indicating that studies into the processing of ultrasound 
images using deep learning is a burgeoning trend in 
research.

Prediction and evaluation of therapeutic efficacy
Awareness of an individual’s likelihood of achieving 
pathologic complete remission (pCR) prior to treatment 
allows clinicians to develop individually optimized 
treatment plans. Cai et al. (64) retrospectively collected data 
from patients who underwent ultrasound and tomosynthesis 
prior to the initiation of neoadjuvant systemic therapy 
(NAST), evaluated and compared different models based 
on input variables, and ultimately proposed a multimodal 
machine learning algorithm with pretreatment clinical and 
ultrasomics features to predict the response to neoadjuvant 
breast cancer therapy. This integrated algorithm, compared 
with the clinical algorithm, had a significantly higher area 
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under the curve in the prediction of response. Liu et al. (65) 
retrospectively collected data from 130 patients with HCC 
undergoing transarterial chemoembolization (TACE) for 
the first time who underwent an ultrasound examination 
within 1 week prior to surgery, constructed and validated a 
deep learning radiomics-based CEUS model (R-DLCEUS), 
a machine-learning radiomics-based CEUS model with 
TICs (R-TIC), and a machine learning radiomics-based 
B-mode image model (R-BMode) to predict the response 
(objective response and nonresponse) to TACE. The results 
showed that all three models exhibited excellent robustness, 
indicating that the deep learning radiomics-based approach 
can effectively use CEUS videos to achieve the accurate and 
personalized prediction of the treatment response of TACE.

Frontiers in ultrasomics

According to the heatmap of the top 20 keywords over 
time, in the past three years, the research into ultrasomics 
has diversified, gradually extending out of differential 
diagnosis to the areas of disease prognosis, neoadjuvant 
chemotherapy, and radiogenomics. In Park et al.’s (66) 
study, computer-aided ultrasound was shown to be able to 
estimate the disease-free interval of routine patients with 
PTC, thus contributing to the development of personalized 
treatment and follow-up planning. The deep learning-
based radiomics system developed by Jiang et al. (6) could 
assess the efficacy of neoadjuvant chemotherapy for pre and 
posttreatment pathology of breast cancer in pCR, which 
can provide valuable information for individualized medical 
treatment to improve the patient’s quality of life and is a 
successful application of the precision medicine concept in 
the field of breast diseases. Park et al.’s findings correlating 
morphological and vascular ultrasound features of breast 
cancer with their RNA sequencing results (67) suggest that 
microvascular ultrasound features that are easily assessed 
in routine practice can reflect important genetic alterations 
associated with breast cancer and angiogenesis; additionally, 
they can provide information for superior prognostic 
prediction and potential therapeutic targeting. The emerging 
fields of ultrasomics mentioned above are well confirmed, 
but most studies have used retrospective datasets and single 
institutions, and thus prospective studies are still needed for 
further validation. In addition, the combined application of 
ultrasomics features with clinical information, genomics, 
proteomics, etc. is still in the nascent stage of exploration and 
awaiting further contributions from interested researchers.

Radiomics has been enthusiastically pursued by 

radiologists and computer engineers since it was first 
proposed in 2012. The application of radiomics can alleviate 
the inherent subjectivity of manual image interpretation and 
provide a data-driven approach for objectively evaluating 
the characteristics of lesions. Ultrasomics had a relatively 
late start due to the specificity of its imaging modality and 
has only gained traction in recent years. However, with 
the advancement in image-processing techniques, the 
improvement of equipment resolution, and the refinement 
of artificial intelligence algorithms, an increasing number 
of high-quality clinical prediction models are appearing, 
providing improved clinical decision-making.

In the future, breakthroughs in multimodal fusion and 
dynamic video processing will enrich radiomics with new 
ideas for model development, and new technology will 
overcome the limitation of selecting only a single slice 
from ultrasound images. Moreover, novel developments 
in contrast and three-dimensional (3D) ultrasomics have 
provided more useful feature information for predictive 
modeling, and artificial intelligence algorithms can enable 
more in-depth and accurate interpretation of images; thus, 
they are uniquely suited to the extraction and selection of 
features, which has led to the emergence of computer-aided 
design systems, which have demonstrated good performance 
in disease typing, early disease detection, segmentation 
of medical images, and reconstruction of sonograms. In 
addition, the multiomics research of genomics, proteomics, 
and metabolomics has become a hotspot in the research of 
tumor molecular biology, and the integration of radiomics 
and other multiomics approaches will integrate the 
macroscopic imaging features of tumors and microscopic 
biological information to jointly aid in the diagnosis of 
tumors, prognosis. and evaluation of therapeutic efficacy. 
A good prediction model often requires the training and 
preparation of a large amount of imaging data, and the 
standardization and sharing of imaging data is an inevitable 
trend in the development of radiomics, requiring the 
joint efforts of multidisciplinary fields such as information 
technology, biomedicine, and clinical medicine.

The progression of ultrasomics represents a success 
in the context of precision medicine. It is hoped that 
ultrasomics will be able to provide patients with a more 
personalized, higher-quality, and cost-effective healthcare 
environment in the future. 

Limitations

In this study, we used bibliometrics to identify the hotspots 
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and cutting-edge research in the ultrasomics, systematically 
characterized the structure of knowledge, and visually 
mapped the literature in the field so as to provide scholars 
with research ideas through the provision of an overall 
framework of ultrasomics knowledge. However, there are 
some limitations to this study which should be addressed. 
In the author cocitation analysis, the data downloaded 
from the WoSCC only provided the abbreviation of the 
reference author’s name, and we could not be sure which 
author this abbreviated name referred to, which might have 
influenced the reliability of the results. Moreover, all of the 
literature was collected from a single database, the WoSCC, 
and so relevant literature from other databases might have 
been missed. In addition, our study only included articles 
published after November 2023, and thus some of the more 
recent research hotspots might have been omitted.

Conclusions

We conducted a comprehensive analysis of publications related 
to ultrasomics using bibliometric tools to characterize the 
current status and research hotspots in the field. Ultrasomics 
is gradually emerging in the diagnosis, prediction, and 
prognostic assessment of diseases and may greatly facilitate 
clinical decision-making and contribute to the development of 
precision medicine. However, there remain significant problems 
in ultrasomics, which need to be solved via multidisciplinary 
cooperation between the fields of biomedicine, information 
technology, statistics, and clinical medicine. It is hoped that in 
the future, multiomics and data sharing can be combined to 
establish better clinical decision-making tools.
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